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Abstract 
This study investigates the effect of micro-scale geometric and material property uncertainties on 

the elastic properties and reliability of fibre reinforced composite materials. Composite materials are 

often designed using conservative design factors to account for a limited understanding of how multi-

scale uncertainties effect reliability. Structural reliability analysis can produce more efficient designs, 

but requires an understanding of how all sources uncertainty effect probability of failure. Previous 

studies have not considered micro-scale geometrical uncertainties and their combinations in a multi-

scale probabilistic-based reliability framework. Thus, this study will investigate the effect of numerous 

combinations of micro-scale material property and geometric uncertainties on the homogenised elastic 

properties. Furthermore, to account for the effect in a reliability-based framework, a novel surrogate 

modelling technique is developed to represent the uncertainties efficiently. The study concluded that 

the geometrical fibre stacking uncertainty is as influential as the widely investigated constituent 

material stiffness uncertainties. Consequently, representing the micro-scale geometric uncertainties 

within the developed multi-scale probabilistic-based framework improves the estimated stiffness. Thus 

probability of failure is reduced, compared with considering material property uncertainties only. 

Moreover, the framework clarified and highlighted the importance of representing fibre geometrical 

stacking uncertainty for a deeper understanding of their effect on composite stiffness properties.  
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1. Introduction 

Composite materials are being used widely in many industries for the improved stiffness-weight 

ratio compared with alloys. However, the heterogeneous nature and the manufacturing process of 

composites open the door to many material and geometrical uncertainties to occur within all scales [1]. 

Thus, composites are often designed with high factors of safety to ensure reliability [2, 3]. To avoid 

imposing such high factors of safety, it is important to detect and quantify the effect of these uncertainties 

at their occurrence scale and propagate their effect into higher scales of the composite component. Thus,   

a clear understanding of the overall composite properties under all possible uncertainties can be obtained. 

Clarifying this could lead to safer designs and more efficient use of composites. 

In Fibre Reinforced Polymer composites (FRP), micro-scale is the smallest scale where the 

contribution of all constituent materials occurs. It is usually presented as a Representative Volume 

Element (RVE) as defined by Hill [4]. The micro-scale is an important building block for the composite 

as it is used to estimate the effective elastic properties used in higher scales [1]. Therefore, much research 

has been carried out to account for the effect of uncertainties at this scale. For instance, a recent study 

investigated the uncertainty of constituent materials properties and their probabilistic propagation from 

micro-scale to upper scales [5]. In addition to material uncertainty, other studies looked into the effect of 

some geometrical uncertainties in failure related behaviour using larger RVEs (containing many fibres). 

For example, a numerical study by Brockenbrough et al. [6] looked into the deformation behaviour of 

edge-stacked square fibres, square diagonal-stacking of square fibres, and triangle-stacking of hexagonal 

fibres. Based on observed effects, the study concluded that reliable methods need to be developed that 

account for the distribution of fibres to ensure reproducibility of composite properties. Another study by 

Nikopour [7] addressed 2D modelling of matrix/voids ratio uncertainty by systematic matrix absence 

between fibres and its deterministic effect on the elastic properties. A study by Huang [8] focused on the 

effect of random and systematic fibre placement within an RVE on elastic properties, again in a 

deterministic approach, where it was concluded that all arrangements have a similar effect. It is important 

to note that Huang used a large RVE that is computationally prohibitive to use in a probabilistic 

framework, compared with the small RVE (single fibre) employed by Zhou et al. [5] and Wang et al. [9]. 
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Small RVEs can be used in a probabilistic perspective that require using Monte Carlo simulation (MCS) 

with reasonable computational time. 

From the above, it can be seen that several uncertainties were investigated. However, the joint effect 

of these uncertainties together in a small RVE that can be used within a multi-scale reliability analysis 

was not fully examined. Therefore, the first phase of this study starts by covering the effect of individual 

and joint geometrical and material property uncertainties on the estimation of the composite’s effective 

elastic properties (see Fig. 1). Two categories of geometrical uncertainty are modelled within small 3D 

RVEs; fibre stacking configurations, and fibre cross-sectional shape. These uncertainties are examined 

with two material property uncertainties to indicate the significance of each type of uncertainty. The 

elastic properties are calculated with the commonly used unified periodic RVE homogenisation method 

[10]. The joint effect of several sources of uncertainty creates many combinations, each having its own 

effect on the elastic properties. To understand which uncertainty(ies) and combination(s) are influential, 

the study employs a sensitivity method that can deal with combinations and normalises their effects to 

highlight the most influential uncertainties and combinations. To achieve this, a factorial design 

sensitivity method is used [11].  

