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Abstract In this study, an artificial neural network

(NN) based explicit formulation for predicting the

edge breakout shear capacity of single adhesive

anchors post-installed into concrete member was

proposed. To this aim, a comprehensive experimental

database of 98 specimens tested in shear was used to

train and test NN model as well as to assess the

accuracy of the existing equations given by American

Concrete Institute and prestressed/precast concrete

Institute. Moreover, the proposed NN model was

compared with another existing model which had been

derived from gene expression programming by the

authors in a previous study. The prediction parameters

utilized for derivation of the model were anchor

diameter, type of anchor, edge distance, embedment

depth, clear clearance of the anchor, type of chemical

adhesive, method of injection of the chemical, and

compressive strength of the concrete. The proposed

model yielded correlation coefficients of 0.983 and

0.984 for training and testing data sets, respectively. It

was found that the predictions obtained from NN

agreed well with experimental observations, yielding

approximately 5 % mean absolute percent error.

Moreover, in comparison to the existing models, the

proposed NN model had all of the predicted values in

±20 % error bands while the others estimated up to

%160 error.

Keywords Adhesive anchors � Anchor bolt �
Modeling � Post-installed fastener � Shear capacity

1 Introduction

In the design of adhesive anchors embedded in

concrete, the knowledge of load carrying capacity in

tension and/or shear is of prime importance on the

performance assessment of the structural system. Post-

installed anchors are embedded in holes that are drilled

into available structural concrete member. By this

way, the applied loads onto the secondary structure is

transferred by means of the anchoring system onto the

primary system through the frictional forces occurring

between the sides of the holes and the anchor wedges,

sleeves or other mechanical locking devices attached.

Type of anchor system affects the mechanism of load

transfer. Post-installed anchors can be classified in two

categories based on the load transfer mechanism:

(a) mechanical or expansion anchors which transfer

load through friction and (b) adhesive or bonded

anchors which rely on adhesion between the anchor

and adhesive or between the adhesive and concrete to

transfer the loads [1–12].
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During service life of the anchored connection of a

structure tensile loads or shear loads or a combination

of both shear and tension may be subjected to the

anchor [6]. Several failure mechanism occurs as a

result of ultimate loading such as: steel failure, pullout

failure, splitting failure, and concrete cone failure (in

case of short embedment or low strength concrete) due

to tensile loading conditions on the anchor system.

However, failures due to exceeding shear capacity are

failure of the anchor, steel concrete pry-out fracture,

and concrete rupture, etc. [1].

Analytical modeling of shear capacity of the anchor

bolts might be considered as a relatively new subject in

the available technical literature. For example, Xu

et al. [13] presented a numerical simulation of anchor

bolt pullout in plain concrete by a heterogeneous

model. They modeled the heterogeneity of the

concrete by randomly assigning strength and elastic

modulus to the elements according to Weibull’s

distribution. They stated that the numerical results

agreed well with their experimental investigations.

Lee et al. [11] carried out an experimental study on

shear behavior of headed anchors with large diameters

and deep embedments. The study was basically

depended on the comparison of the experimental

shear capacities to those calculated from available

relations given by ACI 349 and ACI 318 design codes.

It was pointed out that the existing methods gave less

shear capacities for the specimens under investigation.

Another study by Bickel and Shaik [12] compared the

prediction capabilities of the models codified in PCI

Design Handbook and CCD model from ACI 318-02

for shear capacity of the headed and adhesive anchors.

It was reported that PCI Design Handbook method and

CCDmethod, with proper adjustments, can be utilized

for predicting the shear capacities of adhesive anchors

with similar accuracy.

The prediction models use several parameters for

estimating the shear capacity of the adhesive anchors.

All of the shear capacity prediction models include

compressive strength of the concrete and edge

distance parallel to the loading direction. Besides,

the models proposed by ACI 349 and ACI 318 (CCD

model) also contain anchor diameter and embedment

depths. However, type of anchor bolt (rebar or

threaded rod), type of chemical adhesive, method of

injection and clear clearance of the drilled hole are not

taken into account when computing the shear or

pullout capacities of the post-installed anchors. For

example, the hole diameter is typically 10 or 25

percent larger than the inserted anchor bolt or bar

diameter [3]. Therefore, the effect of clear clearance

can be considered as a factor influencing the me-

chanical behavior of anchor.

