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Abstract
We discuss the problem of the asymptotic expansion for some operators in a general
theory of pseudo-differential equations on manifolds with borders. Using the
distribution theory one obtains certain explicit representations for these operators.
These limit distributions are constructed with the help of the Fourier transform, the
Dirac mass-function and its derivatives, and the well-known distribution related to the
Cauchy type integral.
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1 Introduction
In the theory of pseudo-differential equations the main difficulty is studying model op-
erators in canonical domains according to a local principle. It shows that for a Fredholm
property of a general pseudo-differential operator on a compact manifold one needs the
invertibility of its local representatives in each point of a manifold [, ]. The author wrote
many times on the nature of these local representatives, these are distinct in dependence
on a point of a manifold. Each ‘singularity’ of a compact manifold (a half-space is a model
situation for the smooth part of a boundary, cone for the conical point, wedge, etc.) cor-
responds to a certain distribution, and a convolution operator with this distribution de-
scribes a local representative of an initial pseudo-differential operator in a corresponding
point of the manifold. All details can be found in [–]. But singularities can be of distinct
dimensions and it is possible that such singularities of a low dimension can be obtained
from analogous singularities of full dimension. This means we need to find distributions
for limit cases when some of the parameters of the singularities tend to zero. This approach
was partially realized in [, ], and [] is devoted to multi-dimensional constructions. Our
idea is the following. Limiting operators for thin singularities obtained in [] may be a zero
approximation for such thin singularities. It is desirable to obtain an asymptotic expansion
with a small parameter for the distribution corresponding to such a singularity. We will
consider here a two-dimensional case and hope these studies will help us to transfer such
constructions to multi-dimensional situations [].

The theory of differential or more generally pseudo-differential equations and boundary
value problems for manifolds with non-smooth boundaries includes now a lot of interest-
ing approaches and results.
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Other approaches, technical tools and results in the theory of boundary value problems
one can find in work of Mazya [, ], Plamenevskii [], Schulze [], Melrose [–], Tay-
lor [], Nistor [], Dauge [], Costabel [], Mazzeo [] and many others. We cannot
enumerate all authors but in [] a very large survey of these approaches is given.

The author wrote many times on another approach to studying solvability for pseudo-
differential equations in domains with conical points and wedges, but now we would like to
speak of the principal difference of our papers from other authors (Maz’ya, Plamenevski,
Schulze and many others).

In all papers the conical domain is treated as a direct product of a circle and a half-axis
(but in my point of view, it is a cylinder), then they apply the Mellin transform on the half-
axis, and the initial problem is reduced to a problem in a domain with a smooth boundary
with operator-valued symbol. It follows further it is like the generalization of well-known
results on the case of an operator symbol. Of course, our approach is a generalization also,
but it is a generalization on dimension space, and the principal difference is that we do not
divide the cone, and it is treated as an emergent thing.

For convenience of the reader the theory of the solvability for considered pseudo-
differential equations, already known in principle [, ], is given in the next section of
this paper.

2 Solving pseudo-differential equations
2.1 Model operators and Sobolev-Slobodetskii spaces in a cone
Pseudo-differential operators are locally defined by the well-known formula

u(x) �−→
∫

Rm

∫
Rm

A(x, ξ )u(y)ei(x–y)·ξ dξ dy, x ∈ Rm,

if M is a compact smooth manifold because one can use the ‘freezing coefficients principle’
or, in other words, a ‘local principle’. For a manifold with a smooth boundary we need a
new local formula for defining the operator A: more precisely near inner points of M we
use the usual formula, but near the boundary points we need another formula:

u(x) �−→
∫

Rm
+

∫
Rm

A(x, ξ )u(y)ei(x–y)·ξ dξ dy, x ∈ Rm
+ ,

where Rm
+ = {x ∈ Rm : x = (x′, xm), xm > }.

For invertibility of such an operator with symbol A(·, ξ ) not depending on a spatial vari-
able x one can apply the theory of the classical Riemann boundary value problems for
upper and lower complex half-planes with a parameter ξ ′ = (ξ, . . . , ξm–). This step was
systematically studied in []. But if the boundary ∂M has at least one conical point, this
approach is not effective.

