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Abstract. The structure and the properties of the oxide films formed on titanium in the 

diphosphate based electrolytes by means of plasma electrolytic oxidizing at direct current 

density of 2–2.5 A·dm−2 have been studied. Oxide layers of different composition and content 

of alloying elements were obtained by modification of electrolytes and variation in current 

density. The interelectrode voltage during PEO, chemical and phase composition, topography 

and microstructure of the formed layers depend on the electrolyte composition and applied 

current density. The spark-discharge regime was shown to be reached at inter-electrode voltage 

100 to 130 V depending on the composition of electrolyte. The effect of chemical composition 

and surface morphology formed mixed oxide films on the corrosion resistance and catalytic 

activity has been discussed. 

1.  Introduction 

Titanium is the most common oxide in heterogeneous catalysis and photo-catalysis for the purification 

gas and liquid media from toxicant [1,2]. This fact is attributed to the fairly high chemical stability 

under different operating conditions, no toxicity, and relatively low cost of this material. At the same 

time it was found that, in most cases, catalyst materials based on mixed two or three component oxide 

systems exhibit high activity and selectivity not only in heterogeneous red-ox reactions [3–5] but also 

in photo-catalytic ones [6–8]. Synthesis of nano-composite catalytic disperse systems based on titania 

is carried out by various methods, including sol-gel processes [6,9,10].  

The formation different kind of oxide layers has been achieved by the anodic oxidation and plasma 

surface treatment in the sparking regime (plasma electrolytic oxidizing PEO) seems to be the very 

promising since it does not need the sophisticated facilities, allows to form various types of titania and 

to incorporate different species into the layer by modification of electrochemical parameters and of 

electrolyte chemistry [11–14]. 

Titania layers containing manganese oxides obtained by PEO in acetate-borate electrolyte was 

noted to be catalytic active in CO conversion to CO2 [15]. Cobalt-containing oxide coatings on 

titanium are obtained from a silicate electrolyte with cobalt acetate addition [16]. However, the 

increase in the catalytic activity of above materials in CO oxidation reaction was achieved by 

additional impregnation followed by annealing. In [17] catalytic materials on titanium and aluminum 

doped with transition metal oxides (Mn, Fe, Co, Ni) were obtained in one stage by the PEO method, 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic National Technical University &quot;Kharkiv Polytechnic Institute&quot; Institutional Repository (eNTUKhPIIR)

https://core.ac.uk/display/222449967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0


2

1234567890‘’“”

2018 5th Global Conference on Polymer and Composite Materials (PCM 2018) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 369 (2018) 012019 doi:10.1088/1757-899X/369/1/012019

 

 

 

 

 

 

 

and also in two stages combining the PEO treatment, followed by impregnation in solutions. The need 

for additional technological operations was due to the low content of dopants and the uneven 

distribution of catalytic components in the surface layers.  

Our positive experience [18,19] related to the development of electrolytes and single step PEO 

regimes for nano-composite manganese-containing oxide coatings forming at valve metals from 

diphosphate bath. This approach was extended to the synthesis of cobalt-containing layers [20]. 

Nevertheless the study of cobalt and manganese effect on morphology, and, consequently, the catalytic 

activity and corrosion resistance of mixed oxide systems is topical and new. In this work some results 

concerning the chemical composition, topography, corrosion resistance and catalytic properties of the 

oxide layers formed on Ti by plasma electrolytic treatment and alloying by cobalt, manganese and 

phosphorus has been presented. 