Once the most influential uncertainties are identified, the study investigates the effect of these 

uncertainties on the probability of failure for different laminate design criteria, namely buckling, 

vibration, and bending (see Fig. 1). To achieve this efficiently, surrogate models are created that link 

uncertain parameters to elastic properties. Thus, repeated use of computationally expensive 3D RVEs is 

avoided during the reliability analysis. Probabilities of failure are then computed using Monte Carlo 

Simulation (MCS). A Global Sensitivity Analysis (GSA) is also used to evaluate the influence of each 

uncertainty on the reliability of the composite. 

This study is structured to address the effect of micro-scale geometric and material uncertainties on 

the elastic properties and reliability of fibre reinforced composite materials. In sections 2 and 3 the micro-

scale uncertainties and numerical techniques used in the study are explained, respectively. Section 4 

presents and discusses results for the effect and sensitivity of uncertainties on stiffness properties, 

followed by surrogate model creation and finally results on the influence of uncertainties on structural 

reliability. Section 5 draws conclusions from the observations and results, highlighting the key findings. 

 

Fig. 1. Probabilistic framework capable of representing geometric and material property uncertainties. 
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2. Micro-scale uncertainties 

Continuous fibre-reinforced composites are generally two-phase heterogeneous materials; fibre 

phase builds the main strength, whereas matrix phase forms the essential media that holds fibres together. 

These composites are manufactured using several techniques such as pultrusion, filament winding, and 

prepreg production processes [12, 13]. All of which introduce a level of uncertainty within constituent 

phases in terms of material property and geometrical uncertainties [14, 15]. In this study, the continuous 

fibre-reinforced composites example used is a Boron-Aluminium composite with the properties shown 

in Table 1. The considered uncertainties are explained in sections 2.1-2.4. 

Table 1. Mean material properties and assumed volume ratio of Boron-Aluminium composite [14]. 

 Elastic modulus E 

(GPa) 

Poisson’s 

ratio 𝒗 

Modelled volume 

ratio 

Fibre Dia./RVE edge 

length 

Fibre (Boron) 379.3 0.1 ≅0.56 
0.3/1.0 

Matrix (Aluminium) 68.3 0.3 ≅0.44 

 

In order to highlight the most influential uncertainties and their combinations, a 2k factorial design 

approach is used (2, k are a factorial method and the number of factors respectively). This method is 

generally used with experimental data when many factors effect a response. For composites applications, 

it was used by Komeili and Milani [1] to evaluate the effect of both material and geometrical uncertainty 

in woven composite fabric at meso-scale. The 2k factorial design method requires an upper (positive) and 

lower (negative) bound to represent each input [11]. Hence, it is assumed that lower bounds (negative 

effect) of all uncertainties are represented in a deterministic RVE, whereas the positive upper bounds are 

detailed next in sections 2.1-2.4. For the present study, a total of eight uncertainties are examined, which 

make sixty possible RVE combinations (as not all uncertainties can occur in combination). All 

homogenised elastic properties from each model are estimated using RVE homogenisation method 

(section 3), normalised and presented on normal probability plots, where the most influential 

uncertainty(ies)/combination(s) are those furthest from the theoretical normal distribution line. In 

addition, the sensitivity of the selected influential uncertainties on laminate stiffness reliability is assessed 

using Sobol’s [16] global sensitivity indices within a structural reliability framework. A generic Matlab 

toolbox based on Sobol's approach is used to calculate the sensitivity indices [17]. 

 Fibre stiffness uncertainty (F uncertainty) 

Studies and tests show that fibre strength and stiffness vary around mean values set by manufactures 

[18]. However, it is difficult to quantify the distribution of such variation due to many factors, such as 

manufacturing process, type of raw material, quality control measures, testing method, etc. Therefore, 

literature generally assumes that stiffness is normally distributed around a mean value. In this study, it is 

assumed that fibre Young’s modulus uncertainty (or the positive effect F) is a 5% increase in the 

deterministic value (the negative effect). As for the effect on reliability, it is assumed that this uncertainty 

is normally distributed with stiffness mean equal to the deterministic value, and 10% coefficient of 

variation. 

 Matrix stiffness uncertainty (M uncertainty) 

More defects can occur in the matrix compared with fibre phase, such as air voids, lumps, 

insufficient curing. In the current work, matrix uncertainty upper level (positive factor) is again assumed 

5% higher than the initial value of the deterministic RVE. For the effect on reliability, it is also assumed 

that this uncertainty is normally distributed with the deterministic stiffness as the mean, and 10% 

coefficient of variation. 