A conical point at the boundary is such a point for which its neighborhood is diffeomor-
phic to the cone Ca

+ = {x ∈ Rm : xm > a|x′|, x′ = (x, . . . , xm–), a > }, hence a local definition
for pseudo-differential operator near the conical point is the following:

u(x) �−→
∫

Ca
+

∫
Rm

A(x, ξ )u(y)ei(x–y)·ξ dξ dy, x ∈ Ca
+. ()
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To describe a solvability picture for the model elliptic pseudo-differential equation with
the operator ()

(Au)(x) = v(x), x ∈ Ca
+, ()

with symbol A(·, ξ ) non-depending on a spatial variable x in multi-dimensional cone Ca
+ =

{x ∈ R : x > a|x|, a > } earlier we considered the special singular integral operator []

(Kau)(x) =
a

π lim
τ→+

∫
R

u(y) dy
(x – y) – a(x – y + iτ ) .

This operator served a conical singularity in the general theory of boundary value prob-
lems for elliptic pseudo-differential equations on manifolds with a non-smooth boundary.
The operator Ka is a convolution operator, and the parameter a is the size of an angle,
x > a|x|, a = cotα.

To study the invertibility property for the operator () we have introduced the concept of
the wave factorization for an elliptic symbol near a singular boundary point [, ] and using
this property we have described Fredholm properties for equation (). We use Sobolev-
Slobodetskii spaces for studying these properties.

Definition  By definition the Sobolev-Slobodetskii space Hs(Rm) consists of distribu-
tions u for which their Fourier transforms are locally integrable functions ũ(ξ ) such that

‖u‖
s =

∫
Rm

∣∣ũ(ξ )
∣∣( + |ξ |)s dξ < +∞, ũ(ξ ) =

∫
Rm

u(x)e–ix·ξ dx. ()

We will denote the Fourier image of the space Hs(Rm) by H̃s(Rm). H̃s(Rm) and, conse-
quently, Hs(Rm) are Hilbert spaces with respect to the inner product

〈u, v〉s =
∫

Rm
ũ(ξ )ṽ(ξ )

(
 + |ξ |)s dξ ,

and formula () defines the norm in the spaces Hs(Rm) and H̃s(Rm).
If s =  then H̃(Rm) = L(Rm), and by virtue of Plancherel’s theorem H(Rm) =

F–H̃(Rm) = L(Rm).
In the case s = n (n > , n integer) Hn(Rm) consists of functions u(x) that are inte-

grable with their square functions, for which their generalized derivatives ∂Dku(x) under
 ≤ |k| ≤ n are integrable with their square functions also. The norm () in this case is
equivalent to the following norm:

‖u‖
n =

∑
|k|≤n

∫
Rm

∣∣∂Dku(x)
∣∣ dx =

∑
|k|≤n


(π )m

∫
Rm

∣∣ξ kũ(ξ )
∣∣ dξ .

In the case s = –n, n > , n integer, the distributions from H–n(Rm) are derivatives of
functions from L(Rm) whose order is not higher than n.

By definition, the space Hs(Ca
+) consists of distributions from Hs(Rm), which support

belongs to Ca
+. The norm in the space Hs(Ca

+) is induced by the norm from Hs(Rm). The
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right-hand side v is chosen from the space H
s–α(Ca

+), which is the space of distributions
S′(Ca

+), admitting the continuation on Hs–α(Rm). The norm in the space H
s–α(Ca

+) is defined

‖v‖+
s–α = inf‖lv‖s–α ,

where the infimum is chosen from all continuations l.

2.2 Wave factorization and solvability
Let us return to equation (). We will recall some of our preliminary results [, ]. The

symbol
∗

Ca
+ denotes a conjugate cone for Ca

+:

∗
Ca

+=
{

x ∈ R : x = (x, x), ax > |x|
}

,

Ca
– ≡ –Ca

+, T(Ca
+) denotes a radial tube domain over the cone Ca

+ [], i.e. the domain in a
complex space C of type R + iCa

+.
We consider symbols A(ξ ) satisfying the condition

c ≤ ∣∣A(ξ )
(
 + |ξ |)–α∣∣ ≤ c,

which are elliptic, and the number α ∈ R is called an order of the operator A.
To describe the solvability picture for equation () we use the following.