In recent years, there has been growing interest in

utilization of artificial intelligence based soft-comput-

ing techniques for modeling of complicated engineer-

ing problems [14–18]. Due to higher accuracy and

simplicity of implementation, those techniques have

been become alternative to conventional numerical

methods. For example, Mermerdaş et al. [18] pointed

out that gene-expression programming (GEP) based

mathematical formulation of drying shrinkage of

concretes yielded more accurate results than that of

multiple linear regression. Moreover, being one of the

most commonly used soft-computing tool, artificial

neural networks (NNs) have been known to have

exceptional performance as regression tools, par-

ticularly when used for pattern recognition and

function estimation. They are highly nonlinear, and

can capture complex interactions among input/output

variables in a system without any prior knowledge

about the nature of these interactions [19].

The studies regarding soft-computing based mod-

eling of mechanical properties of adhesive anchors

are very limited [20, 21]. Sakla and Ashour [20]

utilized NN to illustrate the relation between tensile

capacity of adhesive anchors and the components of

the anchor system such as chemical resin type,

anchor type, grout/injection type, etc. They stated

that NN is a useful technique for predicting the

tensile capacity of adhesive anchors based on the

comparison of predicted and experimental results. In

the study of Gesoğlu and Güneyisi [21], the

prediction models to estimate the pullout capacity

of adhesive anchors through soft-computing meth-

ods of NN and GEP were developed. They reported

that the prediction capability of the proposed models

and the CCD method were increased for deeper

embedment depth and larger diameter anchors.

However, both of the aforementioned studies dealt

with the tensile capacity of post-installed adhesive

anchors embedded in uncracked concrete.

Modeling of load carrying capacity of single

anchors located near a concrete edge under shear by

NN was presented by Alqedra and Ashour [22]. They

compared the results obtained from NN with the ones

obtained from CCD method. They reported that the

1066 Materials and Structures (2016) 49:1065–1077



accuracy of approximation using the CCD method is

comparable to that obtained from the trained artificial

neural network. However, they did not present an

explicit mathematical expression of the NN model.

Hence, the study showed that NN could be benefited

for modeling purpose. In a more recent study of the

authors of this paper [23], the explicit formulation of

shear capacity of single anchor embedded in un-

cracked concrete was presented. It was illustrated that

using gene expression modeling (GEP) yielded better

prediction performance than the available ones given

in design guidelines [12, 24–30].

The aforementioned facts that NN has better

prediction performance than GEP and there has not

yet been an explicit formulation derived from NN

method motivated the authors to use this soft

computing technique for explicit formulation. There-

fore, the aim of this study is to propose a handful

tool for prediction of the edge breakout shear

capacity of post-installed anchors with a reasonable

degree of accuracy. For the purpose of explicit

formulations of the shear capacity of single adhesive

anchors, the worldwide database compiled by the

ACI Committee 355 was utilized. Totally, 98

adhesive single anchor tests were selected regarding

shear load testing in uncracked concrete. A soft-

computing technique, namely artificial neural net-

work (NN) was employed for developing the

analytical model. Additionally, the proposed model

was compared with the existing GEP model pre-

sented in the previous study of the authors [23] and

other models specified in ACI 318 [28], ACI 349

[25–27], and Prestressed/Precast Concrete Institute

(PCI) [12, 30] as well as modified CCD method

proposed by Hoffman [24].

2 Predictive formulations of shear capacity

of single anchor

Several methods to evaluate the concrete edge break-

out strength of anchor bolts under shear loading have

been proposed in the technical literature as given in

equations presented in Table 1 [12, 24–30]. The

formulas presented in Table 1 use the following units:

Vu is the ultimate shear capacity of an adhesive anchor

in uncracked concrete (N for the Eqs. in SI unit & lb

for the Eqs. in U.S. customary units); fc0 is concrete
compressive strength (MPa for the Eqs. in SI unit &

Psi for the Eqs. in U.S. customary units) to be verified

using cylinders; fcc0 is concrete compressive strength

(MPa) to be verified using 200 mm cubes; hef is

embedment depth (mm); do is diameter of anchor (mm

for the Eqs. in SI unit & in. for the Eqs. in U.S.

customary units); l is load bearing length of anchor

(mm for the Eqs. in SI unit & in. for the Eqs. in U.S.

customary units); and c1 is anchor edge distance (mm

for the Eqs. in SI unit & in. for the Eqs. in U.S.

customary units).

