# Chapter 28 <br> Discreteness, Periodicity, Holomorphy, and Factorization 

V.B. Vasilyev

### 28.1 Introduction

The main topic of the paper is to establish some relations between the solvability of a special kind of discrete equations in certain canonical domains and holomorphy properties of their Fourier analogues. We start from the theory of pseudo-differential operators and equations [Ta81, Tr80, Sh01], and corresponding boundary value problems [Es81] and we shall try to construct a discrete analogue of this theory with forthcoming limit passage from discrete case to a continuous one.

Historically, the theory of pseudo-differential operators started from a special kind of integral operators, namely Calderon-Zygmund operators of the following type

$$
\begin{equation*}
(K u)(x)=p \cdot v \cdot \int_{\mathbb{R}^{m}} K(x, x-y) u(y) d y, \tag{28.1}
\end{equation*}
$$

where the kernel $K(x, y)$ has certain specifical properties [MiPr86]. If we enlarge the class of such kernels and in particular we permit that the kernel $K(x, y)$ can be a distribution on a second variable $y$, then the above formula will include differential operators with variable coefficients

$$
(\mathcal{D} u)(x)=\sum_{|k|=0}^{n} a_{k}(x) \frac{\partial^{k} u}{\partial x_{1}^{k_{1}} \cdots \partial x_{m}^{k_{k}}}(x),
$$

where $k$ is a multi-index, $|k|=k_{1}+\cdots k_{m}$.

[^0]Indeed for this case we use the kernel

$$
K(x, y)=\sum_{|k|=0}^{n} a_{k}(x) \delta^{k_{1}}\left(y_{1}\right) \cdots \delta^{k_{m}}\left(y_{m}\right) .
$$

A theory for similar operators consists in a description of functional spaces in which these operators are bounded, possible additional conditions (maybe boundary conditions) which permit to state the well-posedness of boundary value problem in a corresponding functional space and so on. Here, we would like to discuss these problems for a discrete situations and to describe some of our first results in this direction.

### 28.2 Discreteness

We consider functions $u_{d}$ of a discrete variable $\tilde{x} \in h \mathbb{Z}^{m}$, where $h>0$ is a small parameter, and operators defined on such functions of the following type

$$
\begin{equation*}
\left(A_{d} u_{d}\right)(\tilde{x})=a u_{d}(\tilde{x})+\sum_{\tilde{y} \in D_{d}} A_{d}(\tilde{x}-\tilde{y}) u_{d}(\tilde{y}) h^{m}, \quad \tilde{x} \in D_{d}, \tag{28.2}
\end{equation*}
$$

taking partial sums of the series (28.2) over cubes

$$
Q_{N}=\left\{\tilde{x} \in h \mathbb{Z}^{m}: \max _{1 \leq k \leq m}\left|x_{k}\right| \leq N\right\},
$$

where we use following notations.
Let $D \subset \mathbb{R}^{m}$ be a domain, $D_{d} \equiv D \cap h \mathbb{Z}^{m}$ be a discrete set, $A_{d}$ be a given function of a discrete variable defined on $h \mathbb{Z}^{m}$, and $a \in \mathbb{C}$. We say that the function $A_{d}(\tilde{x})$ is the kernel of the discrete operator $A_{d}$. This kernel may be summable, i.e. it can be generated by integrable function

$$
\int_{\mathbb{R}^{m}}|A(x)| d x<+\infty
$$

but for this case we deal with ordinary convolution. The author has considered the more interesting and complicated case when the generating function $A(x)$ is a Calderon-Zygmund kernel [VaEtAl15-2, VaEtAl15-3]. These Calderon-Zygmund operators play an important role as the simplest model of a pseudo-differential operator [MiPr86, Es81]. Taking into account our forthcoming considerations of discrete pseudo-differential operators we shall restrict to this simplest case.