2.  Materials and experimental procedure 

Titanium alloy sheets of composition, wt.%: Ti – 99.2–99.7, and impurities – 0.3–0.8; were subjected 

to the plasma electrolytic oxidation. The samples’ pre-treatment procedure included mechanical 

cleaning with sandpaper from contaminants, degreasing in a 0.2–0.3 M NaOH, and etching in a 

mixture of a 0.1–0.3 M HF and 0.3–0.9 M HNO3, and thorough rinsing with running water. The PEO 

treatment of the samples was carried out in the diphosphate solution [19,20], with or without the 

addition of Co and Mn sulfates (table 1). Anodic polarization of samples was carried out from a 

stabilized current source by a direct current of different densities (table 1) until the sparking regime 

was achieved. The treatment lasted 30 minutes after attaining the sparking mode to obtain a uniform 

oxide layer with dopants. The Ti alloy anode was placed into the electrochemical cell (volume 200 ml) 

the form of the graphite cathode provided the formation of the uniform modified layer on the both 

sides of the sheet. The temperature of oxidation (293–300 K) was stabilized by water shield. The 

thickness of the coatings was at least 15–20 μm. 

 

Table 1. The treatment parameters and the code of the studied samples. 

Sample 

code 

Electrolyte composition, 

mol·dm−3 

Current density 

i, A·dm−2 

Addition of 

alloying elements 

1 K4P2O7 – 0.5 

2.0 

– 

2 K4P2O7 – 0.5; CoSO4 – 0.1 Co 

3 
K4P2O7 – 0.5; MnSO4 – 0.1 Mn 

4 2.5 

 

The surface of the anodized specimens was observed on scanning electron microscope Hitachi S 

4200 at magnification up to 10,000 with attached ESEM-50 Philips EDS analyzer. The backscattering 

electron image and the energy dispersion analysis were done. The X-ray diffraction was done by a 

Brucker AXS D8 diffractometer, using Cu Кα radiation and Ni filter. The obtained spectra were 

analyzed using the CPDF PDF – 2/2001 database. 

The susceptibility to corrosion was checked in the free aerated 2 M NaOH and Ringer (composition, 

mol·dm−3: NaCl – 0.15, KCl – 0.004, CaCl2 – 0.004) solutions by comparing the values of open circuit 

potentials (Eoc). The potentials presented in the paper are given relative to the standard hydrogen 

electrode (SHE). The catalytic properties of the oxide systems were studied in the model reaction 

oxidation of carbon (II) oxide to CO2 as in [18,19].  

3.  Results and discussion 

The stages of the titanium alloy oxidizing at direct current of 2 A·dm−2 in different electrolytes one 

can see at chronograms of inter-electrode voltage in figure 1. Section I corresponds to a linear change 

in the inter-electrode voltage U up to 60 V at first 2 min of oxidizing. This section known as pre-spark 

stage is almost the same for chronograms in all electrolytes and is attributed with formation of phase 

titania. 
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Figure 1. Chronograms of inter-

electrode voltage at applied anodic i=2 

A·dm−2 polarization of Ti alloy in 

diphosphate electrolyte with or without 

addition of cobalt or manganese 

sulfates. 

 

Voltage oscillations are observed in section II of the chronograms, when local sparking begins at 

the anode. This is due to competitive processes of titania formation / dissolution, and thermo-chemical 

parallel reactions with electrolyte components. At this stage, the dopants (Co, Mn, P, K) are 

incorporated into the matrix of titania, forming oxides that heal defects. The dependence of the spark 

voltage Us on the nature of the dopants is explained by differences in the specific electrical resistivity 

of oxides (table 2). It is quite natural that the spark voltage US increases in the series TiO2 < 

TiO2·MnOx < TiO2·CoOx. 

 

Table 2. Effect of the current density on the PEO voltage and composition of oxide coatings on 

Titanium. 

Electrolyte Current 

density 

i, 

A·dm−2 

Voltage, V Specific 

electrical 

resistance of 

oxide, ρ (Ω∙cm) 

Content of dopants in surface layer, 

at% 

P to 

Ti 

ratio US UO Co Mn P K 

K4P2O7 
2.0 

67–73 
105 

TiO2 – 1013 
– – 22± 1 13.2± 0.5 

0.53 
2.5 110 – – 27± 1 12.0± 0.5 

K4P2O7, 

CoSO4 

2.0 
82–85 

120 CoO – 106–1010 

Co3O4 –103–105 

5.7± 0.2 – 35± 1 10.2± 0.5 0.76 

2.5 130 6.3± 0.2 – 36± 1 7.5± 0.5 0.72 

K4P2O7, 

MnSO4 

2.0 

80–85 

125 MnO – 109–

1012 

Mn2O3 –105, 

Mn3O4 – 104–

105 

MnO2 –10–1–

10–3 

– 4.6± 0.2 37± 1 9.1± 0.5 0.63 

2.5 130 – 5.0± 0.2 38± 1 7.6± 0.5 0.79 

 

