

Chapter 28 Discreteness, Periodicity, Holomorphy, and Factorization

V.B. Vasilyev

28.1 Introduction

The main topic of the paper is to establish some relations between the solvability of a special kind of discrete equations in certain canonical domains and holomorphy properties of their Fourier analogues. We start from the theory of pseudo-differential operators and equations [Ta81, Tr80, Sh01], and corresponding boundary value problems [Es81] and we shall try to construct a discrete analogue of this theory with forthcoming limit passage from discrete case to a continuous one.

Historically, the theory of pseudo-differential operators started from a special kind of integral operators, namely Calderon–Zygmund operators of the following type

$$(Ku)(x) = p.v. \int_{\mathbb{R}^m} K(x, x - y)u(y)dy,$$
 (28.1)

where the kernel K(x, y) has certain specifical properties [MiPr86]. If we enlarge the class of such kernels and in particular we permit that the kernel K(x, y) can be a distribution on a second variable y, then the above formula will include differential operators with variable coefficients

$$(\mathcal{D}u)(x) = \sum_{|k|=0}^{n} a_k(x) \frac{\partial^k u}{\partial x_1^{k_1} \cdots \partial x_m^{k_m}}(x),$$

where k is a multi-index, $|k| = k_1 + \cdots k_m$.

V.B. Vasilyev (⋈)

National Research Belgorod State University, Belgorod, Russia e-mail: vbv57@inbox.ru

© Springer International Publishing AG 2017

C. Constanda et al. (eds.), Integral Methods in Science and Engineering, Volume 1, DOI 10.1007/978-3-319-59384-5_28

Indeed for this case we use the kernel

$$K(x, y) = \sum_{|k|=0}^{n} a_k(x) \delta^{k_1}(y_1) \cdots \delta^{k_m}(y_m).$$

A theory for similar operators consists in a description of functional spaces in which these operators are bounded, possible additional conditions (maybe boundary conditions) which permit to state the well-posedness of boundary value problem in a corresponding functional space and so on. Here, we would like to discuss these problems for a discrete situations and to describe some of our first results in this direction.

28.2 Discreteness

We consider functions u_d of a discrete variable $\tilde{x} \in h\mathbb{Z}^m$, where h > 0 is a small parameter, and operators defined on such functions of the following type

$$(A_d u_d)(\tilde{x}) = a u_d(\tilde{x}) + \sum_{\tilde{y} \in D_d} A_d(\tilde{x} - \tilde{y}) u_d(\tilde{y}) h^m, \quad \tilde{x} \in D_d,$$
 (28.2)

taking partial sums of the series (28.2) over cubes

$$Q_N = \{ \tilde{x} \in h \mathbb{Z}^m : \max_{1 \le k \le m} |x_k| \le N \},$$

where we use following notations.

Let $D \subset \mathbb{R}^m$ be a domain, $D_d \equiv D \cap h\mathbb{Z}^m$ be a discrete set, A_d be a given function of a discrete variable defined on $h\mathbb{Z}^m$, and $a \in \mathbb{C}$. We say that the function $A_d(\tilde{x})$ is the kernel of the discrete operator A_d . This kernel may be summable, i.e. it can be generated by integrable function

$$\int_{\mathbb{R}^m} |A(x)| dx < +\infty,$$

but for this case we deal with ordinary convolution. The author has considered the more interesting and complicated case when the generating function A(x) is a Calderon–Zygmund kernel [VaEtAl15-2, VaEtAl15-3]. These Calderon–Zygmund operators play an important role as the simplest model of a pseudo-differential operator [MiPr86, Es81]. Taking into account our forthcoming considerations of discrete pseudo-differential operators we shall restrict to this simplest case.

We assume that our generating function A(x) is a Calderon–Zygmund kernel, i.e. it is homogeneous of order -m and has vanishing mean value on unit sphere $S^{m-1} \subset \mathbb{R}^m$, also it is continuously differentiable out of the origin and by definition A(0) = 0.

The first question which arises in this situation is the following. Is there a certain dependence on a parameter h for a norm of the operator A_d ? Fortunately the answer is negative (see also [VaEtAl15-3] for the whole space \mathbb{R}^m).

Theorem 1 Let D be a bounded domain in \mathbb{R}^m with a Lipschitz boundary ∂D . Then the norm of the operator $A_d: L_2(D_d) \to L_2(D_d)$ doesn't depend on h.

This property leaves us hope to describe the spectra of the operator A_d using methods developed for this purpose in a continuous case.