 Fibres stacking (X and 45 uncertainties) 

Fibres are stacked within the matrix phase randomly, which can be seen in various micro-scale 

Scanning Electron Microscope (SEM) images, as illustrated in Fig. 2 [6, 19-21]. Some studies 

highlighted the effect of stacking configurations on elastic properties. Again, mostly limited to 2D 

models using large RVEs that are difficult to use with reliability related studies. Furthermore, many 

effects on stiffness properties were not examined using sensitivity and reliability analysis. Thus, initially 
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this study investigates fibres modelled with two stacking position uncertainties. The first stacking 

uncertainty is shifting the central fibre by 0.06 fraction of the RVE’s edge length along 3-direction (X 

uncertainty). Whereas the second is the same amount of shifting but along both 2 and 3-directions (45 

uncertainty), as this creates a +45° off-centre shift. These two uncertainties cannot occur in a single 

combination, as each represents a distinct case. The negative effect of these stacking uncertainties is the 

fibre positioned at the centre, as modelled in a deterministic RVE. These two factors represent most 

stacking possibilities, especially if the axes are rotated. The above stacking configurations (X, 45, and 

the deterministic model) can be seen in Fig. 3 with the black centre-line representing the original fibre 

centre, and the yellow representing shifted centre. Conversely, while investigating the effect on 

reliability, a third off-centre shift in the 2-direction is introduced and explained in section 4.2 and Fig. 

11. It is important to highlight that fibre shifting changes the fibre/matrix distribution within the RVE, 

yet no contact between fibre sections will occur. Additionally, this change is purely geometric with no 

variation of the overall fibre-volume ratio Vf. 

 Fibre shape (S uncertainty) 

Fibres are not perfectly circular with a constant cross-sectional area as generally assumed [21]. The 

illustration in Fig. 2 shows how fibres can change in cross-sectional shape and diameter. This effect was 

investigated by Ferreira et al. [22] in a two-scale hierarchical optimisation study, where fibre shape was 

set as a design parameter allowing it to take either circular or elliptical shape. A clear influence of the 

fibre shape and fibre-volume ratio was observed. For the present study, it is assumed that fibres can take 

an elliptical shape with the major radius increased by 5% of the standard radius while decreasing the 

minor radius to maintain a constant fibre cross-sectional area (approximately by 4.7%). Elliptical fibres 

are rotated around the centre to represent four individual possible geometrical shape uncertainties (S1, 

S2, S3 and S4) depending on the angle of their major and minor axes (see Fig. 3). Similar to stacking 

uncertainty, shape uncertainties do not meet in a single RVE as a combination because each represents a 

unique case. However, they can be combined with stacking and/or material property uncertainties. 

 

Fig. 2. Representation of fibres’ stacking and cross-sectional shape randomness, similar to observations 

seen in SEM images [6, 20, 21, 23]. 
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Fig. 3. Scheme of geometric uncertainties and combination sample. 

3. RVE homogenisation method 

RVE homogenisation method is widely used to predict the effective elastic properties of composite 

materials for its clear mechanical conception and simplicity [24]. Furthermore, Zhou et al. [25] suggested 

that this method is becoming the standard approach for composites, as it can analyse general geometries 

and nonlinear materials [26]. Using an RVE homogenisation method is necessary for this study, as other 

widely known homogenisation methods such as Chamis (1983) and Mori-Tanaka (1973) are incapable 

of capturing the effect of geometrical uncertainties/variations. 

The concept of RVE homogenisation is numerically imposing uniform strains to compute the 

effective elastic properties. Generally, these strains are applied in several independent sets of 

displacements, and each set calculates a specific elastic material property (see Fig. 4). As the RVE is 

assumed to be part of a periodic material, therefore, it is important to simulate the periodicity of the RVE 

with the surrounding material before and after being strained in FE software. Earlier homogenisation 

studies achieved periodicity by imposing boundary conditions that ensure RVE’s plane sections remain 

plane after deformation [6, 27]. However, this is only correct for a transversely isotropic RVE under 

longitudinal and transverse strains and is not correct for an orthotropic RVE and for shear moduli 

estimation; since it over-constrains the RVE, leading to overestimating composites’ properties. Thus, it 

is necessary to apply node-to-node periodic conditions at which the deformed boundary surfaces can 

distort and no longer remain planes [28, 29]. To achieve this, a plugin developed for ABAQUS CAE FE 

analysis software (ABAQUS Inc. 2013) by the authors’ is used to automate the process of computing 

effective elastic properties of a fully-customised RVE [30].The tool calculates the effective elastic 

properties by applying the necessary constraint equations and imposing appropriate boundary 

displacements to satisfy the unified periodicity conditions, based on the concept of periodic RVE 
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homogenisation [10]. The homogenised elastic properties obtained using this tool came to good 

agreement with established experimental data for a 0.47 Vf  ratio of the selected composite material [28]. 

In addition, tool outputs are verified against other available commercial FE homogenisation software, as 

detailed in Omairey et al. [30]. 