As seen in Table 1, the American Concrete Institute

(ACI) and Prestressed/Precast Concrete Institute (PCI)

proposed different formulas that are used in the shear

design of single adhesive anchor embedded in con-

crete structural members. The ACI shear resistance

formula assumes the concrete failure surface to be a

semicone of height equal to edge distance and a

contact inclination angle of 45� with respect to the

contact edge [25]. The shear resistance of anchor bolt

is calculated on the basis of the tensile strength of the

concrete acting over the projected area of the semi-

cone surface. According to ACI 349-97 [26], the

design shear strength is given by a formula in U.S.

Table 1 Available formulations for shear capacity of single adhesive anchor in uncracked concrete

Equation no. Design guide General expression

1 ACI 349-97 [25, 26]a VU ¼ 0:522c21
ffiffiffiffi

f 0c
p

2 ACI 349-06 [27]b VU ¼ 9:8ðl=d0Þ0:2
ffiffiffiffiffi

d0
p ffiffiffiffi

f 0c
p

c1:51

3 Concrete Capacity Design (CCD method) in [28, 29]a VU ¼ 1:1ðl=d0Þ0:2
ffiffiffiffiffi

d0
p ffiffiffiffiffi

f 0cc
p

c1:51

4 Modified CCD method by Hofmann et al. [24]a VU ¼ 3d
0:1ðhef=c1Þ
0 h

0:1ðd0=c1Þ0:2
ef

ffiffiffiffiffi

f 0cc
p

c1:51

5 PCI method [12, 30]a VU ¼ 5:2c1:51

ffiffiffiffi

f 0c
p

a In SI units
b In U.S. customary units

Materials and Structures (2016) 49:1065–1077 1067



customary units, however, Ueda et al. [25] presented

the same relation in SI units (Eq. 1 in Table 1). The

concrete capacity design method is based on

K-method developed by University of Stuttgart (Ger-

many) in the late 1980s [12, 29]. For ACI 349-06 [27],

the value of k = 7 was valid for cracked concrete

while the tests selected herein were performed in

uncracked concrete. Assuming a ratio of uncracked to

cracked strength of 1.4, a value k = 9.8 (k = 7 9 1.4)

was utilized for the evaluation of predicted capacities

[11]. In ACI 349-06 [27], edge breakout shear capacity

of bolt was presented in U.S. customary units (Eq. 2 in

Table 1). The models based on concrete capacity

design (CCD) [28, 29] and modified CCD [24] were

given as Eqs. 3 and 4 in Table 1, respectively. The

capacity of a single anchor in uncracked structural

member under shear loading toward the free edge is

also described in Precast/Prestressed Concrete Insti-

tute (PCI) Design Handbook (fifth edition) [30] (Eq. 5

in Table 1).

3 Description of the database used for derivation

of the models

When loaded in shear, adhesive anchor’s adhesive

layer bears on the concrete. With enough force this

will cause the edge of the concrete to break out [12].

Figure 1 shows a typical edge breakout failure of a

single adhesive anchor graphically. Moreover, Fig. 1

represents the significant parameters that are consid-

ered in modeling of shear capacity. The models given

in the design codes basically depend on the compres-

sive strength of the concrete and edge distance. In

some of these formulas, the embedment depth of the

anchor and diameter of the bolt are also taken into

account as presented in above. However, clearance

distance (see Fig. 1), type of the anchor and adhesive

related properties such as type of adhesive used and

method of injection has not yet been considered in the

formulation of shear capacity of the anchor.

The adhesive anchor database containing 98 ex-

perimental data samples compiled by ACI committee

355 was utilized to construct NN prediction model.

The following parameters were considered as input

variables: anchor diameter, type of anchor (threaded

bar or rebar), edge distance, embedment depth, clear

clearance of the anchor, type of chemical adhesive

(epoxy or unsaturated polyester), method of injection

of the chemical (glass capsule or cartridge injection),

and compressive strength of the concrete. Moreover,

the experimental results of shear capacity of the

anchors were considered as the dependent output

variable. The data set was randomly divided into two

groups (Table 2). One of the sub-data set was used as

‘‘Train set’’ while the other one was employed as

Fig. 1 Representative post-

installed single adhesive anchor

subjected to shear loading

1068 Materials and Structures (2016) 49:1065–1077



‘‘Test set’’. More details regarding each data sample

can be found in the study of the authors [23].

For clarity sake, in the next Sections, where it is

discussed the comparison between the experimental

and predicted shear capacity, the effectiveness of the

correlation is evaluated by means of the correlation

coefficient ‘‘R’’ (Eq. 6), which describes the fit of the

models’ output variable approximation curve to the

actual test data output variable curve. Higher R

coefficients indicate a model with better output

approximation capability.