28.3 Periodicity

Roughly speaking the Fourier image of the lattice $h\mathbb{Z}^m$ is a periodic structure with basic cube of periods $\hbar \mathbb{T}^m$, where $\hbar = \frac{h^{-1}}{2\pi}$. More precisely if we introduce a discrete Fourier transform by the formula

$$\widetilde{u}_d(\xi) \equiv (F_d u_d)(\xi) = \sum_{\widetilde{x} \in h\mathbb{Z}^m} e^{-i\widetilde{x} \cdot \xi} u_d(\widetilde{x}) h^m$$
 (28.3)

taking partial sums of the series (28.3) over cubes Q_N , we can use this construction to give a definition of a discrete pseudo-differential operator by the formula

$$(A_d u_d)(\widetilde{x}) = \int_{\hbar \mathbb{T}^m} e^{i \widetilde{x} \cdot \xi} \widetilde{A}_d(\xi) \widetilde{u}_d(\xi) d\xi,$$

where the function $\widetilde{A}_d(\xi)$ is called the symbol of the operator A_d .

Let us note that this discrete Fourier transform preserves all basic properties of standard Fourier transform. Only one principal distinction is periodicity of Fourier images.

Definition 1 The symbol $\widetilde{A}_d(\xi)$ is called an elliptic symbol (and operator A_d is called an elliptic one) if $\underset{\xi \in \hbar \mathbb{T}^m}{\inf} |\widetilde{A}_d(\xi)| > 0$.

Proposition 1 The operator $A_d: L_2(h\mathbb{Z}^m) \to L_2(h\mathbb{Z}^m)$ is invertible iff it is an elliptic operator.

Many interesting properties of the operator A_d related to a comparison between continuous and discrete cases can be found in [VaEtAl15-2].

28.4 Holomorphy

The property of holomorphy arises if we try to obtain a Fourier image for a so-called paired equation

$$(A_d P_+ + B_d P_-) U_d = V_d, (28.4)$$

where P_{\pm} are projectors on some canonical domains (see below), A_d , B_d are discrete operators similar to (28.2).

If, for example, P_{\pm} are projectors on discrete half-spaces $h\mathbb{Z}_{\pm}^{m} = \{\tilde{x} \in h\mathbb{Z}^{m} : \tilde{x} = (\tilde{x}_{1}, \dots, \tilde{x}_{m}), \pm \tilde{x}_{m} > 0\}$, and we want to use standard properties of the Fourier transform related to a convolution then, in order to find a Fourier image of the product $\chi_{+}(\tilde{x})U(\tilde{x})$ where χ_{+} is an indicator of the $h\mathbb{Z}_{+}^{m}$, we need to go out in a complex domain [VaEtAl15-1, VaEtAl15-3].

We introduce for fixed $\xi' = (\xi_1, \dots, \xi_{m-1})$

$$\Pi_{\pm} = \{ \xi_m \pm i\tau \in \mathbb{C} : \xi_m \in h^{-1}[-\pi, \pi], \tau > 0 \}.$$

Theorem 2 Let H_{\pm} be subspaces of the space $L_2(\hbar \mathbb{T}^m)$ consisting of functions which admit holomorphic extensions into upper and lower complex half-strips Π_{\pm} on a last variable ξ_m under almost all fixed $\xi' = (\xi_1, \dots, \xi_{m-1})$. Then we have the following decomposition

$$L_2(\hbar \mathbb{T}^m) = H_+ \oplus H_-.$$

Indeed the decomposition is given by the following operators

$$(H_{\xi'}^{per}\tilde{u}_d)(\xi_m) = \frac{1}{2\pi i} p.v. \int_{-\pi h^{-1}}^{\pi h^{-1}} \tilde{u}_d(\xi', t) \cot \frac{h(t - \xi_m)}{2} dt,$$

$$P_{\xi'}^{per} = 1/2(I + H_{\xi'}^{per}), \ Q_{\xi'}^{per} = 1/2(I - H_{\xi'}^{per}),$$

so that

$$F_d P_+ u_d = P_{\xi'}^{per} \widetilde{u}_d, \quad F_d P_- u_d = Q_{\xi'}^{per} \widetilde{u}_d.$$