Definition  Wave factorization with respect to the cone Ca
+ for the symbol A(ξ ) is called

a representation in the form

A(ξ ) = A=(ξ )A=(ξ ),

where the factors A=(ξ ), A=(ξ ) must satisfy the following conditions:
() A=(ξ ), A=(ξ ) are defined for all admissible values ξ ∈ R, without maybe the points

{ξ ∈ R : |ξ| = aξ 
 };

() A=(ξ ), A=(ξ ) admit an analytical continuation into radial tube domains T(
∗

Ca
+),

T(
∗

Ca
–), respectively, with estimates

∣∣A±
= (ξ + iτ )

∣∣ ≤ c
(
 + |ξ | + |τ |)±κ ,

∣∣A±
= (ξ – iτ )

∣∣ ≤ c
(
 + |ξ | + |τ |)±(α–κ),∀τ ∈

∗
Ca

+ .

The number κ ∈ R is called the index of the wave factorization.

For |κ – s| < / one has the existence and uniqueness theorem []. For this purpose we
need a certain lemma.

Lemma  Let functions B =(ξ + iτ ), B=(ξ + iτ ) be analytical in T(
∗

Ca
+) and T(

∗
Ca

–) and satisfy
the estimates

∣∣B =(ξ + iτ )
∣∣ ≤ c

(
 + |ξ | + |τ |)α , τ ∈

∗
Ca

+,

∣∣B=(ξ + iτ )
∣∣ ≤ c

(
 + |ξ | + |τ |)α , τ ∈

∗
Ca

– .
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Then the multiplication operator by the function B =(ξ ) boundedly acts from space H̃s(Ca
+)

into H̃s–α(Ca
+), and the multiplication operator by the function B=(ξ ) from space H̃s(R \Ca

+)
into space H̃s–α(R \ Ca

+).

Proof The fact that multiplication operators by functions B =(ξ ), B=(ξ ) boundedly act from
spaces H̃s(Ca

+), H̃s(R \ Ca
+) into space H̃s–α(R) is well known []. For clarity we denote

u ∈ H̃s(Ca
+) by u+ and u ∈ H̃s(R \ Ca

+) by u–. Let us show that B =(ξ )ũ+(ξ ) ∈ H̃s–α(Ca
+) for

any ũ+ ∈ H̃s(Ca
+).

The space H̃s(Ca
+) has an explicit description []: ũ+ ∈ H̃s(Ca

+) if and only if ũ+(ξ + iτ ) is

analytical in T(
∗

Ca
+) and the quantity

sup
∫

R

∣∣ũ+(ξ + iτ )
∣∣( + |ξ |)s dξ , τ ∈

∗
Ca

+,

is finite and coincides with
∫

R

∣∣ũ+(ξ )
∣∣( + |ξ |)s dξ .

Then evidently, B =(ξ + iτ )ũ+(ξ + iτ ) is analytical in T(
∗

Ca
+) and

sup

τ∈
∗

Ca
+

∫
R

∣∣B =(ξ + iτ )ũ+(ξ + iτ )
∣∣( + |ξ |)(s–α) dξ

=
∫

R

∣∣B =(ξ )ũ+(ξ )
∣∣( + |ξ |)(s–α) dξ ≤ c

∫
R

∣∣ũ(ξ )
∣∣( + |ξ |)s dξ ,

i.e., B =(ξ )ũ+(ξ ) ∈ H̃s–α(Ca
+).a

Now let us consider B=(ξ )ũ–(ξ ). Let at first u– ∈ C∞
 (R \Ca

+). Of course F–B= ≡ b exists
in the distribution sense and supp b ⊂ –Ca

+, as above. Then F–(B=ũ–) = b ∗ u–. By the
definition of a convolution

(b ∗ u–)(x) =
(
b(y), u–(x – y)

)
,

where u–(x – y) is considered as a function on y (x is fixed), and notation b(y) means that
functional b acts on y, a variable. Let us show that (b ∗ u–)(x) =  under x ∈ Ca

+. Consider
two cases: y ∈ –Ca

+ and y /∈ –Ca
+. In the first case x – y ∈ Ca

+ and, thus u–(x – y) =  because
supp u–(x – y) ⊂ R \ Ca

+. In the second case (b ∗ u–) vanishes because y /∈ supp b.
Transfer to the general case u– ∈ Hs(R \ Ca

+) is realized by virtue of the density of class
C∞

 (R \ Ca
+) in space Hs(R \ Ca

+).
So, it was shown that B=(ξ )ũ–(ξ ) ∈ H̃s–α(R) and supp F–(B=ũ–) ⊂ (R \ Ca

+). Hence,
B=(ξ )ũ–(ξ ) ∈ H̃s–α(R \ Ca

+). �

As above we use the notation u+ for the function u ∈ Hs(Ca
+).

