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Abstract: The analysis and synthesis of optimization methods of machinery dynamic modes are 

carried out in this work. Theoretical studies have shown that in order to find optimum, one must 

define a differential equation describing the motion of the system, which realization would ensure the 

most advantageous dynamic regime determined by the stationary value of the corresponding 

functionals. Thus, the problem of optimal dynamic modes lies in the fact that it is necessary to define such 

a differential equation, which realization would ensure the most favorable dynamic regime, determined by 

stationary value of functionals. The differential equation corresponding to the optimal mode must be 

defined in the process of machinery design, because its physical parameters and layout form the basis 

of these differential equations. The definition of this equation must be carried out while machinery 

construction is taking place, as its physical parameters and layout form the basis of these differential 

equations. Such approach requires the introduction of certain principles significantly affecting the 

development of optimization methods justified in this work. To solve the problem of optimal 

machinery modes, separation of complex motion by its dynamic properties is more suitable. Suppose 

that the complex motion can be devided into the motion of the machinery unit as a whole, to the static 

displacements of its elements as solid bodies, to the increasing and damping components of motion 

and to the vibrational component. Thus, the solution of the problem of optimal modes in the 

machinery dynamics consists in the following. The most advantageous machinery dynamic mode is 

determined by the conditions of the technological process, which would ensure its highest 

productivity, the lowest energy consumption and other optimal technical and economic indicators. 

This regime corresponds to the motion of the unit as a whole, that is, to the variation in the 

quasi-cyclic coordinates. The vector of external forces applied to the machinery is reduced to the 

initial conditions of its motion; homogeneous differential equations are considered further. The 

fundamental system of their solutions depends on the initial conditions of motion generated by 

external systems. 

Keywords: machinery dynamics, operation system damping, technological process. 

 

1. Introduction 

The analysis techniques methods to study the motion of machines are critical in machine design 

process as such analyses should be performed on design concepts to optimize the motion of a machine 

arrangement. A focus is placed on the application of kinematic theories to real-world machinery. The 

main task is bridge the gap between a theoretical study of kinematics and the application to practical 

mechanisms [1-5]. Science and technology problems of machinery dynamics have been becoming 
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increasingly important every year. Especially a lot of them arise while creating and operating heavy 

machinery that have significant linear dimensions, masses and moments of inertia of movable links that 

are under the influence of transient loading. Dynamic process simulation differs from purely 

steady-state simulation in that the former requires the mechanical construction of process items be 

taken into account; the amount of mechanical detail being dependent upon the particular application. 

The reason for this is that dynamic mass, energy and momentum balances have to be continuously 

updated [6-8]. In such conditions, even small accelerations of the movable links lead to the appearance 

of considerable inertia forces causing large dynamic loads on the elements of machinery and designs. 

The study of dynamic processes in machinery and the creation of methods for calculating machinery 

taking into account current dynamic loads and links elasticity acquire special importance with the 

increasing speed of modern machinery, which ensures their high productivity [9-11]. 

Machinery dynamics includes the complex tasks of modern machine building and, despite the 

rather wide coverage in the specialized literature [12-16], requires further comprehensive study both 

for explaining dynamic processes taking place in machinery, establishing their regularities, and for 

developing reliable calculation methods. The wide development of computer technology makes it much 

easier to solve these problems and makes many of them accessible to engineering practice. At the same 

time, much attention should be paid not only to the design of machinery, but also to their dynamic 

adaptation to the operating conditions by optimizing their operating modes according to dynamic 

criteria. 

2. Materials and Methods 

Suppose that machinery constructive elements be formalized by square matrices: inertial 
m

ijkK
1

 , stiffness of elastic elements 
m

ijcC
1

  and attenuation coefficients 
m

ijbB
1

 . If the state of 

the machinery at a point of time t  is determined by the column vector of the generalized coordinates 

q  the column vector of the generalized velocities q , then its energy properties will be expressed by 

quadratic forms of the form: 

qKqE T 
2

1
 , СqqП T

2

1
 , qВqФ T 

2

1
 ,     (1) 

here Т  - a sign of transpose. 

