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HIGHLIGHTS

GRAPHICAL ABSTRACT

Alternate wetting and drying does not
enhance carbon loss in European rice
paddies.

Aerobic conditions do not increase soil
organic matter decomposition.

Periods of drought do not affect rice
yields in four European rice cultivars.
Alternate wetting and drying reduces
rice root production.
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Water saving techniques, such as alternate wetting and drying (AWD), are becoming a necessity in modern rice
farming because of climate change mitigation and growing water use scarcity. Reducing water can vastly reduce
methane (CH4) emissions; however, this net climate benefit may be offset by enhanced carbon dioxide (CO,)
emissions from soil. The main aims of this study were: to determine the effects of AWD on yield and ecosystem
C dynamics, and to establish the underlying mechanistic basis for observed trends in net ecosystem C gain or loss
in an Italian rice paddy. We investigated the effects of conventional water management (i.e. conventionally
flooded paddy; CF) and AWD on biomass accumulation (aboveground, belowground, grain), key ecosystem C
fluxes (net ecosystem exchange (NEE), net primary productivity (NPP), gross primary productivity (GPP), eco-
system respiration (ER), autotrophic respiration (RA), heterotrophic respiration (RH)), and soil organic matter
(SOM) decay for four common commercial European rice cultivars. The most significant finding was that neither
treatment nor cultivar affected NEE, GPP, ER or SOM decomposition. RA was the dominant contributor to ER for
both CF and AWD treatments. Cultivar and treatment affected the total biomass of the rice plants; specifically,
with greater root production in CF compared to AWD. Importantly, there was no effect of treatment on the overall
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Alternate wetting and drying
European rice cultivation

yield for any cultivar. Possibly, the wetting-drying cycles may have been insufficient to allow substantial soil C
metabolism or there was a lack of labile substrate in the soil. These results imply that AWD systems may not

be at risk of enhancing soil C loss, making it a viable solution for climate change mitigation and water conserva-
tion. Although more studies are needed, the initial outlook for AWD in Europe is positive; with no net loss of soil C
from SOM decomposition, whilst also maintaining yield.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Irrigated rice (Oryza sativa L.) is the largest consumer of water in the
agricultural sector (Thakur et al., 2014) and can require up to 2500 L of
water per kg yield, depending on the rice ecosystem and local climate
(Bouman, 2009). In contrast, wheat and corn use on average
650-900 L per kg (Pimentel et al., 2004). Globally, 85-90 million ha of
irrigated rice provides 75% of the world's rice production, supplying a
major staple food for much of the world's population (IRRI, 2010; Seck
etal., 2012). However, the rise in extreme heat and drought occurrence,
combined with increasing populations, economic growth and
diminishing water quality is intensifying the competition among agri-
culture, industry and urban populations for finite water supplies
(Bates et al., 2008; Hanjra and Qureshi, 2010). For example, in Europe,
irrigation is an essential element in many types of agricultural produc-
tion, such as potatoes in northern Europe and cotton and maize in
southern Europe (Baldock et al., 2000; “European Union (EU) agri-
environmental indicator,”, 2019), and thus comprises a significant pro-
portion of the total freshwater demand, with approximately 55% of con-
sumptive water used in the agriculture sector (Bartram et al., 2002).
Although the total European rice contribution is only 0.4% of the total
global figure (FAO, 2014; USDA, 2015), it has economic, sociocultural
and ecological importance in several Mediterranean countries, includ-
ing the Ebro Delta in Spain, Rhone Delta in France and Lombardy in
Italy. In these regions, not only does rice production contribute to local
economies, but rice fields play a key role in managing local ornitholog-
ical fauna populations and macroinvertebrate communities (Faure and
Mazaud, 1995; Ibafiez and Caiola, 2018; Longoni, 2010; Lupi et al.,
2013), and the harvested area is continually expanding (Ferrero,
2007; Ferrero and Vidotto, 2010). Thus, there is an urgent need to
adopt strategies and practices that will use water efficiently for the fu-
ture of irrigated rice production in Europe.