R ¼
P

mi � m0ð Þ pi � p0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

mi � m0ð Þ2
P

pi � p0ð Þ2
q ; ð6Þ

where m0 and p0 are mean values of measured (mi) and

predicted (pi) values, respectively.

4 A brief overview of artificial neural networks

(NNs)

Soft-computing is described as a collection of

methodologies that aim to exploit the tolerance for

imprecision and uncertainty to achieve tractability,

robustness, and low solution cost. Fuzzy logic,

neurocomputing, and probabilistic reasoning are the

main components of soft-computing [31]. Soft-

computing has a significant role in wide variety of

fields of application. The key model for soft-

computing is the human mind. The fuzzy logic,

genetic algorithm, genetic programming, and neural

network can be accepted as the main techniques of

soft-computing.

An artificial neural network (NN) is an information

processing paradigm that is inspired by the way

biological nervous systems such as the brain, process

information. The main element of this paradigm is the

novel structure of the information processing system.

It is composed of a large number of highly intercon-

nected processing elements (neurons) working unit-

edly to solve specific problems. NNs, like people,

learn by example. An NN is configured for a specific

application, such as pattern recognition, data classifi-

cation, or prediction through a learning process.

Learning in biological systems involves adjustments

to the synaptic connections that exist between the

neurons [32].T
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The training of NNs by back propagation have three

stages [33]: (i) the feed forward of the input training

pattern, (ii) the calculation and back propagation of the

associated error, and (iii) the adjustment of the

weights. This process can be used with a number of

different optimization strategies. The error between

the output of the network and the target value is

propagated backward during the backward pass and

used to update the weights of the previous layers [34–

36].

In this study, neural network fitting tool (nftool)

provided as a soft-computing tool in Matlab V.R2012a

was used to develop neural network modeling. In

fitting problems, a neural network may be used to map

between a data set of numeric inputs and a set of

numeric targets. The nftool helps creating and training

a network, and evaluating its performance through

mean square error and regression analysis.

A two-layer feed-forward network with sigmoid

hidden neurons and linear output neurons are utilized

in nftool. It can fit multi-dimensional mapping prob-

lems arbitrarily well, given consistent data and enough

neurons in its hidden layer. The network was trained

with Levenberg–Marquardt back propagation learning

algorithm. The toolbox utilized in this study provides

the creation of a neural network to generalize nonlin-

ear relationships between example inputs and outputs.

However, the Levenberg–Marquardt algorithm does

not handle bound constraints.

An artificial neuron consists of three main compo-

nents, namely weights, bias, and an activation func-

tion. Each neuron receives inputs I1, I2,…, In attached

with a weight wi which shows the connection strength

for that input for each connection. Each input is then

multiplied by the corresponding weight of the neuron

connection. A bias can be defined as a type of

connection weight with a constant nonzero value

added to the summation of weighted inputs, as given in

Eq. 7. Generalized algebraic matrix operation was

also given in Eq. 8 to clarify the mathematical

operations in an artificial neuron. It is worthy to note

that the term biases come to handle the randomness of

observations. In experiments, such randomness is not

there, so requirement of biases does not come. This is

problem due to toolbox, where we cannot eliminate

the biases term.

Uk ¼ Biask þ
X

n

j¼1

Ijwk;j ð7Þ

Uk ¼

w11 w12 : : : w1n

w21 : :

:

:
: :

: : :
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Since nftool uses the normalized values in the range

of [-1, 1], the input parameters were normalized by

means of Eq. 9 in order to get the prediction results

after execution of the training process of the NN.

Moreover, the obtained results are also in the normal-

ized form. Therefore, considering the Eq. 9 and the

normalization coefficients a and b for outputs, de-

normalization process is applied and the results are

monitored.

bnormalized ¼ abþ b; ð9Þ

where b is the actual input parameter or output values

given in Table 2. bnormalized is the normalized value of

input parameters or outputs ranging between [-1, 1]. a

and b are normalization coefficients given in the

following equations (Eqs. 10–11).

a ¼ 2

bmax � bmin

; ð10Þ

b ¼ � bmax þ bmin

bmax � bmin

; ð11Þ

where bmax and bmin are the maximum and minimum

actual values of either inputs or outputs. The normal-

ization coefficients for both input and output variables

are given in Table 3.
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5 Proposed NN model and its performance