We assume that our generating function $A(x)$ is a Calderon-Zygmund kernel, i.e. it is homogeneous of order $-m$ and has vanishing mean value on unit sphere $S^{m-1} \subset \mathbb{R}^{m}$, also it is continuously differentiable out of the origin and by definition $A(0)=0$.

The first question which arises in this situation is the following. Is there a certain dependence on a parameter $h$ for a norm of the operator $A_{d}$ ? Fortunately the answer is negative (see also [VaEtAl15-3] for the whole space $\mathbb{R}^{m}$ ).

Theorem 1 Let $D$ be a bounded domain in $\mathbb{R}^{m}$ with a Lipschitz boundary $\partial D$. Then the norm of the operator $A_{d}: L_{2}\left(D_{d}\right) \rightarrow L_{2}\left(D_{d}\right)$ doesn't depend on $h$.

This property leaves us hope to describe the spectra of the operator $A_{d}$ using methods developed for this purpose in a continuous case.

### 28.3 Periodicity

Roughly speaking the Fourier image of the lattice $h \mathbb{Z}^{m}$ is a periodic structure with basic cube of periods $\hbar \mathbb{T}^{m}$, where $\hbar=\frac{h^{-1}}{2 \pi}$. More precisely if we introduce a discrete Fourier transform by the formula

$$
\begin{equation*}
\widetilde{u}_{d}(\xi) \equiv\left(F_{d} u_{d}\right)(\xi)=\sum_{\tilde{x} \in h \mathbb{Z}^{m}} e^{-\tilde{x} \cdot \tilde{\xi}} u_{d}(\tilde{x}) h^{m} \tag{28.3}
\end{equation*}
$$

taking partial sums of the series (28.3) over cubes $Q_{N}$, we can use this construction to give a definition of a discrete pseudo-differential operator by the formula

$$
\left(A_{d} u_{d}\right)(\tilde{x})=\int_{\hbar \mathbb{T}^{m}} e^{i \tilde{x} \cdot \xi} \widetilde{A}_{d}(\xi) \widetilde{u}_{d}(\xi) d \xi
$$

where the function $\widetilde{A}_{d}(\xi)$ is called the symbol of the operator $A_{d}$.
Let us note that this discrete Fourier transform preserves all basic properties of standard Fourier transform. Only one principal distinction is periodicity of Fourier images.

Definition 1 The symbol $\widetilde{A}_{d}(\xi)$ is called an elliptic symbol (and operator $A_{d}$ is called an elliptic one) if ess $\inf _{\xi \in \hbar \mathbb{T}^{m}}\left|\widetilde{A}_{d}(\xi)\right|>0$.

Proposition 1 The operator $A_{d}: L_{2}\left(h \mathbb{Z}^{m}\right) \rightarrow L_{2}\left(h \mathbb{Z}^{m}\right)$ is invertible iff it is an elliptic operator.

Many interesting properties of the operator $A_{d}$ related to a comparison between continuous and discrete cases can be found in [VaEtAl15-2].

### 28.4 Holomorphy

The property of holomorphy arises if we try to obtain a Fourier image for a so-called paired equation

$$
\begin{equation*}
\left(A_{d} P_{+}+B_{d} P_{-}\right) U_{d}=V_{d} \tag{28.4}
\end{equation*}
$$

where $P_{ \pm}$are projectors on some canonical domains (see below), $A_{d}, B_{d}$ are discrete operators similar to (28.2).

If, for example, $P_{ \pm}$are projectors on discrete half-spaces $h \mathbb{Z}_{ \pm}^{m}=\left\{\tilde{x} \in h \mathbb{Z}^{m}\right.$ : $\left.\tilde{x}=\left(\tilde{x}_{1}, \cdots, \tilde{x}_{m}\right), \pm \tilde{x}_{m}>0\right\}$, and we want to use standard properties of the Fourier transform related to a convolution then, in order to find a Fourier image of the product $\chi_{+}(\tilde{x}) U(\tilde{x})$ where $\chi_{+}$is an indicator of the $h \mathbb{Z}_{+}^{m}$, we need to go out in a complex domain [VaEtAl15-1, VaEtAl15-3].