An equally concerning consequence of conventional flooded rice is
the associated methane (CH,4) emissions, which occur as a by-product
of anaerobic decomposition of plant residues and soil organic matter
(SOM). Subsequently, rice paddies account for 11% of the total global an-
thropogenic CH4 emissions (FAO, 2011; Smith et al., 2014 ), which is four
times higher than for other major cereal crops, such as wheat or maize
(Linquist et al., 2012). With global efforts to mitigate against climate
change, reducing greenhouse gas emissions (GHG) from agricultural
practices, such as rice production, is an integral part of the strategy to
stabilize climate (IPPC, 2015). As a result, there have been considerable
efforts to determine if aerobic cultivation or intermittent flooding are vi-
able alternatives for maintaining high rice yields, yet simultaneously re-
ducing CH,4 emissions (Bouman and Tuong, 2001). One of the most
recent and successful advances is a system of water managed called Al-
ternate Wetting and Drying (AWD). This approach uses a system of pe-
riodic inundation over the rice production cycle to reduce overall water
use and CH,4 emissions, while simultaneously ensuring that the rice crop
receives sufficient water input during critical periods of the production
cycle, so as to prevent negative impacts on yield and grain quality (Price
et al., 2013). Namely, during specific parts of the vegetative growth
cycle (i.e. tillering and stem elongation), rice fields are allowed to
drain naturally and are only re-wetted when the soil water level drops
below 15 cm from the soil surface (designed to reflect a soil matric po-
tential of around —15-20 kPa at 5-10 cm depth and below critical phys-
iological thresholds. In “safe” AWD (Lampayan et al., 2015), the fields

are fully inundated once more for the reproductive phases of plant
growth (i.e. panicle initiation and flowering), in order to promote high
levels of grain production and the formation of good quality grain
(Price et al., 2013). Numerous studies conducted throughout Asia and
parts of North America have demonstrated that AWD can reduce CH,
emissions by 35-90%, and improve overall water-use efficiency by
35-63% (Chidthaisong et al., 2018; Chu et al., 2015; Linquist Bruce
et al,, 2014; Rejesus et al.,, 2011; Setyanto et al., 2018; Tran et al,,
2018; Yang et al., 2017).

In the majority of field trials, grain yields are generally maintained
(Yao et al., 2012) or even increased (Jiang et al., 2017; Norton et al.,
2017a; Norton et al., 2017b; Norton et al., 2018; Yang et al., 2017). A re-
cent meta-analysis based on 56 studies found that safe AWD generally
does not impact yield when practiced either during the vegetative
stage or the reproductive phase (Carrijo et al., 2017). Soil physical and
chemical properties were highlighted as being important in maintain-
ing crop yields under AWD practices. Specifically, yield response of
plants grown under AWD performed better in more acidic soils and
soils with a higher organic content (Carrijo et al., 2017). Accordingly,
AWD is being promoted more widely in parts of the Indian sub-
continent and Southeast Asia, particularly in regions where water re-
sources are already scarce (IRRI, 2010). This includes countries such
as: Bangladesh, Indonesia, Lao PDR, Philippines, Myanmar, Vietnam
and Japan (IRRI, 2010). Yet, despite the uncertainty posed by climate
change and the general scarcity of water resources in rice-producing re-
gions of Europe, we know little about whether AWD is a viable alterna-
tive for European rice farmers. Region-specific knowledge is crucial for
assessing the practical viability of this new management approach, be-
cause prior research suggests that the success of AWD is contingent
upon local plant cultivars thriving under AWD, with poorly-adapted
cultivars potentially showing a negative response to reduced water in-
puts (Matsunami et al., 2012; Sandhu et al,, 2017).

However, while research on the effects of water management (in-
cluding AWD) on yield, grain quality and CH, flux in rice is relatively
well-developed, much less is known about the effects of different
water management practices on ecosystem C dynamics, including pro-
cesses such as net primary production (NPP), ecosystem respiration
(ER), soil organic matter (SOM) decomposition, and biomass allocation
(Linquist et al., 2018; Sass and Fisher, 1997; Wassmann et al., 2009).
Given that AWD represents a shift to more oxidizing soil conditions,
one potential impact of AWD is it may accelerate the decay of plant res-
idues and SOM, particularly during the vegetative growth phase of rice.
This could lead to enhanced loss of SOM as CO,, particularly during
AWD cycles, which could partially offset any climate gains made by a
net reduction in CH4 emissions.