Theorem  If the elliptic symbol A(ξ ) admits wave factorization with respect to the cone
Ca

+ and |κ – s| < /, then equation () has a unique solution u+ ∈ Hs(Ca
+) for an arbitrary
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right-hand side v ∈ H
s–α(Ca

+),

ũ+(ξ ) = A–
= (ξ )(Kal̃v)(ξ ),

where lv is an arbitrary continuation of v on the whole Hs–α(R).
A priori estimate holds:

‖u+‖s ≤ c‖v‖+
s–α .

Proof We give here this proof to explain the appearance of the operator Ka because it plays
a crucial role in our studies.

Let us denote

u– = lv – Au+. ()

Taking into account wave factorization after applying to () the Fourier transform we
have

A=(ξ )ũ+(ξ ) + A–
= (ξ )ũ–(ξ ) = A–

= (ξ )l̃v(ξ ).

According to the properties of wave factorization elements A=(ξ ), A=(ξ ) we have
A=(ξ )ũ+(ξ ) ∈ H̃s–κ (Ca

+), A–
= (ξ )ũ–(ξ ) ∈ H̃s–κ (R \ Ca

+) (because ũ– ∈ H̃s–α(R \ Ca
+)),

A–
= (ξ )l̃v(ξ ) ∈ H̃s–κ (R), where κ is index of wave factorization. Since |s – κ| < /, H̃s–κ (R)

admits a unique representation as a sum of two orthogonal subspaces H̃s–κ (Ca
+) and

H̃s–κ (R \ Ca
+) [] so that

A=ũ+ = KaA–
= l̃v,

and it implies

ũ+ = A–
= KaA–

= l̃v.

A priori estimate is

‖u+‖s = ‖ũ+‖s ≤ c
∥∥KaA–

= l̃v
∥∥

s–κ

≤ c
∥∥A–

= l̃v
∥∥

s–κ
≤ c‖l̃v‖s–κ

= c‖l̃v‖s–α ≤ c‖v‖+
s–α ,

taking into account boundedness of operator Ka in H̃s(R) for |s| < / and boundedness
of continuation operator l []. �

Remark  If |κ – s| > / there are additional conditions or solvability conditions for the
right-hand side to obtain a unique solvability for equation () in appropriate Sobolev-
Slobodetskii spaces [].
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3 An initial approximation
The operator Ka can be treated as a convolution operator with the following distribution:

a
π


ξ 

 – aξ 


,

and starting from this assertion we will work with this distribution taking into account its
relationship with the operator Ka.

We will consider two spaces of basic functions for distributions. If D(R) denotes a space
of infinitely differentiable functions with a compact support then D′(R) is the correspond-
ing space of distributions over the space D(R); analogously if S(R) is the Schwartz space
of functions infinitely differentiable rapidly decreasing at infinity, then S′(R) is a corre-
sponding space of distributions over S(R).

When a → +∞ one obtains [] the following limit distribution:

lim
a→∞

a
π


ξ 

 – aξ 


=
i

π
P 

ξ
⊗ δ(ξ), ()

where the notation for distribution P is taken from Vladimirov’s work [, ], and ⊗
denotes the direct product of distributions. Here δ denotes one-dimensional Dirac mass-
function, which acts on ϕ ∈ D(R) in the following way:

(δ,ϕ) = ϕ(),

and the distribution P 
x is defined by the formula

(
P 

x
,ϕ

)
= v.p.

∫ +∞

–∞
ϕ(x) dx

x
≡ lim

ε→+

(∫ –ε

–∞
+

∫ +∞

ε

)
ϕ(x) dx

x
.

Let us note that the distribution () corresponds to the operator (see, for example [])

u(ξ ) �−→ i
π

v.p.

∫ +∞

–∞
u(η, ξ) dη

ξ – η
.

Our main goal in this paper is obtaining an asymptotical expansion for the two-
dimensional distribution

Ka(ξ, ξ) ≡ a
π


ξ 

 – aξ 


with respect to small a–. It is defined by the corresponding formula ∀ϕ ∈ D(R)

(Ka,ϕ) =
a

π

∫
R

ϕ(ξ, ξ) dξ

ξ 
 – aξ 


. ()

4 A decomposition formula for distributions
We will use the standard Maclaurin formula

ϕ(ξ, ξ) =
∞∑

k=

ϕ
(k)
ξ

(ξ, )
k!