28.5 Factorization

The concept of factorization is needed if we consider an original equation in a non-whole lattice, i.e. $D \neq \mathbb{R}^m$. We extract from \mathbb{R}^m some so-called canonical domains. The fact that to obtain Fredholm conditions for an elliptic operator (or equation) on a manifold, and in particular in a domain of m-dimensional space, we need to

obtain an invertibility conditions for a local representative of original operator, is called a local principle [MiPr86, Va00]. Roughly speaking such local representatives are simple model operators in canonical domains. If for example we are interested in studying a Calderon–Zygmund operator on a manifold with a boundary of the type (28.1), we need to describe invertibility conditions for the following model operators in the following canonical domains:

• for inner points x_0 of a manifold

$$u(x) \longmapsto p.v. \int_{\mathbb{R}^m} K(x_0, x - y)u(y)dy,$$

• for boundary points x_0 on smooth parts of a boundary

$$u(x) \longmapsto p.v. \int_{\mathbb{R}^m_+} K(x_0, x - y)u(y)dy,$$

where $\mathbb{R}^m_+ = \{x \in \mathbb{R}^m : x = (x_1, \dots, x_m), x_m > 0\},$

• for boundary points x_0 for which their neighborhood is diffeomorphic to $C_+^a = \{x \in \mathbb{R}^m : x = (x', x_m), x' = (x_1, \dots, x_{m-1}), x_m > a|x'|, a > 0\}$

$$u(x) \longmapsto p.v. \int_{C_+^a} K(x_0, x - y)u(y)dy.$$

It is natural to expect similar properties for general discrete operators. That's why we consider here the simplest model operators in cones. So we have the following canonical domains: \mathbb{R}^m , \mathbb{R}^m_+ , C^a_+ . It is essential that all these domains are cones but the first two include a whole straight line.

The case $D = \mathbb{R}^m$ is very simple (from modern point of view; there was a lot of mathematicians whose papers have helped us to clarify this situation). If a symbol $\widetilde{A}_d(\xi)$ of the operator A_d from (28.2) is elliptic, then such operator A_d is invertible at least in the space $L_2(h\mathbb{Z}^m)$. We apply the discrete Fourier transform (28.3) and obtain immediately that the operator A_d is unitary equivalent to a multiplication operator on its symbol.

We proceed to describe the half-space case. First we recall the following definition.

Definition 2 Factorization of an elliptic symbol $\widetilde{A}_d(\xi)$ is called its representation in the form

$$\widetilde{A}_d(\xi) = \widetilde{A}_d^+(\xi) \cdot \widetilde{A}_d^-(\xi),$$

where the factors $\widetilde{A}_d^{\pm}(\xi)$ admit a bounded holomorphic continuation into upper and lower complex half-strips Π_{\pm} for almost all $\xi' = (\xi_1, \cdots, \xi_{m-1}) \in \mathbb{T}^{m-1}$.

Now we come back to the equation (28.4), we apply the discrete Fourier transform F_d and we obtain the following equation

$$\frac{\widetilde{A}_d(\xi',\xi_m)+\widetilde{B}_d(\xi',\xi_m)}{2}\widetilde{U}_d(\xi)+$$

$$\frac{\widetilde{A}_{d}(\xi',\xi_{m}) - \widetilde{B}_{d}(\xi',\xi_{m})}{4\pi i} p.v. \int_{-\pi h^{-1}}^{\pi h^{-1}} \widetilde{U}_{d}(\xi',\eta) \cot \frac{h(\eta - \xi_{m})}{2} d\eta = \widetilde{V}_{d}(\xi).$$
 (28.5)

where $\widetilde{A}_d(\xi)$, $\widetilde{B}_d(\xi)$ are symbols of discrete operators A_d , B_d . Of course, equation (28.5) is related to the corresponding Riemann boundary value problem [Ga81, Mu76, VaEtAl13, VaEtAl15-1, VaEtAl15-3], so the following result is valid.

Theorem 3 For $m \ge 3$ the equation (28.5) is uniquely solvable in the space $L_2(h\mathbb{Z}^m)$ iff operators A_d , B_d are elliptic and

Ind
$$\widetilde{A}_d(\cdot, \xi_m)\widetilde{B}_d^{-1}(\cdot, \xi_m) = 0$$
.

The key role for a proof of the theorem is played by the concept of factorization for an elliptic symbol, and it can be constructed exactly by means of operator $H_{\xi'}^{per}$ [VaEtAl15-1, VaEtAl15-3].

28.5.1 Conical Case

This section is devoted to the last and most complicated case. Let $\chi_+(\tilde{x})$ be a characteristic function of the discrete cone D_d and $S_d(z)$ be the following function

$$S_d(z) = \sum_{\tilde{x} \in D_d} \chi_+(\tilde{x}) e^{i\tilde{x} \cdot z}, \quad z \in T(D), \quad z = \xi + i\tau,$$

where $\stackrel{*}{D} = \{x \in \mathbb{R}^m : x \cdot y > 0, \forall y \in D\}$, T(D) is a specific domain in a multidimensional complex space \mathbb{C}^m so that $T(D) = \hbar \mathbb{T}^m + iD$.