In order to develop the NN model, a 8-5-1 NN

architecture, as shown in Fig. 2, was used. Figure 2

shows that there are 8 nodes in the input layer,

corresponding to 8 factors from I1 to I8, 12 nodes in the

hidden layer, and one in the output layer correspond-

ing to the shear capacity of the single adhesive

anchors. The symbols representing the input pa-

rameters I1 to I8 are also defined in Fig. 1. It should

be taken into account that all variables were normal-

ized to a range of [-1, 1] before being introduced to

the NN. Therefore, one must enter the normalized

values in the mathematical operations given for NN

model. The proposed NN model is given in Eq. 12

together with corresponding mathematical operations

in hidden layer (Eqs. 13–14). In Eq. 12, Vu is the

ultimate shear capacity of adhesive anchor in un-

cracked concrete (kN), Biasoutput layer = -0.26761

and f(x) (Hyperbolic tangent) is the activation function

given in Eq. 14. It should also be noted that the final

result obtained from Eq. 12 is also in the normalized

form which needs to be de-normalized according to

Eq. 9 and normalization coefficients given in Table 3.

Table 3 Normalization coefficients

Variables Parameters bmax bmin a b

Input variable Anchor diameter: U (mm) 25.4 8 0.114942529 -1.91954023

Injection type: IT 1 0 2 -1

Chemical type: CT 1 0 2 -1

Anchor type: AT 1 0 2 -1

Embedment depth: d (mm) 229.8 80 0.013353952 -2.068316147

Clear clearance: CC (mm) 4.7625 0.79375 0.503937008 -1.4

Compressive strength of concrete: fc (MPa) 43 13.12545 0.066946615 -1.878704449

Edge distance: X (mm) 262.5 38.1 0.008912656 -1.339572193

Output variable Shear capacity: Vu (kN) 6.49 188.75 -0.010973462 1.071217775

Fig. 2 Architecture of NN

model

Materials and Structures (2016) 49:1065–1077 1071
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where Uk given in matrix operations in Eq. 13 and f(x)

is the activation function in Eq. 14.

where U is the Anchor diameter (mm); IT is the

injection type (1 for cartridge injection, 0 for glass

capsule); CT is the Chemical type (1 for epoxy and 0

for unsaturated polyester); AT is the type of anchor (1

for steel rebar, 0 for threaded bars); d is the embed-

ment depth (mm); CC is the clear clearance (mm), fc is

the concrete compressive strength (MPa), and X is the

edge distance (mm).

f ðxÞ ¼ 2

1� e�2x
� 1: ð14Þ

The obtained results from the NN model are also

plotted in Fig. 3 yielding 0.983 and 0.984 correlation

coefficients for training and testing data sets, respec-

tively. As observed from Fig. 3, the predicted results

had very close trend to the actual ones for both of
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training and testing data sets. Moreover, the percent

errors obtained from the prediction values and the

frequency of the experimental data in the specified

intervals are presented in Fig. 4. Figure 4 also illus-

trates the comparison of the errors of the previously

proposed GEPmodel [23]. Observing the figure, it was

found out that for the low levels of experimental shear

capacity values up to 50 kN, the average error between

predicted and the actual values were relatively high

(20 %) for GEP model while relatively lower errors

were obtained for the proposed NN model. The level

of error for the proposed NN model is fluctuating

around 5 %. However, only for small portion of the

whole data set (about 3 %) were GEP model [23]

yielded lower error.

In order to observe the distribution of the

predicted data obtained from the proposed model

and from the existing ones presented in Table 1 and

GEP model [23], Fig. 5 was plotted. As seen from

the figure that the NN model demonstrated the

closest scatter of the data around bisector line while

the others yielded either lower or higher distribution

of the data.

For further examination of the prediction perfor-

mance of the proposed model, normalized results

calculated by dividing predicted result by actual

ones are given in Fig. 6. According to the normal-

ized values (Vpredicted/Vexperimental, being the Vpredicted

the calculated value of shear capacity and Vexperimental
that experimentally measured), the perfect estima-

tion performance is equal to 1. It was evident from

Fig. 6 that the closest trend in variation of the

normalized values around 1 was observed for the

NN model. Conversely, the other models revealed

large fluctuations diverging from the actual

Fig. 3 Prediction

performance of the proposed

NN model for training and

testing database

Fig. 4 Graphical presentation of the absolute errors of NN

model versus GEP model [23] with respect to the actual shear

values
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experimental value. The figure also showed that

above 30 kN of actual shear value almost all of the

predicted values by NN model stayed within ±20 %

of the actual values. Of all existing models, GEP

model [23] revealed the best performance when

compared to the codified models. However, even for

this model, significant number of the data seemed to

be underestimated and overestimated for the actual

shear values of less than 50 kN. PCI, ACI 349-97,

and ACI 349-06 models demonstrated underestima-

tion performance while Modified CCD model over-

estimated the shear capacity.