 

Fig. 4. Schematic representation of displacement boundary conditions required to estimate the effective 

elastic properties. 

The numerical error associated with RVE homogenisation caused by the finite element discretization 

is investigated so that an appropriate maximum mesh size can be chosen. Four different mesh sizes are 

used to compute the effective elastic properties of an RVE, where mesh size is stated as a fraction of the 

RVE edge length. A trend line is then used to estimate the true elastic properties by extrapolating to a 

mesh size of zero. The estimated true values are then used as a reference point to calculate an estimated 

error for each mesh size, as shown in Fig. 5 for Young’s modulus in the 2-direction (E22) using linear 

wedge elements. Based on this study, a maximum mesh size of 0.04 is used for RVE discretization, as it 

gives an acceptable balance between accuracy and computational efficiency. 

 

Fig. 5. Four-point mesh convergence line with the estimated error plotted against mesh size for E22. 

4. Results and discussions 

 Uncertainties effect and sensitivity 

Sixty RVEs with various uncertainties are used to compute elastic properties of the composite, while 

the fibre-volume ratio Vf remains constant. Elastic properties are determined using the RVE 

homogenisation method described earlier. The effect of individual uncertainties on homogenised 

properties, as a percentage of the deterministic model, are presented in Table 2. In the following 

discussions, elastic strain energy (ELSE) is used as an indicator of constituent material contribution to 

the resistance of applied strains, as it represents work stored inside the material as a result of applied 

strains and body forces [31]. 
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Table 2. Individual uncertainties effect on the effective elastic properties. 

 Stacking uncertainty Fibre shape uncertainty Material uncertainty 

Elastic property X 45 S1 S2 S3 S4 F M 

E11 0.01% 0.03% 0.00% 0.00% 0.00% 0.00% 4.37% 0.63% 

E22 2.12% 3.03% -0.10% 0.28% 0.03% 0.03% 1.28% 3.63% 

E33 0.64% 3.05% 0.27% -0.10% 0.02% 0.02% 1.28% 3.63% 

G12 2.13% 1.73% -0.64% 0.76% 0.11% 0.12% 1.58% 3.32% 

G13 -0.56% 1.71% 0.74% -0.66% 0.12% 0.10% 1.58% 3.32% 

G23 -1.04% -2.08% -0.17% -0.17% 0.23% 0.24% 1.94% 2.96% 

𝒗12 -1.38% -0.50% 0.25% -0.28% -0.06% -0.05% -0.17% 0.17% 

𝒗13 0.90% -0.53% -0.28% 0.25% -0.05% -0.05% -0.16% 0.17% 

𝒗21 0.70% 2.50% 0.15% 0.00% -0.05% -0.05% -3.12% 3.16% 

𝒗23 -1.13% -4.64% -0.31% 0.05% 0.10% 0.10% 1.25% -1.27% 

𝒗31 1.56% 2.49% -0.01% 0.16% -0.04% -0.05% -3.12% 3.16% 

𝒗32 -3.05% -4.61% 0.05% -0.33% 0.09% 0.10% 1.25% -1.27% 

 

4.1.1. Effect of geometrical uncertainty 

The largest effect on Young’s moduli E22 and E33 is an increase of 3.5% compared with deterministic 

model values. This occurs by the joint effect of S3-45 uncertainties. This combination led to an increased 

stress on the stiffer fibre rather than matrix when resisting the applied strain, making the RVE stiffer in 

the effected directions. This can be understood by comparing the fibre/matrix strain energy ratio between 

S3-45 and the deterministic model, as illustrated in Fig. 6. It is clear that the fibre has more strain energy 

in S3-45 model compared with the deterministic model, meaning that the fibre is playing a larger part in 

resisting the applied unit strains for E22 and E33. On the other hand, there is no effect on E11 because none 

of the investigated geometric uncertainties change the fibre-matrix volume ratio in the 1-direction. 

As for shear moduli, both increases and decreases are observed. The maximum increase is 3% on 

G12 caused by S2-X uncertainties. This arrangement creates a semi-continuous fibre distribution aligned 

with 2-direction (refer to Fig. 3) that raises the stress on the stiffer fibre, producing an increase in G12 

modulus. This effect can also be seen by comparing the deterministic model and S2-X model fibre/matrix 

ratio of face reaction forces generated while resisting the shear strain. The S2-X model has a higher ratio 

indicating that fibre is contributing more in resisting the shear strain, compared with the deterministic 

model. In addition to face reaction forces, the same behaviour is seen with fibre/matrix strain energy 

ratio, as the ratio for the deterministic model is 0.48, whereas it increases to 0.55 for the S2-X model. 

Additionally, G13 experienced an increase of 2.5% with S1-45 following the same reasoning as for G12. 