We introduce for fixed $\xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{m-1}\right)$

$$
\Pi_{ \pm}=\left\{\xi_{m} \pm i \tau \in \mathbb{C}: \xi_{m} \in h^{-1}[-\pi, \pi], \tau>0\right\}
$$

Theorem 2 Let $H_{ \pm}$be subspaces of the space $L_{2}\left(\hbar \mathbb{T}^{m}\right)$ consisting of functions which admit holomorphic extensions into upper and lower complex half-strips $\Pi_{ \pm}$ on a last variable $\xi_{m}$ under almost all fixed $\xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{m-1}\right)$. Then we have the following decomposition

$$
L_{2}\left(\hbar \mathbb{T}^{m}\right)=H_{+} \oplus H_{-}
$$

Indeed the decomposition is given by the following operators

$$
\begin{gathered}
\left(H_{\xi^{\prime}}^{p e r} \tilde{u}_{d}\right)\left(\xi_{m}\right)=\frac{1}{2 \pi i} p \cdot v \cdot \int_{-\pi h^{-1}}^{\pi h^{-1}} \tilde{u}_{d}\left(\xi^{\prime}, t\right) \cot \frac{h\left(t-\xi_{m}\right)}{2} d t \\
P_{\xi^{\prime}}^{p e r}=1 / 2\left(I+H_{\xi^{\prime}}^{p e r}\right), Q_{\xi^{\prime}}^{p e r}=1 / 2\left(I-H_{\xi^{\prime}}^{p e r}\right),
\end{gathered}
$$

so that

$$
F_{d} P_{+} u_{d}=P_{\xi^{\prime}}^{p e r} \widetilde{u}_{d}, \quad F_{d} P_{-} u_{d}=Q_{\xi^{\prime}}^{p e r} \widetilde{u}_{d} .
$$

### 28.5 Factorization

The concept of factorization is needed if we consider an original equation in a nonwhole lattice, i.e. $D \neq \mathbb{R}^{m}$. We extract from $\mathbb{R}^{m}$ some so-called canonical domains. The fact that to obtain Fredholm conditions for an elliptic operator (or equation) on a manifold, and in particular in a domain of $m$-dimensional space, we need to
obtain an invertibility conditions for a local representative of original operator, is called a local principle [MiPr86, Va00]. Roughly speaking such local representatives are simple model operators in canonical domains. If for example we are interested in studying a Calderon-Zygmund operator on a manifold with a boundary of the type (28.1), we need to describe invertibility conditions for the following model operators in the following canonical domains:

- for inner points $x_{0}$ of a manifold

$$
u(x) \longmapsto p \cdot v \cdot \int_{\mathbb{R}^{m}} K\left(x_{0}, x-y\right) u(y) d y,
$$

- for boundary points $x_{0}$ on smooth parts of a boundary

$$
u(x) \longmapsto p \cdot v \cdot \int_{\mathbb{R}_{+}^{m}} K\left(x_{0}, x-y\right) u(y) d y,
$$

where $\mathbb{R}_{+}^{m}=\left\{x \in \mathbb{R}^{m}: x=\left(x_{1}, \cdots, x_{m}\right), x_{m}>0\right\}$,

- for boundary points $x_{0}$ for which their neighborhood is diffeomorphic to $C_{+}^{a}=$ $\left\{x \in \mathbb{R}^{m}: x=\left(x^{\prime}, x_{m}\right), x^{\prime}=\left(x_{1}, \cdots, x_{m-1}\right), x_{m}>a\left|x^{\prime}\right|, a>0\right\}$

$$
u(x) \longmapsto p \cdot v \cdot \int_{C_{+}^{a}} K\left(x_{0}, x-y\right) u(y) d y .
$$

It is natural to expect similar properties for general discrete operators. That's why we consider here the simplest model operators in cones. So we have the following canonical domains: $\mathbb{R}^{m}, \mathbb{R}_{+}^{m}, C_{+}^{a}$. It is essential that all these domains are cones but the first two include a whole straight line.