The infinite sum exists for $\tau \neq 0$ but does not exist for $\tau = 0$ because it is formally the discrete Fourier transform (28.3) of the nonsummable indicator χ_+ . If we fix a certain function $u_d \in L_2(h\mathbb{Z}^m)$, then we have $\chi_+ \circ u_d \in L_2(D_d)$, and therefore the discrete Fourier transform $\chi_+ \circ u_d$ is defined and belongs to $L_2(\hbar \mathbb{T}^m)$. So, according to properties of the discrete Fourier transform (28.3), we have

$$(F_d(\chi_+ \circ u))(\xi) = \lim_{\tau \to 0+} \int_{\hbar \mathbb{T}^m} S_d(z - y) \tilde{u}_d(y) dy,$$

and the last integral exists at least in L_2 -sense.

Thus we study a corresponding analogue of the equation (28.4) and we also need complex variables and relevant analogue of Riemann boundary value problem [BoMa48, V107, Va00].

Let $A(\hbar \mathbb{T}^m)$ be a subspace of $L_2(\hbar \mathbb{T}^m)$ consisting of functions which admit an analytical extension into T(D), and $B(\hbar \mathbb{T}^m)$ is an orthogonal complementation of the subspace $A(\hbar \mathbb{T}^m)$ in $L_2(\hbar \mathbb{T}^m)$ so that

$$L_2(\hbar \mathbb{T}^m) = A(\hbar \mathbb{T}^m) \oplus B(\hbar \mathbb{T}^m).$$

First of all we deal with a jump problem formulated in the following way: finding a pair of functions Φ^{\pm} , $\Phi^{+} \in A(\hbar \mathbb{T}^{m})$, $\Phi^{-} \in B(\hbar \mathbb{T}^{m})$, such that

$$\Phi^{+}(\xi) - \Phi^{-}(\xi) = g(\xi), \quad \xi \in \hbar \mathbb{T}^{m},$$
 (28.6)

where $g(\xi) \in L_2(\hbar \mathbb{T}^m)$ is given.

Proposition 2 The operator $S_d: L_2(\hbar \mathbb{T}^m) \to A(\hbar \mathbb{T}^m)$ is a bounded projector. A function $u_d \in L_2(D_d)$ iff its Fourier transform $\tilde{u}_d \in A(\hbar \mathbb{T}^m)$.

Proof According to standard properties of the discrete Fourier transform F_d we have

$$F_d(\chi_+(\widetilde{x})u_d(\widetilde{x})) = \lim_{\tau \to 0} \int_{h_{\mathbb{T}^m}} S_d(z-\eta)\widetilde{u}_d(\eta)d\eta,$$

where $\chi_+(\tilde{x})$ is the indicator of the set D_d . It implies the boundedness of the operator B_d . The second assertion follows from holomorphic properties of the kernel $S_d(z)$. In other words for arbitrary function $v \in A(\hbar \mathbb{T}^m)$ we have

$$v(z) = \int_{\hbar \mathbb{T}^m} S_d(z - \eta) v(\eta) d\eta, \quad z \in T(D)^*.$$

It is an analogue of the Cauchy integral formula.

Theorem 4 The jump problem has unique solution for arbitrary right-hand side from $L_2(\hbar \mathbb{T}^m)$.

Proof Indeed there is an equivalent unique representation of the space $L_2(D_d)$ as a direct sum of two subspaces. If we denote $\chi_+(x)$, $\chi_-(x)$ the indicators of the discrete sets D_d , $h\mathbb{Z}^m\setminus D_d$, respectively, then the following representation

$$u_d(\tilde{x}) = \chi_+(\tilde{x})u_d(\tilde{x}) + \chi_-(\tilde{x})u_d(\tilde{x})$$

is unique and holds for an arbitrary function $u_d \in L_2(h\mathbb{Z}^m)$. After applying the discrete Fourier transform we have

$$F_d u_d = F_d(\gamma_+ u_d) + F_d(\gamma_- u_d),$$

where $F_d(\chi_+ u_d) \in A(\hbar \mathbb{T}^m)$ according to the proposition 2, and thus $F_d(\chi_- u_d) = F_d u_d - F_d(\chi_+ u_d) \in B(\hbar \mathbb{T}^m)$ because $F_d u_d \in L_2(\hbar \mathbb{T}^m)$.