Suppose that Lagrangian corresponding to the forms (1) has the form: 

),,;,,( 11 mm qqqqLL  ,        (2) 

and let the determinant 

0
2






is qq

L


, ),,1;,,1( mims   .      (3) 

Then the differential equations of machinery motion can be written in the form: 

),,( iiss qqtq   , ),,1;,,1( mims   .     (4) 

If mmmm xqxqxqxq 2122111 ,,,,  
 , then the system (4) will have a normal form of the form: 

);,( 1 txxfx nii   , ),,1;2( nimn  .      (5) 

As coefficients, the system of equations (5) includes combinations of matrix elements К , С , В  

through forms (1), Lagrangian L  and system (4). We represent these combinations in the form of a 
column vector Pр , where Р  – parameter space with dimension k , bounded by a certain region. 

Let's give equations (5) a vector form: 

),,( ptxfx  ,          (6) 

here t  belongs to some open interval bta  , which ends are real numbers; f  – vector function 

completely defined in the region of )1( nD  - dimensional space. 
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It has been supposed that requirements of the motion quality are formalized in the form of k  

functionals, depending on the machinery power mode and its structural elements in the form: 


1

0

)],,([

t

t

ii dtptxfUI , );,,1( nkki   .     (7) 

Functionals (7) can express in the mathematical form the conditions for the highest productivity of 

machinery, the smallest modules of the elastic forces of its links, the decay of transient processes in the 

shortest time, and many other important technological and dynamic conditions. So, if a machinery 

operating cycle is presented in the form of a cyclogram with a cycle time Т , then TI  , and its 
maximum performance is achieved at minT . If the functional (7) is written with respect to the 

largest maximum modulus of elastic forces developed during the transient process 

i
Ttni

xI



01
maxmax ,         (8) 

then, its smallest value 

i
Ttnic

xI



01
maxmaxminmin         (9) 

also corresponds to the optimal dynamic mode. 

Usually a machinery operating process is determined by the decay time of the transitient 
component of elastic oscillations trt . Then trtI  , the achievement of trtmin  optimizes the operating 

process by the decay time. Functionals (7) can also be written with respect to the consumption of fuel 

or energy. In this case, energy modes of the machinery units are optimized. 

Thus, the problem of optimal dynamic modes lies in the fact that it is necessary to define such a 

differential equation (6), which realization would ensure the most favorable dynamic regime, determined by 

stationary value of functionals (7). 

The differential equation (6) corresponding to the optimal mode must be defined in the process of 

machinery design, because its physical parameters and layout form the basis of these differential 

equations. 

3. Results 

The mathematical and practical complexity of problem solving requires the introduction of some 

new principles that significantly affect the development of methods for optimizing processes. 

3.1. The principle of generalized input  

Let's define the following Euclidean norms for the equations of motion (5): 





n

i
ixx

1

;         (10) 





n

i
ni xxfxf

1
1 ),,()(  .        (11) 

It has been supposed that on ),,( 1 ni xxf  , ),,1( ni   are imposed conditions under which 

0
)(


x

xf
 at 0x .       (12) 

Then, on a certain interval of argument variation belonging to the entire numerical axis, we can 

pass to a linear differential equation of the form: 

)(tFAxx  .         (13) 

In this equation 
n

ijaA
1

  – a constant matrix of its coefficients, )(tF  – is a vector function of 

the external forces applied to machinery links. 
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The matrix А  with its elements usually characterizes machinery, including the operation system. 

It is natural that different elements of the matrix correspond to a different quality of motion and that 

external forces influence this quality. In order to improve the machinery motion in a certain sense, the 
matrix А can be changed, or the vector function )(tF , or both. 

It has been supposed that the design parameters of the machinery are changed so that they can be 

analytically represented in the form of the matrix 
n

ijk bB
1

 . Let us write the equation of the unit 

motion in the form: 

xBx k .          (14) 

We subordinate equations (13) и (14) to the same initial conditions, given in the form of a column 

0x . We require that the solutions of these equations coincide everywhere on the interval  t0 . On 

this basis, we assume that the left-hand sides of equations (13) and (14) are equal to each other. Then: 

)()( tFxABk  .        (15) 

Let us show that when the equation (15) is satisfied, the solutions of equations (13) and (14) will 

be identical. Let us write the solution of the equation (13) in the form: 




t
tAAt dFexex

0

)(
0 )(  .      (16) 