It is found that the effective shape factors for G12 and G13 are specifically S2 and S1, as each contributes 

in building the maximum distribution of fibre with 2 and 3-direction respectively, compared with the 

other shape uncertainties, S3 and S4 (refer to Fig. 3). 

In terms of Poisson's ratio, maximum effects are a decrease of 5% for 𝑣23 and 𝑣32 by the S3-45 

combined uncertainties. For 𝑣32, joint uncertainties increase the concentration of fibre phase in specific 

regions with respect to 2-direction (or 3- direction if considering 𝑣23 instead of 𝑣32). The fibre material 

has a smaller Poisson's ratio and it is stiffer compared with matrix, resulting in a lower magnitude of 

transverse strain in the 2-direction compared with the centred fibre of the deterministic model. 

After examining the full results (effect of individual geometrical uncertainties and all combinations), 

it is concluded that the geometric uncertainties that have the greatest effect on homogenised stiffness 

properties, compared with the deterministic model, are related to stacking uncertainty (X and 45) rather 

than shape uncertainty factors (S1, S2, S3 and S4).  

4.1.2. Effect of material property uncertainty 

The variation in fibre and matrix material stiffness has a direct effect on the overall RVE’s elastic 

properties, as expected. In general, matrix material contributes most of the stiffness of the composite in 

all directions (except the 1-direction). Thus, it is not surprising that matrix uncertainty has a greater 



 

8 

 

influence on stiffness moduli, except for E11, which is more dependent on the stiffer fibre. This can also 

be realised by examining the difference between E11 and E22 (or E33) fibre/matrix stain energy ratio for 

any RVE, where it clearly shows that fibre has the higher strain energy in E11, and the opposite in E22 (or 

E33), see Fig. 7. 

As for effects on Poisson's ratios, both material uncertainties show similar effect due to the fact that 

none purely dominate a direction as the fibre-volume ratio is approximately 50%. However, higher 

effects are seen in 𝑣21 and 𝑣31. For 𝑣31, increasing fibre stiffness reduces strains in 1-direction, resulting 

in decreased 𝑣31. On the other hand, increasing matrix stiffness will reduce strains in 3-direction, leading 

to higher 𝑣31. This same observation is also valid for 𝑣21. 

4.1.3. Sensitivity of material and geometrical uncertainties 

Based on the 2k sensitivity analysis summarised in Appendix 1(a-c), it can be seen that for E11 fibre 

uncertainty F has the most influence, as it is furthest from the theoretical normal distribution line. This 

is not surprising, as the results for individual uncertainties in Table 1 show that only fibre uncertainty F 

has a significant effect on E11. Whereas E22 and E33 are sensitive to matrix M and stacking 45 

uncertainties, since matrix phase is the main contributor to transverse Young’s moduli, and 45 stacking 

geometrical uncertainty increases the role that the fibre plays in resisting the applied strain (as discussed 

above). It is important to note that the S3-45 combination has the greatest increase on E22, but it is 

insignificant as a combination because the major effect comes from 45 uncertainty rather than S3 or both. 

This demonstrates the effectiveness of using factorial design method in analysing these factors and 

combinations. 

On the other hand, for all three shear moduli, matrix uncertainty M has the greatest influence for the 

same reasons explained earlier in material uncertainties effect. Nevertheless, G23 is also sensitive to fibre 

uncertainty F to some extent. This can be explained by observing that the fibre/matrix elastic strain 

energy ratio for G23 is 0.66 (in the deterministic model), compared with only 0.48 for G12 (and G13), 

making any change in fibre stiffness a more sensitive effect for G23, see Fig. 8. However, although 

geometrical uncertainty, especially stacking 45, has some influence on shear moduli (Table 2), this 

influence is much smaller compared with the sensitivity of the matrix stiffness. 

As for the homogenised Poisson's ratios, in general, geometrical stacking uncertainty (X and 45) 

dominated the effect on most ratios. Nevertheless, in 𝑣21 and 𝑣31  material property uncertainties are the 

most sensitive (see Appendix 1(g-l)). In both cases, an increase in fibre stiffness decreases the Poisson’s 

ratio, whereas an increase in matrix stiffness has the opposite effect. This is because an increase in fibre 

stiffness reduces the magnitude of the transverse strain in the (transverse) 1-direction, whereas an 

increase in matrix stiffness reduces strain magnitude in the (normal) 2 and 3-directions. 

 

Fig. 6. The difference in fibre/matrix elastic strain energy (ELSE) ratio between the deterministic 

model and S3-45 combined uncertainties for E22. 
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Fig. 7. The difference in fibre/matrix elastic strain energy (ELSE) ratio between E11 and E22 for the 

deterministic RVE. 

 

Fig. 8. The difference in fibre/matrix elastic strain energy (ELSE) ratio between G12 and G23 for the 

deterministic RVE. 