The case $D=\mathbb{R}^{m}$ is very simple (from modern point of view; there was a lot of $\underset{\sim}{\sim}$ mathematicians whose papers have helped us to clarify this situation). If a symbol $\widetilde{A}_{d}(\xi)$ of the operator $A_{d}$ from (28.2) is elliptic, then such operator $A_{d}$ is invertible at least in the space $L_{2}\left(h \mathbb{Z}^{m}\right)$. We apply the discrete Fourier transform (28.3) and obtain immediately that the operator $A_{d}$ is unitary equivalent to a multiplication operator on its symbol.

We proceed to describe the half-space case. First we recall the following definition.

Definition 2 Factorization of an elliptic symbol $\widetilde{A}_{d}(\xi)$ is called its representation in the form

$$
\widetilde{A}_{d}(\xi)=\widetilde{A}_{d}^{+}(\xi) \cdot \widetilde{A}_{d}^{-}(\xi)
$$

where the factors $\widetilde{A}_{d}^{ \pm}(\xi)$ admit a bounded holomorphic continuation into upper and lower complex half-strips $\Pi_{ \pm}$for almost all $\xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{m-1}\right) \in \mathbb{T}^{m-1}$.

Now we come back to the equation (28.4), we apply the discrete Fourier transform $F_{d}$ and we obtain the following equation

$$
\begin{gather*}
\frac{\widetilde{A}_{d}\left(\xi^{\prime}, \xi_{m}\right)+\widetilde{B}_{d}\left(\xi^{\prime}, \xi_{m}\right)}{2} \tilde{U}_{d}(\xi)+ \\
\frac{\widetilde{A}_{d}\left(\xi^{\prime}, \xi_{m}\right)-\widetilde{B}_{d}\left(\xi^{\prime}, \xi_{m}\right)}{4 \pi i} \text { p.v. } \int_{-\pi h^{-1}}^{\pi h^{-1}} \tilde{U}_{d}\left(\xi^{\prime}, \eta\right) \cot \frac{h\left(\eta-\xi_{m}\right)}{2} d \eta=\tilde{V}_{d}(\xi) \tag{28.5}
\end{gather*}
$$

where $\widetilde{A}_{d}(\xi), \widetilde{B}_{d}(\xi)$ are symbols of discrete operators $A_{d}, B_{d}$. Of course, equation (28.5) is related to the corresponding Riemann boundary value problem [Ga81, Mu76, VaEtAl13, VaEtAl15-1, VaEtAl15-3], so the following result is valid.

Theorem 3 For $m \geq 3$ the equation (28.5) is uniquely solvable in the space $L_{2}\left(h \mathbb{Z}^{m}\right)$ iff operators $A_{d}, B_{d}$ are elliptic and

$$
\text { Ind } \widetilde{A}_{d}\left(\cdot, \xi_{m}\right) \widetilde{B}_{d}^{-1}\left(\cdot, \xi_{m}\right)=0
$$

The key role for a proof of the theorem is played by the concept of factorization for an elliptic symbol, and it can be constructed exactly by means of operator $H_{\xi^{\prime}}^{\text {per }}$ [VaEtAl15-1, VaEtAl15-3].