Substituting the value x  from the equation (16), we reduce the equation (15) to the integral: 




t
tA

k
At

k dFeABxeABtF

0

)(
0 )()()()(  .     (17) 

As the kernel of the equation (17) is a function of the form 

)()(),(  tA

k eABtK
,        (18) 

then its resolvent is written as 

)(

1

1

)(
)!1(

)(
)(),(


 













tB
k

m

m

k
keAB

m

t
ABtR .    (19) 

If the matrices A  and kB  commute, then the solution of the equation (16) will have the form: 

  
t

AtB

k

At

k dxeeABxeABtF k

0

0

)(2

0 )()()(

.    (20) 

After completing the quadrature, we get: 

0)()( xeABtF
tB

k
k .        (21) 

Comparing the results of (21) with the equality (15), we note that the initial coordinate x  must 

simultaneously be the solution of equation (14), that is, equal to 0xe
tBk .  

Thus, the parameter variation of a machinery unit in a dynamic sense is equivalent to the variation 
of external forces acting on it. As the column vector )(tF  in the equation (13) is the system input, then 

the matrix equation (15), stating that the input is dynamically equivalent to its parameters variation, 

expresses the principle of generalized input. This principle, first of all, shows that the optimization of 

the power mode can be achieved through the rational choice of machinery design parameters. 

3.2. The principle of motion separation by their dynamic properties 

In classical mechanics, complex motion is devided into simple ones, as a rule, according to their 

geometric (kinematic) properties. To solve the problem of optimal machinery modes, separation of 

complex motion by its dynamic properties is more suitable. Suppose that the complex motion can be 
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devided into the motion of the machinery unit as a whole, to the static displacements of its elements as 

solid bodies, to the increasing and damping components of motion and to the vibrational component. 

The displacement of the object as a whole relatively to its center of inertia can be calculated with 

the help of equations (4) if they contain quasi-cyclic coordinates, understood as A.I. Lurie [17]. Let the 

generalized forces for quasi-cyclic coordinates have the form: 

1( , , )r s r s rQ Q q q  , (1, , )s m r  ,      (22) 

but a quasi-cyclic pulse 

sr
sr

q

T
p










, ),,1( rms   .      (23) 

Then 

),,( 1 msrsr qqQP 
  , 

),,1( rms  
.      (24) 

This system is solvable with respect to quasi-cyclic generalized velocities and its integration will 

determine the motion of the object as a whole. 

Let the vector-column of external forces in equation (13) ),;()( )()( baMHWtF r  , that is, let them 

belong to some class of functions having ],[ ba  derivatives of r , satisfying inequality 


)()()( )()( ttMtFtF rr  , ],[),( batt  ,     (25) 

here 10  . In other words, )(tF  can be a polynomial, for example, of degree r : 





r

i

i
i

i

t
FtF

0

)(

!
)0()( .        (26) 

Differentiating equation (26) nr 1  times and setting )(nxz  , we obtain: 

Azz  .          (27) 

Defining the initial conditions 0)0( xx   and 0)0( zz  , we have: 

)(
00
nxz  .         (28) 

The solution of the equation (27) with the initial conditions (28) can be written in the form: 

0zez At
,          (29) 

or 

)(
0

)( nAtn xex  .        (30) 

Integrating the equation (30) n  times, we find: 















 













1

0

1
)(1

1

0

)(1
0

!
)0()0()(

n

i

n

ij

i
jji

n

i

iiAt

i

t
FAFAxetx .   (31) 

The first item on the right-hand side of this equation is the solution of the homogeneous equation 

(27) with the initial conditions (28): 







1

0

)(1
00 )0(

n

i

ii FAxz .       (32) 

The second item is a particular solution of the equation (13) if its right-hand member is the 
function )(tF . In fact, the general solution of the equation (13) has the form: 
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


t
tAAt dFexex

0

)(
0 )(  .       (33) 

If 0)()( tF n , then, integrating by parts, we get: 











 
1

0

)(1
1

0

)(

0

)( )()0()(
n

i

ii
n

i

iAt
t

tA tFAFedFe  .     (34) 