ξ k
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and make the change of a variable aξ = t, a– = b, then formula () will become

(Ka,ϕ) =


π

∫
R

ϕ(ξ, bt) dξ dt
ξ 

 – t .

Remark  In [] the author has considered the two cases a → ∞ and a → ; the first case
corresponds to a zero angle but the second one corresponds to a half-space; the last was
done for a comparison with []. Since the half-space case is studied in [] in detail we do
not stop in this here.

Then we represent R = M ∪ (R \ M) where M is a square with a line size N , so we have

(Ka,ϕ) =


π

(∫
M

+
∫

R\M

)
ϕ(ξ, bt) dξ dt

ξ 
 – t . ()

4.1 A rough decomposition
Let us consider here ϕ ∈ D(R). Since the support of ϕ is a compact set we have one sum-
mand in formula (); therefore we might work with the formula


π

∫
R

ϕ(ξ, bt) dξ dt
ξ 

 – t

immediately.
More naturally it will be to proceed in the following way using a Maclaurin series:

(Ka,ϕ) =


π

∞∑
k=


k!

∫
R

ϕ
(k)
ξ

(ξ, )bktk dξ dt
ξ 

 – t .

If t varies in a line segment then bt ∼ b, b → , and we can use the following formal
representations []:

Ka(ξ, ξ) =
i

π

+∞∑
n=

(–)n

n!an P 
ξ

⊗ δ(n)(ξ).

4.2 A sharp decomposition
Here we consider ϕ ∈ S(R).

A formal use of the Maclaurin formula for the first integral in () will lead to the following
result:

(Ka,ϕ) =


π

∞∑
k=

bk

k!

∫ +N

–N
ϕ

(k)
ξ

(ξ, )
(∫ +N

–N

tk dt
ξ 

 – t

)
dξ, ()

and we need to give a certain meaning to the expression in brackets.
Let us denote

Tk,N (ξ) ≡
∫ +N

–N

tk dt
ξ 

 – t

and reproduce some calculations.
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First Tk,N (ξ) ≡ , ∀k = n – , n ∈ N. So the non-trivial case is k = n, n ∈ N. Let us
recall T,∞(ξ) = π i–ξ–

 [, ]. For other cases we can calculate this integral so we have
the following:

k = ,

T,N (ξ) = –N – –ξ–
 ln

N – ξ

N + ξ
+ π i–ξ–

 ;

k = ,

T,N (ξ) = –/N – ξ 
 N – –ξ 

 ln
N – ξ

N + ξ
+ π i–ξ 

 ;

k = ,

T,N (ξ) = –/N – /ξ 
 N – ξ 

 N – –ξ 
 ln

N – ξ

N + ξ
+ π i–ξ 

 ,

and so on. One can easily write all expressions for arbitrary Tn,N (ξ).
In general one can write

Tn,N (ξ) = Pn–(N , ξ) – –ξ n–
 ln

N – ξ

N + ξ
+ π i–ξ n–

 ,

where Pn–(N , ξ) is a certain polynomial of order n –  on variables N , ξ.
Therefore instead of formula () we can write

(Ka,ϕ) =
i

π

(
P 

ξ
⊗ δ(ξ),ϕ

)

+


π

∞∑
n=

bn

(n)!

∫ +N

–N
ϕ

(n)
ξ

(ξ, )

×
(

Pn–(N , ξ) – –ξ n–
 ln

N – ξ

N + ξ
+ π i–ξ n–



)
dξ. ()

Let us describe the polynomial Pn–(N , ξ) more precisely. Obviously

Pn–(N , ξ) = cn–Nn– + cn–Nn–ξ 
 + · · · + cNξ n–

 .

Further we rewrite the equality () in the following form:

(Ka,ϕ) =
i

π

(
P 

ξ
⊗ δ(ξ),ϕ

)

+


π

∞∑
n=

bn

(n)!

n∑
k=

ck–Nk–
∫ +N

–N
ϕ

(n)
ξ

(ξ, )ξ k–
 dξ

–


π

∞∑
n=

bn

(n)!

∫ +N

–N
ϕ

(n)
ξ

(ξ, )ξ n–
 ln

N – ξ

N + ξ
dξ

+
i

π

∞∑
n=

bn

(n)!

∫ +N

–N
ϕ

(n)
ξ

(ξ, )ξ n–
 dξ.
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We will start from two last summands. The second summand does not play any role
because

lim
N→+∞ ln

N – ξ

N + ξ
= .