Example 1 If m=2 and C_+^2 is the first quadrant of \mathbb{R}^2 , then a solution of a jump problem is given by formulas

$$\Phi^{+}(\xi) = \frac{1}{(4\pi i)^2} \lim_{\tau \to 0} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \cot \frac{\xi_1 + i\tau_1 - t_1}{2} \cot \frac{\xi_2 + i\tau_2 - t_2}{2} g(t_1, t_2) dt_1 dt_2$$

$$\Phi^{-}(\xi) = \Phi^{+}(\xi) - g(\xi), \quad \tau = (\tau_1, \tau_2) \in C_+^2.$$

The last decomposition will help us to formulate the periodic Riemann boundary value problem which is very distinct for one-dimensional case and multidimensional one. The principal non-correspondence is that the subspace $B(\hbar \mathbb{T}^m)$ consists of boundary values of certain analytical functions in one-dimensional case, but this set has an unknown nature for a multidimensional case.

A multidimensional periodic variant of Riemann boundary value problem can be formulated as follows: finding two functions $\Phi^{\pm}(\xi)$ such that $\Phi^{+}(\xi) \in A(\hbar \mathbb{T}^{m})$, $\Phi^{-}(\xi) \in B(\hbar \mathbb{T}^{m})$ and the following linear relation holds

$$\Phi^{+}(\xi) = G(\xi)\Phi^{-}(\xi) + g(\xi), \tag{28.7}$$

where $G(\xi)$, $g(\xi)$ are given functions on $\hbar \mathbb{T}^m$. We assume here that $G(\xi) \in C(\hbar \mathbb{T}^m)$, $G(\xi) \neq 0$, $\forall \xi \in \hbar \mathbb{T}^m$.

Definition 3 Periodic wave factorization of a function $G(\xi)$ is called its representation in the form

$$G(\xi) = G_{\neq}(\xi)G_{=}(\xi),$$

where factors $G_{\neq}^{\pm 1}(\xi)$, $G_{=}^{\pm 1}(\xi)$ admit a bounded analytical continuation into complex domains T(D), T(-D), respectively.

Theorem 5 If $G(\xi)$ admits periodic wave factorization, then multidimensional Riemann boundary value problem has a unique solution for arbitrary right-hand side $g(\xi) \in L_2(\hbar \mathbb{T}^m)$.

Proof We rewrite a multidimensional Riemann boundary value problem in the form

$$G_{\neq}^{-1}(\xi)\Phi^{+}(\xi) - G_{=}(\xi)\Phi^{-}(\xi) = G_{\neq}^{-1}(\xi)g(\xi)$$

and obtain a jump problem (28.6).

Indeed for arbitrary two functions $f, g \in L_2(h\mathbb{Z}^m)$ such that $supp f \subset h\mathbb{Z}^m \setminus (-D_d)$, $supp g \subset (-D_d)$ according to properties of discrete Fourier transform F_d we have

$$(F_d^{-1}(f\circ g))(\tilde{x}) = ((F_d^{-1}f)*(F_d^{-1}g))(\tilde{x}) \equiv$$

$$\sum_{\tilde{y} \in h\mathbb{Z}^m} f_1(\tilde{x} - \tilde{y})g_1(\tilde{y}) = \sum_{\tilde{y} \in -D_d} f_1(\tilde{x} - \tilde{y})g_1(\tilde{y}),$$

where $f_1 = F_d^{-1}f$, $g_1 = F_d^{-1}g$ and according to the proposition 2 *supp* $g_1 \subset -D_d$. Further since we have $supp f_1 \subset h\mathbb{Z}^m \setminus (-D_d)$ then for $\tilde{x} \in D_d$, $\tilde{y} \in -D_d$ we have $\tilde{x} - \tilde{y} \in D_d$ so that $f_1(\tilde{x} - \tilde{y}) = 0$ for such \tilde{x}, \tilde{y} . Thus $supp (f_1 * g_1) \subset h\mathbb{Z}^m \setminus D_d$. \square This solution can be constructed by means of the kernel $S_d(z)$.

Remark 1 If m=1 the required factorization exists and can be constructed by the periodic analogue of Hilbert transform (see above). If $m \ge 2$ there is no an effective algorithm for constructing the required periodic wave factorization. One can give some sufficient conditions, for example, $supp \ F_d^{-1}(\ln G(\xi)) \subset D_d \cup (-D_d)$.