Taking (26) into account, we have: 















 
1

0

1
)(1

1

0

)(1

!
)0()(

n

i

n

ij

i
jji

n

i

ii

i

t
FAtFA

.      (35) 

Putting in the equation (13) 0x , we define the so-called "quiescent" state, that is, the change in 

the coordinates of the system under the influence of the static action of the forces: 

)(1 tFAx  .        (36) 

If the law of external forces variation is given in the form 

consttF )( ,         (37) 

then (36) is a pure solution of the equation (13). Such a solution determines system deformability, 

understood in the most general sense, for example, as the elastic displacements of its elements. If 

external influences are variable in time, then the deformability of the object occurs at a certain rate. 
Differentiating the equation (13) with respect to t , supposing that 0x  and taking (35) into 

account, we obtain: 

)()( 21 tFAtFAx   .       (38) 

Continuing deformability definition in the same order, i.e, equating to the zero all dominant 

derivatives, we find that the static displacements of the system are expressed by a particular solution 

(36). 

Thus, if the external forces of the machinery unit belong to some fairly wide class of time functions, then the 

inhomogeneous differential equation (13) can be regarded as homogeneous with the initial conditions (32). By 

this there are distinguished the static displacements (35) and the dynamic component of the motion, determined 

by the solution (30) in the form: 












 






1

0

)(1
0 )0()(

n

i

iiAt FAxetx .       (39) 

The further separation of complex motion and its optimization, depending on the design 

parameters of the machinery unit, require the creation of a new form of a fundamental system for 

solving differential equations. 

3.3. Fundamental system for solving differential equations in parameter space 

As the external force vector, written in the differential equation (13), can be brought dynamically 

to the initial conditions (32) and to the static component of the motion (26), then we will consider the 

homogeneous equation (13). Suppose that there is a matrix of the form: 



























 121

1000

0100

0010

pppp

A

nnn 









.       (40) 
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Then the homogeneous differential equation (13) can be written as follows: 

0)2(

2

)1(

1

)(   xpxpxpx n

nnn  .      (41) 

If we replace the variable by setting 

t
n

p

yex
1


,         (42) 

then the equation (41) takes the form: 

0)3(

3

)2(

2

)(   ybybyby n

nnn  .      (43) 

Then replacing t  with the value 2bt  we will have: 

0)()()()( 2

)3(

1

)2()(  

 ygygyy n

nnn  ,     (44) 

here 

 j
j

j

bb

b
g

22

2
 , )2,,1(  nj  .      (45) 

We put in the equation (44) 

)()()(  Uy n

.          (46) 

We reduce it to an integral equation of the form: 

)()0()()0()()0()()0()(),()( )1()1()()2()1(

0

 



nkknnn KyKyKyKydUyKU 

, (47) 

which core is 









1

0
!

)(
),(

n

n

n

n
K


 .        (48) 

In the monograph [18] it was proved that the resolvent of the equation (47) has the form: 

  



























 







 










1

1)2(22

221

0

1

0 0
]!1)2(22[

)1(),(

m

inlpm
i
n

lp
m

i

m

k

lim

p

m

inlpm
ggg

p

lim

k

im

i

m
R










 . (49) 

As in the resolvent (49) there are coefficients jg  )2,,1(  nj  , related to the parameters ip  

),,1( ni  , then the solution of the equation (46) and, hence, of the equation (36) is written in terms of 

object parameters - this solution forms a fundamental system in the parameter space, which form is 

presented in the monograph [19]. 

3.4. Separation of motion in parameter space 

In the work [18] it is proved that the core (48) and the resolvent (49) are divided into two items: 

),(),(),( *  LKK  ,        (50) 

),(),(),( *  QRR  ,        (51) 

here 
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]!1)2(422[

)(

)1(),(

,
)!1(

)(

!3

)(

1

)(
),(

1)2(422

242

1 0

1

0 0

*

1

2

3

2

*













 







 



























 













  

inplm
ggg

l

pim

k

im

i

m
R

n
ggK

inplm
i

n

pl

m

m

i

m

k

pim

l

m

n

n













.   (52) 

If we substitute core and resolvent values into the integral equation (47), then its solution with 

respect to )(y  will also consist of two parts: 