### 28.5.1 Conical Case

This section is devoted to the last and most complicated case. Let $\chi_{+}(\tilde{x})$ be a characteristic function of the discrete cone $D_{d}$ and $S_{d}(z)$ be the following function

$$
S_{d}(z)=\sum_{\tilde{x} \in D_{d}} \chi_{+}(\tilde{x}) e^{\tilde{\tilde{x}} \cdot z}, \quad z \in T(\stackrel{*}{D}), \quad z=\xi+i \tau
$$

where $\stackrel{*}{D}=\left\{x \in \mathbb{R}^{m}: x \cdot y>0, \forall y \in D\right\}, T(D)$ is a specific domain in a multidimensional complex space $\mathbb{C}^{m}$ so that $T(D)=\hbar \mathbb{T}^{m}+i D$.

The infinite sum exists for $\tau \neq 0$ but does not exist for $\tau=0$ because it is formally the discrete Fourier transform (28.3) of the nonsummable indicator $\chi_{+}$. If we fix a certain function $u_{d} \in L_{2}\left(h \mathbb{Z}^{m}\right)$, then we have $\chi_{+} \circ u_{d} \in L_{2}\left(D_{d}\right)$, and therefore the discrete Fourier transform $\widetilde{\chi+{ }^{\circ} u_{d}}$ is defined and belongs to $L_{2}\left(\hbar \mathbb{T}^{m}\right)$. So, according to properties of the discrete Fourier transform (28.3), we have

$$
\left(F_{d}(\chi+\circ u)\right)(\xi)=\lim _{\tau \rightarrow 0+} \int_{\hbar \mathbb{T}^{m}} S_{d}(z-y) \tilde{u}_{d}(y) d y
$$

and the last integral exists at least in $L_{2}$-sense.

Thus we study a corresponding analogue of the equation (28.4) and we also need complex variables and relevant analogue of Riemann boundary value problem [BoMa48, Vl07, Va00].

Let $A\left(\hbar \mathbb{T}^{m}\right)$ be a subspace of $L_{2}\left(\hbar \mathbb{T}^{m}\right)$ consisting of functions which admit an analytical extension into $T(\stackrel{*}{D})$, and $B\left(\hbar \mathbb{T}^{m}\right)$ is an orthogonal complementation of the subspace $A\left(\hbar \mathbb{T}^{m}\right)$ in $L_{2}\left(\hbar \mathbb{T}^{m}\right)$ so that

$$
L_{2}\left(\hbar \mathbb{T}^{m}\right)=A\left(\hbar \mathbb{T}^{m}\right) \oplus B\left(\hbar \mathbb{T}^{m}\right)
$$

First of all we deal with a jump problem formulated in the following way: finding a pair of functions $\Phi^{ \pm}, \Phi^{+} \in A\left(\hbar \mathbb{T}^{m}\right), \Phi^{-} \in B\left(\hbar \mathbb{T}^{m}\right)$, such that

$$
\begin{equation*}
\Phi^{+}(\xi)-\Phi^{-}(\xi)=g(\xi), \quad \xi \in \hbar \mathbb{T}^{m} \tag{28.6}
\end{equation*}
$$

where $g(\xi) \in L_{2}\left(\hbar \mathbb{T}^{m}\right)$ is given.
Proposition 2 The operator $S_{d}: L_{2}\left(\hbar \mathbb{T}^{m}\right) \rightarrow A\left(\hbar \mathbb{T}^{m}\right)$ is a bounded projector. $A$ function $u_{d} \in L_{2}\left(D_{d}\right)$ iff its Fourier transform $\tilde{u}_{d} \in A\left(\hbar \mathbb{T}^{m}\right)$.

Proof According to standard properties of the discrete Fourier transform $F_{d}$ we have

$$
F_{d}\left(\chi_{+}(\tilde{x}) u_{d}(\tilde{x})\right)=\lim _{\tau \rightarrow 0} \int_{\hbar \mathbb{T}^{m}} S_{d}(z-\eta) \widetilde{u}_{d}(\eta) d \eta,
$$

where $\chi_{+}(\tilde{x})$ is the indicator of the set $D_{d}$. It implies the boundedness of the operator $B_{d}$. The second assertion follows from holomorphic properties of the kernel $S_{d}(z)$. In other words for arbitrary function $v \in A\left(\hbar \mathbb{T}^{m}\right)$ we have

$$
v(z)=\int_{\hbar \mathbb{T}^{m}} S_{d}(z-\eta) v(\eta) d \eta, \quad z \in T(\stackrel{*}{D}) .
$$

It is an analogue of the Cauchy integral formula.
Theorem 4 The jump problem has unique solution for arbitrary right-hand side from $L_{2}\left(\hbar \mathbb{T}^{m}\right)$.