The ranges of the normalized values were 0.76–

1.22, 0.45–1.69, 0.22–1.33, 0.50–2.67, 0.13–1.22,

0.15–0.91, and 0.18–0.91 for the NN, GEP, CCD,

Modified CCD, ACI 349-97, ACI 349-06, and PCI

models, respectively. Although the range of varia-

tion is the narrowest for NN model, it is obvious

that only few points had far divergent estimation

results. For this reason, in order to assess the

performances of the prediction models, the follow-

ing statistical parameters were calculated and pre-

sented in Table 4.

Mean absolute percent error (MAPE)

¼ 1

n

X

n

i¼1

mi � pi

mi

�

�

�

�

�

�

�

�

� 100; ð19Þ

Mean square error (MSE) ¼

P

n

i¼1

mi � pið Þ2

n
; ð20Þ

Root mean square error (RMSE) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

mi � pið Þ2

n

v

u

u

u

t

;

ð21Þ

where m and p are values of measured (mi) and

predicted (pi) values, respectively.

The critical observation of Table 4 indicated that the

lowest errors were found for the proposed NN model. In

particular, the lowest MAPE was calculated for the NN

model while the highest one was by far observed for

Modified CCD model. Although GEP model revealed

closest trend to thatofproposedNNmodel, theerrorvalues

calculated for this model were higher than NN model.

Fig. 5 Experimental versus

predicted anchor shear

capacities for different

models
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Fig. 6 Comparing prediction performance of the proposed NNmodel versus a CCD [28, 29], b modified CCD [24], c ACI 349-97 [25,
26], d ACI 349-06 [27], e PCI models [12, 30], and f GEP model [23]

Table 4 Statistical parameters of the proposed and existing models

Parameters NN model GEP model [23] CCD model

[28, 29]

Modified CCD

model [24]

ACI 349-97

[25, 26]

ACI

349-06

[27]

PCI model

[12, 30]
Training

data set

Testing

data set

Training

data set

Testing

data set

MSE 27.8 27.3 36.9 168.7 261.3 3858.9 556.7 1051.5 1327.6

MAPE 4.8 4.5 10.0 14.2 18.9 66.0 33.0 42.2 41.5

RMSE 5.3 5.2 6.1 13.0 16.2 62.1 23.6 32.4 36.4

R2 0.983 0.984 0.977 0.918 0.883 0.885 0.866 0.883 0.886
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6 Conclusions

The novelty of the current study is due to the explicit

formulation of the neural network model to predict the

shear capacity of post installed chemical anchors. The

presented mathematical relation, when transformed by

a computational tool, can be used to control the

experimental findings of the researchers and/or to

contribute the design procedure adopted by the

practitioners in the field. Based on the comparative

study presented herein, the following conclusions may

be drawn:

• Artificial neural network was proved to be a

handful tool with high accuracy of estimation

capability of shear capacity of single adhesive

anchor post-installed in concrete. Due to low

number of nodes and one hidden layer used in the

explicit formulation, the model presented here

seemed to be more convenient to be used as a

prediction model when compared to the most of

the NN models given in the literature for engi-

neering problems.

• The number of the experimental parameters used

for predicting shear capacity of adhesive anchors

was much more than that of the codified models.

This may be attributed as the main reason for good

prediction performance of the proposed model.

• Although the database used as testing data were

not utilized for training, a high level of estimation

was acquired for both training and testing data sets

associated with low mean absolute percentage of

error and high coefficients of correlation. This may

be considered as a proof for the generalization

capability of the developed model.

• The comparison of the proposed model with the

existing formulas available in ACI 349-97, ACI

349-06, ACI 318-08 (CCD method), and PCI-98

design handbook as well as the model proposed by

Hoffman, namely, modified CCD method as well

as previously presented GEP model indicated that

the proposed NN model had relatively better

performance, especially for higher shear capacity

values than 30 kN. The closest prediction tendency

to the NN model was demonstrated by the CCD

method.

• Statistical analysis of the results revealed that the

lowest errors were observed for the proposed NN

model. While the mean absolute percentage of

error (MAPE) of the existing models ranged

between 10 and 66 %, the MAPE of the developed

model was about 4.8 % for the training data set and

4.5 % for the testing data set.
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