The third summand we will represent according to Lemma  (see below) taking into
account that we can pass to the limit under N → +∞,

i
π

∞∑
n=

bn

(n)!
(
˜δ(n–)(ξ) ⊗ δ(n)(ξ),ϕ

)
.

For the first summand we consider separately the case Nb ∼  (N → ∞, b → ). In other
words we consider a special limit to justify the decomposition. Then


π

∞∑
n=

bn

(n)!

n∑
k=

ck–Nk–
∫ +N

–N
ϕ

(n)
ξ

(ξ, )ξ k–
 dξ

∼ 
π

∞∑
n=


(n)!

n∑
k=

ck–bn–k+
∫ +∞

–∞
ϕ

(n)
ξ

(ξ, )ξ k–
 dξ.

Therefore


π

∞∑
n=


(n)!

n∑
k=

ck–bn–k+
∫ +∞

–∞
ϕ

(n)
ξ

(ξ, )ξ k–
 dξ

=


π

∞∑
n=


(n)!

n∑
k=

ck–bn–k+(˜δ(k–)(ξ) ⊗ δ(n)(ξ),ϕ
)
.

One can note if desirable

ck– = –
(

 +



+ · · · +


k – 

)
.

5 A local behavior of a boundary operator
Lemma  If a distribution a acts on the function ϕ ∈ S(R) in the following way:

(a,ϕ) =
∫ +∞

–∞
ξ kϕ(ξ ) dξ ,

then this distribution a is the following:

a(ξ ) = δ̃(k)(ξ ),

where the sign ∼ means here the inverse Fourier transform F–.

Proof Indeed, we have Fδ = , where  is an identity in a distribution sense so that F– = δ.
Since

(
F
(
ϕ(k)))(ξ ) = (–)kξ kϕ̃(ξ ),
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denoting ψ = F–ϕ we write

(a,ϕ) = (a, Fψ) =
∫ +∞

–∞
ξ kψ̃(ξ ) dξ =

(
, ξ kψ̃(ξ )

)
=

(
, FF–(ξkψ̃(ξ )

))

=
(
F, F–(ξkψ̃(ξ )

))
=

(
F, (–)kψ (k)(x)

)
=

(
δ, (–)kψ (k)(x)

)

=
(
δ(k),ψ

)
=

(
δ(k), F–ϕ

)
=

(
F–δ(k),ϕ

)
,

so we have the required identity. �

Theorem  The following formula:

Ka(ξ, ξ) =
i

π
P 

ξ
⊗ δ(ξ) +

∑
m,n

cm,n(a)δ̃(m)(ξ) ⊗ δ(n)(ξ),

where cm,n(a) → , a → +∞, holds in a distribution sense.

Proof Returning to formula () and using calculations Tk,N (ξ) and Lemma  we obtain
the required assertion. �

Remark  One can easily reconstruct the coefficients cm,n(a) starting from the above cal-
culations.

6 Towards a pseudo-differential equation
Let us return to equation (). For |κ – s| < / one has the existence and uniqueness theo-
rem []

ũ(ξ ) = A–
= (ξ )(Kal̃v)(ξ ),

where lv is an arbitrary continuation of v on the whole Hs(R).
Below we denote lv ≡ V .

Theorem  If the symbol A(ξ ) admits the wave factorization with respect to the cone Ca
+

and |κ – s| < / then equation () has a unique solution in the space Hs(Ca
+), and for the

large ‘a’ it can be represented in the form

ũ(ξ ) =
i

π
A–

= (ξ ) v.p.

∫ +∞

–∞
(A–

= Ṽ )(η, ξ) dη

ξ – η

+ A–
= (ξ )

∑
m,n

cm,n(a)
∫ +∞

–∞
(ξ – η)m(

A–
= Ṽ

)(n)
ξ

(η, ξ) dη ()

assuming Ṽ ∈ S(R), A–
= Ṽ means the function A–

= (ξ )Ṽ (ξ ).

Proof We need to apply Theorem  and to recall correlations between distributions and
pseudo-differential operators. It proves the theorem. �

Remark  The reader can easily write an analog of Theorem  corresponding to a rough
decomposition.
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7 Conclusion
It was shown that the solution of equation () for a smooth enough right-hand side v can
be represented in the form (). It shows that in this series the first summand belongs to
the space Hs(Ca

+) only. Secondary summands can be useful for certain special situations
related to some additional properties of the right-hand side v.
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