Section III at chronograms corresponds to the micro-arc mode of PEO, and the voltage stabilization 

is due to the increase in the thickness of the mixed oxide coatings. The operating voltage UO also 

depends on the composition of the electrolyte and, consequently, the formed oxides, especially their 

thermal resistance. The operating voltage in cobalt and manganese containing solutions after 25 min 

PEO is practically the same, which is due to identical specific electrical resistances MnO and CoO that 

are the products of intermediate oxides thermal decomposition. 

Surface layers morphology depends on the applied current density and composition of oxide 

coatings. The size of the rounded (doughnut like) grains observed for titanium in diphosphate 

electrolyte as shown in figure 2(a) increases for Co or Mn containing mixed coatings as shown in 

figures 2(b) and 2(c) obtained at the same current density i 2 A·dm−2, but it decreases at increasing i up 

to 2.5 A·dm−2 as shown in figure 2(d). The micro cracks of the doughnut like and of the acicular grains, 
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have been seen as shown in figure 2(a). The presence of Co ions considerably modified the appearance 

of the oxide layer as shown in figure 2(b) due to the healing of cracks and defects when dopant is 

incorporated into the surface layers. On the other hand, the effect of the current density can be seen in 

the case of layer formation in the Mn containing solution (cf. as shown in figures 2(c) and 2(d)). The 

structure consisting of the doughnut like grains filled with the small grains has been also observed as 

shown in figure 2(b). The size of the small grains slightly decreases with the increased i and thus 

higher Mn content (sample 4).  

 

 

 

 
(a)  (b) 

 

 

 
(c)  (d) 

Figure 2. Appearance of the surface of Ti after the PEO treatment at different 

conditions. Samples: 1 (a), 2 (b), 3 (c), 4 (d). 

 

As follows from the EDS results as shown in figure 3 the X-ray characteristic spectrum taken from 

the surface reveals the presence of other elements beside Ti and O in the layer. The atomic % of P, K, 

Co and Mn evaluated from the obtained spectra not taking into account the presence of O, H and B 

and the ratio of P/Ti are shown in table 2. It is seen that with increasing current and consequent 

operating voltage the content of Mn, Co and the amount of P and the P/Ti ration increase, whereas the 

amount of K decreases. The concentration of titanium in the surface valleys of specimen 1 (spectrum 3) 

is naturally higher than on the peaks (spectrum 2) as shown in figure 3(a). For the other oxide systems 

this difference is not so noticeable, but at the same time, the content of dopant metals on the peaks 

(spectrum 2) of the relief is higher than in valleys (spectrum 3) as it follows from figures 3(b) and 3(c). 

A series of diffraction lines for α-Ti and TiO2 on X-ray diffraction patterns for specimens 1, 2, 4 

was obtained as shown in figure 4 which is in accordance with [21]. It should be noted that the 

analysis of the X-ray spectra obtained by the routine procedure shows the presence of the α-P3Ti5 in 

the 1 and 4 specimens. Furthermore, one can find small peaks at angles 2θ~37° and change in intensity 

double peaks at 2θ~76° on X-ray diffraction patterns of systems TiOx·CoOy and TiOx·MnOy. Taking 

into account the data from the EDS, it may be concluded that this difference may be attributed with Co 

or Mn incorporation in titanium oxide matrix. At the same time the low concentration of these 

elements does not allow to determine the phase composition with high accuracy. 
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The results of testing the catalytic activity of the mixed oxide coatings with show that the ignition 

temperature Ti corresponding to the top efficient operation of a catalyst is in the range from 510 K to 