For example, the few studies which have quantified net ecosystem
exchange (NEE) of CO, from intermittently flooded paddy fields in
Japan, China and the Philippines showed significantly greater CO, emis-
sions than continuously flooded paddy soils, implying higher ER
(Alberto et al., 2014; Liu et al., 2013; Miyata et al., 2000). Yet whether
the higher ER was the result of increased autotrophic respiration (RA)
or enhanced heterotrophic respiration (i.e. accelerated SOM and plant
residue decay; abbreviated RH) is still uncertain. Published studies
have relied on micrometeorological methods (i.e. eddy covariance) to
quantify NEE from single-cultivar (rather than multiple cultivar) studies,
and were further limited by the fact that the investigators' choice of
sampling methodology did not partition ER into its component fluxes
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(i.e. RA and RH) (Baldocchi, 2003). In order to gain deeper insight into
the factors that could be regulating ecosystem C loss, it is critical to par-
tition the principal ecosystem C fluxes such as NEE and ER into their
component fluxes, such as gross primary productivity (GPP), RA and
RH (Bhattacharyya et al., 2013; Falge et al., 2002). This is because
changes to any of these component fluxes can influence the balance of
soil C storage and CO, emissions to the atmosphere. Thus, it is important
to determine how these component fluxes vary under different forms of
water management (e.g. CF - continuously flooded versus AWD - alter-
nate wetting and drying), for different cultivars, and in response to
changes in other key environmental variables (e.g. air temperature,
soil temperature, soil moisture content).

Moreover, shifts in soil moisture and other environmental condi-
tions during the vegetative growth phase could promote changes in
plant growth and allocation which could have wider consequences for
SOM formation and storage (Jobbagy and Jackson, 2000). For example,
reduction in soil moisture availability could promote increased plant al-
location to roots, deepening of the root profile, or shifts in plant root to
shoot ratios, in-line with plant allocation theory (Bloom et al., 1985;
Jobbagy and Jackson, 2000). This could have knock-on effects for how
and where plant residues are returned to the soil, with long-term effects
for incorporation of plant residues into SOM, and the overall vertical dis-
tribution of SOM stocks throughout the profile (Jobbagy and Jackson,
2000). Thus, it is critical that we develop a clearer understanding of
how water management strategies like AWD affect not only the net C
balance of rice systems but also how plant allocation and soil C shift in
response to water management.

To address these knowledge gaps, we conducted a process-based
field experiment that compared the effects of conventional paddy man-
agement (hereafter, continuously flooded rice or CF) and AWD on the C
dynamics of four commercial cultivars common throughout Southern
Europe. Specifically, we investigated the effects of water management
and rice cultivar on the principal C fluxes (i.e. NEE, ER), and their com-
ponents (i.e. GPP, RA, RH). We also explored how water management
and rice cultivar influenced plant biomass production, including alloca-
tion to belowground (root) production, leaves, shoots and grain. We
predict that poorly-adapted rice cultivars will respond negatively to
AWD, with a net reduction in total net primary productivity (NPP).
Moreover, we hypothesised that for individual cultivars:

Net ecosystem exchange (NEE) is more positive (i.e. greater net C
loss) under AWD compared to CF due to increased ER under more aer-
obic soil conditions.

Ecosystem respiration (ER) is greater under AWD compared to CF
due to enhanced heterotrophic respiration (RH) and organic matter
decay.

Total net primary productivity (NPP) and grain yield is similar in
AWD compared to CF.

Belowground NPP (BNPP) will be greater in AWD compared to CF,
while aboveground NPP (ANPP) will show the opposite trend, in-line
with plant resource allocation theory.

2. Methods and materials
2.1. Study site and sampling design

Field experiments took place at CREA-Centro di ricerca cerealicoltura
e colture industriali, Vercelli (45°19/21.96"N, 8°22'24.07"E), former
CREA-RIS, in the western area of the Po River valley, Italy. These fields
have been under rice cultivation for the last 30 years, with irrigation wa-
ters coming from a network of channels during the growing season
(May-September) and fields left fallow during the winter months.
Rice straw is not incorporated into the fields after harvest. The climate
in the Po valley is temperate and sub-continental, characterised by a
summer mean annual temperature of ~23 °Cand average annual precip-
itation of 1300 mm. The soils are old alluvial soils, and are classified as
anthraquic eutrudept, coarse-loamy, mixed, non-acid, mesic (sand =

49%; silt = 42%; clay = %), derived from Quaternary yellow sediment,
with a C:N content of 10:1, bulk density 1.2 (g cm™>) and a pH of 6.4
(Table 1).