)()()( 21  yyy
,         (53) 

and the function )(1 y  is formed by solving a differential equation of the form: 

012

)4(

12

)2(

1

)(

1  

 ygygyy n

nnn  .      (54) 

With a proper choice of the coefficients 242 ,,, nggg   the solution of the equation (54) will be an 

undamped, bounded by module almost periodic function of time. However, the original equation (43) 

has a time-increasing solution, as can be seen from its Hurwitz matrix 
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.        (55) 

As the minors of this matrix are 01  , 012  g , 02

13  g ,… at positive jg  

)2,,1(  nj  , then the solution of the equation (43) increases with time. But the solution of the 

equation (43) is the sum of two functions (53), in which )(1 y  at certain conditions it does not 

increase by the module. Consequently, the function increasing in time is )(2 y . Passing to the 

argument t  and taking into account the substitution (42), we write: 

i
n

p

etytyx
1

)]()([ 21




.        (56) 

Thus, the complex motion of machinery unit elements is divided according to the formula (56), 

into an increasing component of )(2 ty  and on a purely oscillatory component – )(1 ty . 

3.5. Process, optimal by attenuation 

If we take as the beginning of the transient process 0t , then by its duration we mean the time 

from the moment when the oscillations start to the moment of equilibrium onset. The duration of the 

damped oscillatory process depends essentially on the design parameters of the object. Consider a 

three-mass system with attenuation 12k  and 23k , proportional to the speed of oscillations. The 

differential equation of the oscillatory process has the form: 

04321

)4(  xpxpxpxpx 
,       (57) 

here 
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In this equation discrete masses are denoted by im  )3,1( i  and the stiffnesses of the elastic 

links by 12c  and 23c . 

The attenuation of the process is determined by the coefficients 1p  and 3p . These coefficients, 

and hence the duration of the process, depend not only on 12k  and 23k , but also on all parameters of 

the system, that is, on the machinery design. Therefore, even with sufficiently large attenuation 

coefficients, not optimal selection of machinery design parameters reduces their efficiency, and vice 

versa - with small attenuation coefficients, but with a suitable ratio of discrete masses and rigidities, it 

is possible to realize rapidly damped in time process. If we pass to the phase space, then the optimal 

process by attenuation is determined as follows. 

The system makes free attenuating oscillations; its initial state is given by the vector )0(x , 

determining the position of the point in the n2 -dimensional phase space. It is necessary to use the 

system parameters so that the transition of the phase point to the origin of coordinates proceeds in the 

shortest time interval. 

To solve the problem, we turn to the equation (56). First of all, the function increasing in time 

should be suppressed )(2 ty . Such an operation is considered in detail in the monograph [20]. 

However, it is often possible to solve the problem correctly in a purely intuitive way. The condition 
0)(2 ty  takes place if the equation (44) becomes the equation (62). To do this, all odd coefficients ig  

),5,3,1( i  must be turned into zero. These coefficients are associated with system parameters by 

conditions (42) and (45). Then the solution of the differential equation of the transient, written in the 

form (56), will be the following: 

t
n

p

etyx
1

)(1




.         (62) 

The second step in the process optimization is the choice 

1
1

max p
Pp  .          (63) 

Then it is necessary that the function )(1 ty  is bounded by module. In the general case the 

function )(1 ty  is the solution of the differential equation of small oscillations of conservative systems. 

3.6. Optimization of the vibrational item 

Let us consider a more general form of the equation (54). Having substituted the variable y  with 

the variable x , we get: 

01

)42(

1

)22(
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)2(  

 xaxaxax n

nnn 
.     (64) 

A similar equation is used in the machinery dynamics with elastic links without taking energy 

dissipation into account. Substituting the argument 

0a

t
 ,         (65) 

the differential equation (64) is reduced to the form 

02

)42(

1

)22(2  

 xcxcxx n

nnn 
,      (66) 

here 
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 , )2,,1(  ni  .       (67) 

As the coefficients ic  )2,,1(  ni   are connected by means of the formula (67) with the system 

parameters, then, defining them in the form of inequalities 
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       (68) 

here n2  – the order of the differential equation, it is possible to guarantee the boundedness by 

module of the oscillatory item of the solution [15]. 