Now we consider the elliptic equation (28.4) with $A_d(\xi)$, $B_d(\xi) \in C(\hbar \mathbf{T}^m)$. As above, one can establish the needed relationship between periodic multidimensional Riemann boundary value problem (28.7) and the corresponding integral equation in Fourier images similar to one-dimensional case [Ga81, Mu76, VaEtAl15-1] and can obtain the following result.

Theorem 6 If $\widetilde{A}_d(\xi)\widetilde{B}_d^{-1}(\xi)$ admit the periodic wave factorization, then the equation (28.4) has a unique solution in the space $L_2(h\mathbf{Z}^m)$.

Proof Applying the discrete Fourier transform to the equation (28.4), we obtain the following integral equation with operator S_d

$$\widetilde{A}_d(\xi)(S_d\widetilde{U}_d)(\xi) + \widetilde{B}_d(\xi)(I - S_d\widetilde{U}_d)(\xi) = \widetilde{V}_d$$

which is equivalent to certain periodic Riemann boundary value problem similar to (28.7). It was done in [Va00] for non-periodic case, and it looks the same for a periodic case. Then, according to Theorem 5, we obtain the required assertion.

Conclusion

The author hopes these consideration will be useful for constructing basic elements of discrete theory of elliptic pseudo-differential equations and boundary value problems on manifolds with a boundary (possibly non-smooth) taking into account latest author's results [Val1, Val3, Val5].

References

[BoMa48] Bochner, S., Martin, W.T.: Several Complex Variables. Princeton University Press, Princeton, NY (1948)

- [Es81] Eskin, G.: Boundary Value Problems for Elliptic Pseudodifferential Equations. AMS, Providence, RI (1981)
- [Ga81] Gakhov, F.D.: Boundary Value Problems. Dover, Mineola, NY (1981)
- [MiPr86] Mikhlin, S.G., Prössdorf, S.: Singular Integral Operators. Akademie, Berlin (1986)
 - [Mu76] Muskhelishvili, N.I.: Singular Integral Equations. North Holland, Amsterdam (1976)
 - [Sh01] Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin/Heidelberg (2001)
 - [Ta81] Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton, NJ (1981)
 - [Tr80] Treves, F.: Introduction to Pseudodifferential Operators and Fourier Integral Operators. Springer, New York, NY (1980)
- [VaEtAl13] Vasilyev, A.V., Vasilyev, V.B.: Discrete singular operators and equations in a half-space. Azerb. J. Math. 3, 84–93 (2013)
- [VaEtAl15-1] Vasil'ev, A.V., Vasil'ev, V.B.: Periodic Riemann problem and discrete convolution equations. Differ. Equ. **51**, 652–660 (2015)
- [VaEtAl15-2] Vasilyev, A.V., Vasilyev, V.B.: Discrete singular integrals in a half-space. In: Mityushev, V., Ruzhansky, M. (eds.) Current Trends in Analysis and Its Applications. Research Perspectives, pp. 663–670. Birkhäuser, Basel (2015)
- [VaEtAl15-3] Vasil'ev, A.V., Vasil'ev, V.B.: On the solvability of certain discrete equations and related estimates of discrete operators. Dokl. Math. 92, 585–589 (2015)
 - [Va00] Vasil'ev, V.B.: Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Elliptic Boundary Value Problems in Non-Smooth Domains. Kluwer Academic Publishers, Dordrecht/Boston/London (2000)
 - [Va11] Vasilyev, V.B.: Asymptotical analysis of singularities for pseudo differential equations in canonical non-smooth domains. In: Constanda, C., Harris, P. (eds.) Integral Methods in Science and Engineering, pp. 379–390. Birkhäuser, Boston, MA (2011)
 - [Va13] Vasilyev, V.B.: Pseudo differential equations on manifolds with non-smooth boundaries. In: Pinelas, S., Došlá, Z., Došlý, O., Kloeden, P.E. (eds.) Differential and Difference Equations and Applications. Springer Proceedings in Mathematics & Statistics, vol. 47, pp. 625–637. Birkhäuser, Basel (2013)
 - [Va15] Vasilyev, V.B.: New constructions in the theory of elliptic boundary value problems. In: Constanda, C., Kirsch, A. (eds.) Integral Methods in Science and Engineering, pp. 629–641. Birkhäuser, New York, NY (2015)
 - [Vl07] Vladimirov, V.S.: Methods of the Theory of Functions of Many Complex Variables. Dover, Mineola, NY (2007)