The experimental site (20 x 105 m), established in April 2017, was
split into eight blocks, with an alternating paired design of four alternate
wetting and drying (AWD) and continuously flooded (CF) replicates ad-
jacent to each other (Fig. 1). Within each block, individual randomised
plots of 12 European rice cultivars (1.6 x 5 m) (Fig. 1a and b). The rice
cultivars included accessions from Italy (Baldo, Vialone nano, Selenio,
Centauro, Loto, and Prometeo), France (Gageron, Gines, and Arelate)
and Spain (J.Sendra, Puntal, and Gleva). In this study, the experimental
sampling was conducted on: Arelate, Prometeo, Gleva and Gageron.
Gleva and Prometeo are medium-grain rice, Arelate is long-grain rice
and Gageron is short-grain rice. Agricultural and water management
practices are summarized in Table 2. In brief, all plots were fertilised
pre-sowing on the 26th April with a commercial dry manure (rate:
260 kg ha™!, total N content: 12.5%). Top-dress fertilization was then
added on the 30th June (300 kg ha™', 20-0-30). During the vegetative
growth cycle (tillering, stem elongation), half the plots were subject to
AWD with details of this water management provided in Section 2.2.

2.2. Water management

Dry seeding took place on 10th May 2017 and both the AWD and CF
plots were flooded to 5 cm above the soil surface on the 14th June; the
AWD plots were allowed to naturally dry out while the CF plots were
kept flooded. On a regular basis, the soil volumetric water content
(VWC) at 10, 20, 30 and 40 cm (PR2 Profile Probe, Delta-T Ltd., Cam-
bridge, UK), the water table depth (piezometer) and the soil matric
water potential, at 25 cm depth, (Soilmoisture Equipment
Corp. 30 cm) were monitored in every AWD plot (3 replicates in each
AWD plot). The AWD cycles consisted of re-flooding the plots whenever
the soil matric water potential reached —25 kPa (at 25 cm depth) and
then allowed to dry out again.

2.3. Carbon dioxide measurements and environmental variables

Soil-atmosphere CO, exchange was measured with an IRGA (EGM-4,
PP-systems, Hitchin, UK) CO, probe and temperature sensor fitted in-
side a clear, gas tight PVC cylindrical chamber (16 L volume and 196 L
volume chamber used later in the season to accommodate the taller
rice plants). The rate of CO, accumulation was measured by placing
the chambers over the rice plants for 3 min (5 min when using the
larger chambers) with instantaneous CO, concentrations (ppmv) mea-
sured every 5 s. No chamber bases were used due to the standing water
in the rice paddy fields and in cases where there was no standing water
present at the soil surface (during times of AWD), chambers were
placed carefully on the soil surface and a skirt was applied to create an
airtight seal. Net ecosystem exchange (NEE) was determined by using
a clear chamber and ecosystem respiration (ER) measured by covering
the chamber to create dark conditions. Gross primary productivity
(GPP) was than calculated by subtracting NEE from ER. Measurements
were taken weekly starting from day 70-119 since sowing.

Table 1

Soil properties from the experimental plot (n = 10). including: soil C and N (%), Bulk den-
sity g cm ), Cand N stocks (Mg C ha—') and the C:N ratio. Standard errors indicate stan-
dard 1 error of the mean.

Depth C N Bulk density  C stocks Nstocks C:N

o -3
(cm) % (gem™) (Mg Cha—1)
0-10 144+01 01400 12401 82+ 14 09+01 10+1
10-20 14+00 01+£00 12+0.1 82+26 08+02 10+3
20-30 09+00 01400 12401 53+09 06+£01 1041
30-40 074+00 01+00 12+0.1 42 406 04+01 10+1
0-40 259455 26405
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ALTERNATE WETTING AND DRYING! -

(AWD) | i i }

b)
AWD block 1 CF block 1
Baldo | Gageron | Gines Arelate |J. Sendra| Gleva
Vialone | Arelate | JSendra Vialone | Puntal | Gageron
Selenio | Puntal Gleva Baldo |Centauro| Selenio
Centauro[ Loto | Prometeo Loto Gines |Prometeo
CF Block 2 AWD block 2
Puntal | Gageron | J. Sendra Gleva | Arelate | Centauro
Centauro| Gines | Vialone Selenio | Vialone | Gageron
Selenio |Prometeo| Baldo J. Sendra | Puntal Loto
Gleva | Arelate Loto Prometeo| Gines Baldo
AWD Block 3 CF block 3
Baldo |J. Sendra| Puntal Gageron | Loto | Vialone
Gageron | Gleva Gines Puntal [ Gines | Selenio
Vialone | Selenio Loto Prometeo| Gleva |J. Sendra
Prometeo| Arelate | Centauro Arelate |Centauro| Baldo
CF block 4 AWD block 4
Centauro| Baldo | J. Sendra J. Sendra| Selenio | Centauro
Loto | Vialone | Selenio Gines Puntal |Prometeo
Gageron | Arelate | Gines Gleva | Gageron | Baldo
Gleva Puntal | Prometeo Vialone | Arelate | Loto