 Surrogate modelling 

In order to improve the efficiency of the reliability analysis, it is necessary to minimise the use of 

FE RVE homogenisation analysis through the use computationally cheaper surrogate models. The latter 

are developed using polynomial regression fits to form the relationship between uncertainties and their 

effect on all elastic properties using data points obtained by the FE RVE homogenisation. For instance, 

the percentage of the effect on the elastic property against the increase of material stiffness property from 

0% in the deterministic model to 2%, 4% and up to 5% (the upper bound) is a linear relationship, as 

shown in  Fig. 9 (fibre response is similar to the presented matrix response). On the other hand, a second-

order relationship for the effect of geometrical uncertainties X and 45 (see Fig. 10 for 45 uncertainty). 

This test reveals that the effects caused by these uncertainties are consistent and follow predictable 

patterns. 

Further investigation of F, M, and 45 uncertainties identified that they have independent effects on 

the composites homogenised stiffness properties. Therefore, the total effect is the sum of individual 

effects from all uncertainties (see Eq. 1). 

𝐸𝑖 = �̅�𝑖 + ∑ 𝑓𝑖(𝑥𝑗)

𝑁

𝑗=1

                                                                                                                                           Eq.  1  

Where Ei is one of the approximated elastic properties, �̅�𝑖is the deterministic value, N the number of 

uncertain parameters (xj ) and fi (xj) is a polynomial that links the value of uncertain parameter j with the 

change in elastic property i (relative to deterministic value). 
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Fig. 9. Effect on elastic properties caused by increasing matrix stiffness (M uncertainty). 

 

Fig. 10. Effect on elastic properties caused by shifting the fibre off-centre (45 uncertainty). 

To verify this, Table 3 shows excellent agreement between stiffness properties estimated by 

summing the effect of these three uncertainties plus the established deterministic model stiffness 

properties (see Fig. 13), against homogenised stiffness properties computed using FE analysis of an RVE 

that models the same uncertainties together. The same behaviour is observed if the effect of X and Y 

uncertainties are coupled. Aforementioned, Y uncertainty is shifting the central fibre in 2-direction 

instead of 3-direction (as in X uncertainty). For the reliability analysis, the X and Y uncertainties are 

transformed into a polar coordinate system (defined by r and θ). This enables establishing the effect 

caused by stacking uncertainty anywhere within a circular region around the centre of the RVE, instead 

of following deterministic paths of X, Y, or 45 uncertainties (see Fig. 11). 

Table 3. Verification of uncertainties independent effect on the homogenised elastic properties. 

 Accumulative homogenised property Homogenised property 

by FEA of an RVE 

modelled with: 

F, M, and 45 

Elastic 

property 
Unit 

(1) 

RVE with 

F uncertainty 

(2) 

RVE with 

M uncertainty 

(3) 

RVE with 

45 uncertainty 

(4) 

Deterministic 

RVE* 

(1) + (2) + (3) – 2  (4) 

Homogenised 

property 

E11 

GPa 

255.25 246.09 244.62 244.56 256.85 256.86 

E22 145.40 148.71 148.05 143.53 155.10 155.45 

E33 145.39 148.70 148.04 143.52 155.09 155.44 

G12 

GPa 

65.83 66.91 66.09 64.78 69.27 69.40 

G13 65.83 66.90 66.09 64.78 69.27 69.40 

G23 71.21 71.90 68.38 69.85 71.80 71.80 

𝒗12 

ratio 

0.175 0.176 0.174 0.175 0.174 0.174 

𝒗13 
0.175 0.176 0.174 0.175 0.174 0.174 

𝒗21 
0.100 0.106 0.106 0.103 0.106 0.106 

𝒗23 
0.349 0.341 0.328 0.345 0.328 0.328 

𝒗31 
0.100 0.106 0.106 0.103 0.106 0.106 

𝒗32 0.349 0.340 0.328 0.345 0.328 0.328 
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Fig. 11. Stacking uncertainty transformation from Cartesian to polar coordinate system. 

To summarise, two types of surrogate models are used: polynomial-based surrogate models to obtain 

the dependant homogenised effective elastic properties at any independent uncertainty value, and 

accumulation of independent effects to build-up the overall effective elastic properties. Exploiting these 

behaviours the homogenised elastic properties for any random combination of uncertainties are 

immediately obtained without the need to generate and run computationally expensive numerical models. 

These surrogate models enable the use of MCS reliability analysis to quickly and accurately estimate 

probabilities of failure. 