Proof Indeed there is an equivalent unique representation of the space $L_{2}\left(D_{d}\right)$ as a direct sum of two subspaces. If we denote $\chi_{+}(x), \chi_{-}(x)$ the indicators of the discrete sets $D_{d}, h \mathbb{Z}^{m} \backslash D_{d}$, respectively, then the following representation

$$
u_{d}(\tilde{x})=\chi_{+}(\tilde{x}) u_{d}(\tilde{x})+\chi_{-}(\tilde{x}) u_{d}(\tilde{x})
$$

is unique and holds for an arbitrary function $u_{d} \in L_{2}\left(h \mathbb{Z}^{m}\right)$. After applying the discrete Fourier transform we have

$$
F_{d} u_{d}=F_{d}\left(\chi_{+} u_{d}\right)+F_{d}\left(\chi_{-} u_{d}\right),
$$

where $F_{d}\left(\chi_{+} u_{d}\right) \in A\left(\hbar \mathbb{T}^{m}\right)$ according to the proposition 2 , and thus $F_{d}\left(\chi-u_{d}\right)=$ $F_{d} u_{d}-F_{d}\left(\chi+u_{d}\right) \in B\left(\hbar \mathbb{T}^{m}\right)$ because $F_{d} u_{d} \in L_{2}\left(h \mathbb{T}^{m}\right)$.
Example 1 If $m=2$ and $C_{+}^{2}$ is the first quadrant of $\mathbb{R}^{2}$, then a solution of a jump problem is given by formulas

$$
\begin{gathered}
\Phi^{+}(\xi)=\frac{1}{(4 \pi i)^{2}} \lim _{\tau \rightarrow 0} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \cot \frac{\xi_{1}+i \tau_{1}-t_{1}}{2} \cot \frac{\xi_{2}+i \tau_{2}-t_{2}}{2} g\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \\
\Phi^{-}(\xi)=\Phi^{+}(\xi)-g(\xi), \quad \tau=\left(\tau_{1}, \tau_{2}\right) \in C_{+}^{2}
\end{gathered}
$$

The last decomposition will help us to formulate the periodic Riemann boundary value problem which is very distinct for one-dimensional case and multidimensional one. The principal non-correspondence is that the subspace $B\left(\hbar \mathbb{T}^{m}\right)$ consists of boundary values of certain analytical functions in one-dimensional case, but this set has an unknown nature for a multidimensional case.

A multidimensional periodic variant of Riemann boundary value problem can be formulated as follows: finding two functions $\Phi^{ \pm}(\xi)$ such that $\Phi^{+}(\xi) \in A\left(\hbar \mathbb{T}^{m}\right)$, $\Phi^{-}(\xi) \in B\left(\hbar \mathbb{T}^{m}\right)$ and the following linear relation holds

$$
\begin{equation*}
\Phi^{+}(\xi)=G(\xi) \Phi^{-}(\xi)+g(\xi) \tag{28.7}
\end{equation*}
$$

where $G(\xi), g(\xi)$ are given functions on $\hbar \mathbb{T}^{m}$. We assume here that $G(\xi) \in C\left(\hbar \mathbb{T}^{m}\right)$, $G(\xi) \neq 0, \forall \xi \in \hbar \mathbb{T}^{m}$.