However, the optimization of this process must be continued until the maximum deviation is 

minimized or until the maximum elastic forces of the system are minimized. The fundamental system 

for solving the equation (66) in the parameter space ic  )2,,1(  ni   is presented in the monograph 

[18] in the form of functions 110 ,,, nxxx  , expressing the system reaction to the defined initial values 

of the function and its derivatives up to )1( n - inclusively. Thus 
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
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k
kxx

.         (69) 

Let the fundamental solution system form n -dimensional linear normed space X , i. e. Xxk   

)1,,0(  nk   with the norm 


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


1

0

n

k
kxx

.         (70) 

As the module of functions is variable in time, the norm (70) also varies. Suppose that there is an 

absolute maximum of the norm, that is, 
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Assuming also that 

k
Xxk

k
Xx

xx
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 maxmaxsup
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and 
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we will minimize the value of the form: 

xx 
,          (74) 

 

here 
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
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n

k
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xx

.        (75) 

The value (75) corresponds to the norm (70) under the most unfavorable conditions of motion in 

accordance with the so-called principle of unfavorable collinearity. 

If kx  )1,,0(  nk   – are the elastic forces of machinery links while transient is taking place, 

then the definition 


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



1

0

maxmaxminmin
n

k

k
Xxkcc

xx
ii

       (76) 

means the optimal problem solution, which ensures the lowest amplification factor. 

Parameters (68) by which the system is optimized are proper fractions. The fractional 
denominator grows considerably with the increase in the index i , which makes it practically feasible to 

optimize them using PC. It should be noted that almost always it is possible to determine such a region 

of the form: 

pi Cc 
, 

)2,,1(  ni 
,        (77) 

which satisfies the condition (76). 

4. Discussion 

The solution of the problem of optimal modes in the machinery dynamics consists in the following: 

1. The most advantageous machinery dynamic mode is determined by the conditions of the 

technological process, which would ensure its highest productivity, the lowest energy consumption and 

other optimal technical and economic indicators. This regime corresponds to the motion of the unit as a 

whole, that is, to the variation in the quasi-cyclic coordinates. 

2. The vector of external forces applied to the machinery is reduced to the initial conditions of its 

motion according to the formula (32); homogeneous differential equations are considered further. The 

fundamental system of their solutions (69) depends on the initial conditions of motion generated by 

external systems. If the initial conditions are represented in the form of a row matrix of the form 

))0(,),0(),0(( )1(

0

 nТ xxxx  ,        (78) 

and the fundamental system of solutions, corresponding to the ordinary initial conditions, in the form 

of a matrix-column 
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then 

xxx T ~
0 .          (80) 

3. In real machinery, there are always reasons generating internal friction, and, consequently, energy 

dissipation. By turning parameters (45) with odd indexes into zero, one can intensify the process 

attenuation and thereby eliminate the possible accumulation of perturbations, for example, in the case of 

repeatedly short-time technological modes. 

4. The choice of the most advantageous parameters ic  )2,,1(  ni  , connected by means of the 

formula (67) with the coefficients of the differential equation (64), will lead to the lowest values of the 

amplification factor of the elastic links. 
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5. Conclusions 

Considering the row matrix (78) as the coordinates of the n -dimensional Euclidean vector, that 

is, nT Ex 0 , and 
nEx ~  – as an alternating vector of the same space, we can state that the scalar 

product (80) is generated by the vector (78). If we fix x , that is the vector (79), then we can form the 

norm of the vector Tx0 , which generates the scalar product (80) or the bilinear function of Tx0  and  

x~ . In this case, it is assumed that the norm of the vector Tx0  is the maximum of the values (80) on the 

ordinary sphere 1~ x , i.e.: xxx T

x

T ~max 0
1~0


 . 

As the vector items Tx0  depend on external forces and system parameters, one must strive to 

choose their lowest values, which correspond, in general, to the smallest forces. However, the desire to 

define small forces should not worsen the technical and economic performance of the machinery. 

According to the generalized input principle, the optimization of the power mode can be achieved 

by the variation of machinery design parameters. In this case, the maximum value of external forces 

and their duration, especially the small, creating a large dynamic effect, become less noticeable. 
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