Fig. 1. a. Top - split plot experimental design with four replicates (blocks) of continuously flooded (CF) in orange and alternate wetting and drying (AWD) plots in green. b. Bottom - each
block and treatment randomly contained the four cultivars that were focused on in this study (Gleva, Arelate, Gageron and Prometeo) in shaded green (AWD) and orange (CF). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Flux rates were determined using the HVR package (Pedersen et al.,
2010) in R3.0.2 (R Core Team, 2012) by plotting the best-fit lines to the
data for headspace concentration (ppmv) against time (minutes) for in-
dividual fluxes. The Ideal Gas Law was then used to convert gas concen-
trations (ppmv) to moles of gas using the following equation:

n = PV/RT (1)

where n is the number of moles of CO, gas (mol), P is atmospheric pres-
sure (atm), V is the volume (L), R is the ideal gas constant
(0.08205 L atm K~ ! mol™ 1), and T is temperature (K). Fluxes were
then reported in mg CO,-C m~2 h™!, and annual emissions were esti-
mated by extrapolating each measurement to a 60 day period and sum-
ming for a year.

Soil temperature (at 10 cm and 20 cm depth) and soil moisture (at
10 cm depth) were simultaneously measured adjacent to the chambers
using a ML2x ThetaProbe with 30 cm rods (Delta-T Ltd., UK) and type K
thermocouples (Hanna Instruments Ltd., UK).

2.4. Soil CO, partitioning

In order to create root free soil to determine heterotrophic respira-
tion (RH), twenty-four (three per plot) soil cores lined with micro-
pore mesh (50 x 50 um) were inserted between rows of the rice plants.
Soil cores (40 cm deep, 20 cm diameter) were removed and the mesh
used to line the hole before placing the soil back to its original position,
whilst keeping soil disturbance to a minimum. CO, measurements were
then taken on these root excluded collars at the same time as the ER CO,



V. Oliver et al. / Science of the Total Environment 685 (2019) 1139-1151 1143

Table 2

Dates of the agricultural practices and water management that took place during the growing season. Variables include: the date when each agricultural practice and water management
took place, the day since sowing, the product used and its commercial product rate, active ingredient and applied rate.

Agricultural practices and water management Date

Day since sowing Product

Commercial product rate Active ingredient: Applied rate

Pre-sowing fertilization 26 April —15 Verdazoto Dry manure: 12.5% N (11% organic N) 260 kg ha™!

Sowing 10 May 0

Weed control pre-emergence 11 May 1 Ronstar 1L/ha Oxadiazon (380 g/L) 380 g/ha

Weed control post-emergence 8 June 30 Aura 0.6 L/ha Profoxydim (200 g/L) 120 g/ha
Facet 1.5L/ha Quinclorac (250 g/L) 375 g/ha
Viper 1.5 L/ha Penoxsulam (20 g/L) 30 g/ha

AWD irrigation and CF flooded 14 June 36

AWD irrigation 20 June 42

CF drained in preparation for fertilization 27 June 49

Top-dress fertilization 30 June 52 (23—0-30) 300 kg ha™!

CF flooded and AWD irrigation 3 July 55

Fungicide treatment 25 July 77 Amistar 1L/ha Azoxystrobin (250 g/L) 250 g/ha

AWD irrigation 31 July 83

AWD flooded
AWD and CF drained
Harvest commenced

8 August 92
26 August 110
2 November 117

measurements and autotrophic respiration (RA) was calculated by
subtracting RH from ER.

2.5. Total, above and belowground biomass

Above (ANPP) and belowground biomass (BNPP) were estimated at
key stages of plant growth for the individual cultivars, this included: til-
lering, panicle initiation, flowering and maturity. The season mean in-
volved measuring each cultivar when it reached maturity.
Belowground biomass was determined by collecting soil cores (15 cm
depth by 10 cm width) using a root auger on all four of the chosen cul-
tivars for the two treatments. Once collected, the soil was homogenized
and roots were removed by hand over a 40-minute period, which was
split into 10-minute intervals. Subsequently, the roots at each interval
were cleaned of residual soil and detritus, dried at 70 °C and weighed.
Saturation curves were fitted to the cumulative sampled dry root mass
extracted against time for each core over a 12-hour period. The follow-
ing equation was used to determine the saturation curve:

Re = Re t/ (ke + 1) (2)

where R, is the root mass extracted at time t; R is total root mass in the
sample; k; is the half saturation constant (Metcalfe et al., 2007).