Definition 3 Periodic wave factorization of a function $G(\xi)$ is called its representation in the form

$$
G(\xi)=G_{\neq}(\xi) G_{=}(\xi)
$$

where factors $G_{\neq}^{ \pm 1}(\xi), G_{=}^{ \pm 1}(\xi)$ admit a bounded analytical continuation into complex domains $T(\stackrel{*}{D}), T(-\stackrel{*}{D})$, respectively.

Theorem 5 If $G(\xi)$ admits periodic wave factorization, then multidimensional Riemann boundary value problem has a unique solution for arbitrary right-hand side $g(\xi) \in L_{2}\left(\hbar \mathbb{T}^{m}\right)$.

Proof We rewrite a multidimensional Riemann boundary value problem in the form

$$
G_{\neq}^{-1}(\xi) \Phi^{+}(\xi)-G_{=}(\xi) \Phi^{-}(\xi)=G_{\neq}^{-1}(\xi) g(\xi)
$$

and obtain a jump problem (28.6).

Indeed for arbitrary two functions $f, g \in L_{2}\left(h \mathbb{Z}^{m}\right)$ such that supp $f \subset h \mathbb{Z}^{m} \backslash$ $\left(-D_{d}\right)$, supp $g \subset\left(-D_{d}\right)$ according to properties of discrete Fourier transform $F_{d}$ we have

$$
\begin{aligned}
& \left(F_{d}^{-1}(f \circ g)\right)(\tilde{x})=\left(\left(F_{d}^{-1} f\right) *\left(F_{d}^{-1} g\right)\right)(\tilde{x}) \equiv \\
& \sum_{\tilde{y} \in h \mathbb{Z}^{m}} f_{1}(\tilde{x}-\tilde{y}) g_{1}(\tilde{y})=\sum_{\tilde{y} \in-D_{d}} f_{1}(\tilde{x}-\tilde{y}) g_{1}(\tilde{y}),
\end{aligned}
$$

where $f_{1}=F_{d}^{-1} f, g_{1}=F_{d}^{-1} g$ and according to the proposition 2 supp $g_{1} \subset-D_{d}$.
Further since we have supp $f_{1} \subset h \mathbb{Z}^{m} \backslash\left(-D_{d}\right)$ then for $\tilde{x} \in D_{d}, \tilde{y} \in-D_{d}$ we have $\tilde{x}-\tilde{y} \in D_{d}$ so that $f_{1}(\tilde{x}-\tilde{y})=0$ for such $\tilde{x}, \tilde{y}$. Thus $\operatorname{supp}\left(f_{1} * g_{1}\right) \subset h \mathbb{Z}^{m} \backslash D_{d}$.

This solution can be constructed by means of the kernel $S_{d}(z)$.
Remark 1 If $m=1$ the required factorization exists and can be constructed by the periodic analogue of Hilbert transform (see above). If $m \geq 2$ there is no an effective algorithm for constructing the required periodic wave factorization. One can give some sufficient conditions, for example, supp $F_{d}^{-1}(\ln G(\xi)) \subset D_{d} \cup\left(-D_{d}\right)$.

Now we consider the elliptic equation (28.4) with $\widetilde{A}_{d}(\xi), \widetilde{B}_{d}(\xi) \in C\left(\hbar \mathbf{T}^{m}\right)$. As above, one can establish the needed relationship between periodic multidimensional Riemann boundary value problem (28.7) and the corresponding integral equation in Fourier images similar to one-dimensional case [Ga81, Mu76, VaEtAl15-1] and can obtain the following result.

Theorem 6 If $\widetilde{A}_{d}(\xi) \widetilde{B}_{d}^{-1}(\xi)$ admit the periodic wave factorization, then the equation (28.4) has a unique solution in the space $L_{2}\left(h \mathbf{Z}^{m}\right)$.