 Uncertainties effect on reliability 

Based on effects and sensitivity of the studied uncertainties and their combinations, it is concluded 

that material property uncertainties (F and M) and fibre stacking uncertainties (X and 45) are the most 

influential. Whereas, the assumed shape uncertainties are not as significant. Therefore, in the reliability 

analysis study, shape variations are omitted by assuming that all fibres have circular cross-sections. The 

effect of the most influential uncertainties on the performance of composite structures is assessed by 

three criteria: buckling, vibration, and bending; because these properties form the overall stiffness 

behaviour of a composite [13]. MCS is used to compute probabilities of failure for the three performance 

criteria by assuming failure occurs once serviceability limits are reached, the assumed limits and 

formulation of the limit state function (LSF) for each criterion is detailed in Eqs. 2-4 [13, 32, 33]. The 

example selected to identify the probabilities of failure is a set of four specially orthotropic 0.5 𝑚𝑚 thick 

laminas, symmetrically arranged about the laminate mid-surface (see Fig. 12), its serviceability limits 

are selected to reflect reasonable probabilities of failure. For this particular configuration, the required 

stiffness components are only D11, D12, D22 and D66, hence, simplifying LSF calculations. 

 

Fig. 12. Symmetrically specially orthotropic laminate subjected buckling, vibration, and bending 

loading conditions. 
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𝑔𝑏(𝑋) = 𝑁 − 𝑁𝐿𝑆 = 𝜋2 [𝐷11 [
𝑚

𝑎
]

2

+ 2(𝐷12 + 2𝐷66) [
𝑛

𝑏
]

2

+ 𝐷22 [
𝑛

𝑏
]

4

[
𝑎

𝑚
]

2

] − 𝑁𝐿𝑆              Eq.  2  

𝑔𝑓(𝑋) = 𝜔2 − 𝜔2
𝐿𝑆 =

𝜋4

𝜌
[𝐷11 [

𝑚

𝑎
]

4

+ 2(𝐷12 + 2𝐷66) [
𝑚

𝑎
]

2

[
𝑛

𝑏
]

2

+ 𝐷22 [
𝑛

𝑏
]

4

] − 𝜔2
𝐿𝑆              Eq.  3 

𝑔𝑑(𝑋) = 𝑤𝐿𝑆 − 𝑤 = 𝑤𝐿𝑆 −
16𝑝0

𝜋6 [
1

𝑚𝑛
𝑠𝑖𝑛

𝑚𝜋𝑥

𝑎
 𝑠𝑖𝑛

𝑛𝜋𝑦

𝑏

𝐷11[
𝑚

𝑎
]
4

+2(𝐷12+2𝐷66)[
𝑚

𝑎
]
2

[
𝑛

𝑏
]
2

+𝐷22[
𝑛

𝑏
]

4]                             Eq.  4 

The above applies for a simply supported symmetrical specially orthotropic laminate, where: 

N, 𝑁𝐿𝑆: Buckling load and its limit state value per laminate 

width (1450 𝑁/𝑚𝑚) respectively, at which a 

bifurcation in deformation path occurs 

m, n: Number of half wavelengths in 0° and 90°-

direction respectively. For vibration and 

bending m=n=1. Whereas, m=2 and n=1 for 

buckling 

𝜔2, 𝜔2
𝐿𝑆

: 

Laminate natural frequency squared and its limit 

state value (12.8/𝑠𝑒𝑐2) respectively 

a, b: Laminate length (100 𝑚𝑚), and width 

(50 𝑚𝑚) respectively 

𝑤, 𝑤𝐿𝑆: Deflection by the imposed uniform transverse load 

and the maximum limit state deflection value 

(0.8 𝑚𝑚) at the centre of laminate plate (x=a/2, 

y=b/2) respectively 

Dij: Laminate stiffness components, calculated 

using random variables, X  through surrogate 

models and [ABD] matrix stiffness 

calculations 

𝑝0: Imposed uniform load = 1.0 𝑀𝑃𝑎 𝜌: Laminate density = 2.508 𝑔/𝑐𝑚3 

In the above equations, X are the random variables relating to micro-scale uncertainties that affect 

the effective stiffness properties of the laminate. MCS is used to generate samples of X, which are used 

to compute effective elastic properties using surrogate models (explained in section 4.2). These are then 

used with classical lamination theory to calculate the Dij stiffness terms and evaluate the LSFs and the 

probability of failure: 𝑃𝑓 = 𝑃[𝑔(𝑋) ≤ 0]. The proposed implementation of the LSFs, surrogate models, 

and the use of MCS are illustrated by the flowchart in Fig. 13. 

 

Fig. 13. Proposed framework flowchart for evaluating laminate probabilistic stiffness performance. 