520 K for TiOx·MnOy systems, obtained by PEO. Parameter Ti is slightly higher than for platinum-

based catalysts. The complete conversion of CO at TiOx·MnOy surface is achieved at Тc=670 K (table 

3). As can be seen from the data in table 3 mixed oxides TiOx∙CoOy inferior in catalytic activity the 

TiOx∙MnOy system as it was observed in [18,19]. This is due to variability of manganese oxidation 

numbers and more developed and a rough surface of mixed manganese containing oxide. Obtained 

results are in accordance with the data [15–17] and advantage of this work is that observed in this 

paper coatings do not need additional impregnation. Thus above data confirm the efficiency of 

materials as catalysts for the CO conversion and gaseous wastes neutralization. 

 

 

 

 
ω(Ti), at%: spectrum 2 – 49.5;  spectrum 3 – 57.6 

(a) 

 

 

 
ω(Ti), at%: spectrum 2 – 40.9; spectrum 3 – 51.2; ω(Co), at%: spectrum 2 – 5.7; spectrum 3 – 5.2 

(b) 

 

 

 
ω(Ti), at%: spectrum 2 – 46.6; spectrum 3 – 46.4; ω(Mn), at%: spectrum 2 – 5.0; spectrum 3 – 4.6 

(c) 

Figure 3. Surface morphology, X-ray spectra taken from the surface and composition of oxide 

coatings at hills (spectrum 2) ad valleys (spectrum 3) for samples: 1 (a), 2 (b), 4 (c). 
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Figure 4. Diffraction patterns of PEO coatings. 

 

Table 3. The catalytic activity of the materials in the CO oxidation reaction. 

Catalyst 

material 

The content of the active 

ingredient ω, at.% 

Ignition 

temperature Тi, K 

Temperature of 

complete conversion 

Тc, K 

Pt [22] 100 490 635 

Ptexp 100 495 650 

TiOx∙CoOy Co – 6.3 565–570 700–710 

TiOx∙MnOy Mn – 5.0 510–520  670–675 

 

Table 4 shows the results of the open circuit potential Eoc measurements of samples immersed in 

2M NaOH and Ringer solutions. It is seen that PEO substantially increases the corrosion resistance, as 

follows from the shift of the Eoc into the positive direction. The lowest corrosion resistance in both 

solutions reveals Ti∙TiOx system (sample 1) although it is significantly higher than unoxidized 

titanium (sample 0). 

 

Table 4. Open circuit potential of oxide systems in different media. 

Sample Eoc, mV in solutions 

Code Composition 2M NaOH Ringer solutions 

0 Ti −600 −480 

1 Ti∙TiOx 370 100 

2 TiOx∙CoO 580 900 

4 TiOx∙MnOy 450 580 

 

Passivity of doped oxide systems in an alkaline medium is explained by the basic nature of cobalt 

and manganese oxides. At the same time, it should be noted that manganese oxides are less resistant in 

chloride-containing media compared to cobalt oxides. Some conclusions may be drawn from the 

comparison of corrosion behavior data with the surface layers topography. The highest positive open 

circuit potential of sample 2 may be associated with the closely packed doughnut-like grains filled 

with small grains, cf. as shown in figure 3(b). The lowest corrosion resistance of sample 1 may be 

associated with the cracking of the formed layer, which promotes the penetration of electrolyte to the 

substrate. Specimen 4 has the loosest structure, which may provide lower corrosion resistance as 

compared with sample 2. 
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4.  Conclusions 

 The oxide layers containing the alloying elements might be formed on Ti by means of the 

anodic polarization in the spark-discharge regime (at current densities 2–2.5 A·dm−2).  

 The chemical and phase composition as well as the topography, the microstructure of the 

formed layers can be varied by modification of the electrolytes and by the altering the applied 

current density.  

 The high corrosion resistance of mixed oxide systems in alkaline and in Ringer solutions has 

been estimated.  

 Mixed oxide coatings are characterized by the developed surface and high catalytic activity in 

the carbon (II) oxide conversion reaction. 
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