Proof Applying the discrete Fourier transform to the equation (28.4), we obtain the following integral equation with operator $S_{d}$

$$
\widetilde{A}_{d}(\xi)\left(S_{d} \widetilde{U}_{d}\right)(\xi)+\widetilde{B}_{d}(\xi)\left(I-S_{d} \widetilde{U}_{d}\right)(\xi)=\widetilde{V}_{d}
$$

which is equivalent to certain periodic Riemann boundary value problem similar to (28.7). It was done in [Va00] for non-periodic case, and it looks the same for a periodic case. Then, according to Theorem 5, we obtain the required assertion.

## Conclusion

The author hopes these consideration will be useful for constructing basic elements of discrete theory of elliptic pseudo-differential equations and boundary value problems on manifolds with a boundary (possibly non-smooth) taking into account latest author's results [Va11, Va13, Va15].

## References

[BoMa48] Bochner, S., Martin, W.T.: Several Complex Variables. Princeton University Press, Princeton, NY (1948)
[Es81] Eskin, G.: Boundary Value Problems for Elliptic Pseudodifferential Equations. AMS, Providence, RI (1981)
[Ga81] Gakhov, F.D.: Boundary Value Problems. Dover, Mineola, NY (1981)
[MiPr86] Mikhlin, S.G., Prössdorf, S.: Singular Integral Operators. Akademie, Berlin (1986)
[Mu76] Muskhelishvili, N.I.: Singular Integral Equations. North Holland, Amsterdam (1976)
[Sh01] Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin/Heidelberg (2001)
[Ta81] Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton, NJ (1981)
[Tr80] Treves, F.: Introduction to Pseudodifferential Operators and Fourier Integral Operators. Springer, New York, NY (1980)
[VaEtAl13] Vasilyev, A.V., Vasilyev, V.B.: Discrete singular operators and equations in a halfspace. Azerb. J. Math. 3, 84-93 (2013)
[VaEtAl15-1] Vasil'ev, A.V., Vasil'ev, V.B.: Periodic Riemann problem and discrete convolution equations. Differ. Equ. 51, 652-660 (2015)
[VaEtAl15-2] Vasilyev, A.V., Vasilyev, V.B.: Discrete singular integrals in a half-space. In: Mityushev, V., Ruzhansky, M. (eds.) Current Trends in Analysis and Its Applications. Research Perspectives, pp. 663-670. Birkhäuser, Basel (2015)
[VaEtAl15-3] Vasil'ev, A.V., Vasil'ev, V.B.: On the solvability of certain discrete equations and related estimates of discrete operators. Dokl. Math. 92, 585-589 (2015)
[Va00] Vasil'ev, V.B.: Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Elliptic Boundary Value Problems in Non-Smooth Domains. Kluwer Academic Publishers, Dordrecht/Boston/London (2000)
[Va11] Vasilyev, V.B.: Asymptotical analysis of singularities for pseudo differential equations in canonical non-smooth domains. In: Constanda, C., Harris, P. (eds.) Integral Methods in Science and Engineering, pp. 379-390. Birkhäuser, Boston, MA (2011)
[Va13] Vasilyev, V.B.: Pseudo differential equations on manifolds with non-smooth boundaries. In: Pinelas, S., Došlá, Z., Došlý, O., Kloeden, P.E. (eds.) Differential and Difference Equations and Applications. Springer Proceedings in Mathematics \& Statistics, vol. 47, pp. 625-637. Birkhäuser, Basel (2013)
[Va15] Vasilyev, V.B.: New constructions in the theory of elliptic boundary value problems. In: Constanda, C., Kirsch, A. (eds.) Integral Methods in Science and Engineering, pp. 629-641. Birkhäuser, New York, NY (2015)
[V107] Vladimirov, V.S.: Methods of the Theory of Functions of Many Complex Variables. Dover, Mineola, NY (2007)


[^0]:    V.B. Vasilyev ( 区)

    National Research Belgorod State University, Belgorod, Russia
    e-mail: vbv57@inbox.ru