 

13 

 

In the proposed  reliability analysis (Fig. 13) two statistical distributions are assumed: a uniform 

distribution for fibre stacking is chosen based on observations from SEM images, and a normal 

distribution with 10% coefficient of variation is chosen for material property uncertainties. Results show 

that when geometric uncertainties are included, probabilities of failure are distinctively lower than when 

only material property uncertainties are considered (see Fig. 14). This is because modelling the geometric 

stacking uncertainty results in having stiffer homogenised properties (see Table 2), which increases the 

[ABD] matrix stiffness, leading to improved overall laminate stiffness response (i.e. lower deflection, 

higher critical buckling load, or higher fundamental natural frequency). On the other hand, the global 

sensitivity analysis indices show that material property uncertainties tend to be more sensitive to variation 

compared with stacking uncertainties (r and θ), (see Fig. 15). It is important to note that the sensitivity 

results obtained are mainly effected by the assumed range of statistical distribution. Altering distributions 

and coefficients of variation can effect global sensitivity analysis indices noticeably.  

 

Fig. 14. Probabilities of failure for laminate modelled with: material property uncertainty (F and M), 

material and geometrical uncertainties (F, M, r, and θ). 

 

Fig. 15. Global sensitivity indices for F, M, r, and θ uncertainties. 
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5. Conclusions 

This study examines the significance of material and geometrical uncertainties on fibre reinforced 

composite stiffness properties. The first objective is to find which uncertainties have a significant 

influence on effective elastic properties. Thus, effect magnitudes and sensitivities of identified 

uncertainties on effective elastic properties are estimated using a periodic RVE homogenisation method 

and a factorial design method; the main findings are: 

 Young’s modulus E11 is mainly affected by fibre material property uncertainty (F). Whereas, for 

transverse Young’s moduli E22 and E33, stacking uncertainties (X and 45) show considerable effect 

and sensitivity that exceed fibre material property uncertainty, and close to matrix material property 

uncertainty; 

 Shear moduli are mainly affected by matrix material stiffness uncertainty (M), followed by the fibre 

stacking uncertainty, then fibre stiffness uncertainty; 

 Most Poisson's ratios are considerably affected by geometrical uncertainty, apart from two ratios 

that were affected more by constituent material properties; 

 Shape uncertainties were significantly less influential, compared with other uncertainties. 

The above uncertainty/property effect and sensitivity rankings are summarised in the matrix below: 

 

Material uncertainty Geometrical uncertainty 

Fibre stiffness 

(F) 

Matrix stiffness 

(M) 

Fibre stacking 

(X and 45) 

Fibre shape 

(S1, S2, S3,S4) 

Young’s moduli 
E11 High Very low No effect No effect 

E22, E33 Moderate High High Very low 

Shear moduli Low High Moderate Very low 

Poisson's ratios Moderate Moderate High Very low 

 

Based on first phase findings, the reliability analysis study considered stacking uncertainty 

(combination of X and Y) along with both fibre and matrix uncertainties (F and M) to evaluate their effect 

on the reliability of a symmetric laminate for buckling, vibration and bending criteria. It was also found 

that that the above uncertainties have completely independent effects on the elastic properties of 

composites. This behaviour was employed to develop efficient polynomial-based surrogate models that 

estimate the effect of any combination of uncertain values, without the need to generate and run 

expensive numerical models. Results from the reliability analysis show that: 

 The probability of failure decreases when the laminate is analysed with stacking geometrical 

uncertainty, because of increased homogenised stiffness properties; 

 The probability of failure is less sensitive to the uniform geometrical uncertainty variation compared 

with the normally distributed constituent material property uncertainties. 

To conclude, this study confirms that not only material property uncertainties have a significant 

effect on the homogenised elastic properties of fibre reinforced composites, but fibre stacking 

geometrical uncertainty is also influential. Therefore, it is necessary to account for and propagate the 

effect of stacking geometrical uncertainty when estimating the effective elastic properties and 

generalising it to higher scales. This can be done efficiently by exploiting the independence of the effect 

of material and geometrical uncertainties to develop polynomial-based surrogate models. 
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Appendix 1: Normal probability plots of the 2k factorial design for all uncertainties and combinations. 

(a) E11 normal distribution probability- standardised effect plot. (g) 𝑣 12 normal distribution probability- standardised effect plot. 

(b) E22 normal distribution probability- standardised effect plot. (h) 𝑣 13 normal distribution probability- standardised effect plot. 

(c) E33 normal distribution probability- standardised effect plot (i) 𝒗 21 normal distribution probability- standardised effect plot. 

(d) G12 normal distribution probability- standardised effect plot. 
(j) 𝑣 23 normal distribution probability- standardised effect plot. 

(e) G13 normal distribution probability- standardised effect plot. (k) 𝑣 31 normal distribution probability- standardised effect plot. 

(f) G23 normal distribution probability- standardised effect plot. (l) 𝒗 32 normal distribution probability- standardised effect plot. 
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