Aboveground biomass was quantified by collecting the rice plants
from directly where the soil corer was placed. The plants were dried
at 65-70 °C for 48 h and weighed. When the grain started to develop
at the later stages of plant growth, these were removed and weighed
separately. NPP was estimated by using the total biomass (above and
belowground) at the time of harvest.

2.6. Decomposition estimates

A decomposition experiment was set up as an additional estimate of
soil organic matter mineralization, using Arelate rice straw. On 20th
June 2017, 20 g of dry straw were, weighed and placed inside mesh
bags (50 x 50 um) and then buried at 10 cm depth in groups of 10, in
each block (total 80 bags). A bag from each block was collected every
week (8 bags), washed, dried and weighed to determine mass loss.
The rate of decomposition was then calculated from the slope of a linear
regression with time against mass loss.

2.7. Statistical analyses

Statistical analyses were performed using R version 3.0.2
(R_Core_Team, 2012). Extreme outliers (i.e. above 1000 ppm) were ob-
served by visual inspection of the boxplots where points outside of the
hinges (third quartile) were removed and the data were checked for

normal distributions. To investigate the effects of treatment and cultivar
on NEE, GPP and ER, a two-way ANOVA and Tukey's Honest Significant
Different (HSD) post hoc test (P < 0.05) were initially conducted using
water treatment and cultivar as independent variables and NEE, GPP
and ER as the response variables, to examine statistically significant dif-
ferences between means.

Further analysis using a mixed model restricted maximum likeli-
hood analysis (REML) with repeated measures, was then computed
using the Ime4 package (Bates et al., 2014), to identify any relationships
between these response variables (NEE, GPP, ER) and extra environ-
mental data measured (independent variables). The key independent
variables included in the REML model included: water treatment, culti-
var, growth stage, soil temperature (10 cm), soil volumetric water con-
tent, aboveground biomass and belowground biomass. This linear
mixed model considered the violation of independence from repeating
measurements on the same cores and also the nested design of the ex-
periment (cultivar nested within the treatment plots). A Two-way
ANOVA and Tukey's Honest Significant Difference (HSD) post hoc test
(P < 0.05) was used to determine whether there was an effect of
water treatment or stage of growth on the contribution of RA and RH
to ER.

The effects of treatment, cultivar and growth stage on above and be-
lowground biomass and yield were tested using a three-way ANOVA,
which included treatment, cultivar, growth stage and their interaction
as independent variables. Response variables included: total plant bio-
mass (roots, straw, grain), aboveground biomass (straw + grain), be-
lowground biomass (roots) and grain yield. Tukey's Honest Significant
Difference (HSD) post hoc test (P < 0.05) was then used to determine
any significant differences.

Simple linear regression analysis with time against mass loss was
used to calculate the rate of decomposition of the litter bags and a
two-way ANOVA, which included weight of leaf litter as the response
variable and treatment and time as the independent variables, was
used to determine any significant differences.

3. Results
3.1. NEE, GPP and ER

In total there were 4 AWD cycles before keeping all the plots flooded
at the commencement of flowering (8th-26th August), after which all
the plots were dried in preparation for harvesting (2nd November)
(Table 2 and Fig. 2a and b).

The results from the two-way ANOVA indicated that neither treat-
ment nor cultivar had a significant effect on NEE and there was no inter-
action between the two variables. For the pooled data, NEE under AWD
averaged —15.42 & 0.96 umol C m—2 s~ ! (range: —37.0 to —0.67
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umol Cm™—2 s~ 1), while for CF, NEE averaged —14.66 + 0.92 umol Cm ™2
s~ (range: —37.46 to —0.59) (Table 3). The results of the linear mixed
effects model still indicated that neither treatment nor cultivar had a

significant effect, but that plant growth stage and soil temperature sig-
nificantly affected NEE with higher temperatures and larger plants caus-
ing more negative NEE (growth stage: F(19,3) = 33, P-value <0.001; soil

Table 3
Mean net ecosystem exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER) carbon dioxide (CO,) fluxes for the aggregated data set of the four cultivars at key
phenological growth stages, and mean NEE for the four cultivars, individually. Different letters down the columns represent significant differences (P> 0.05) among the two treatments at

different and growth stages. Standard errors indicate standard 1 error of the mean.

Stage of plant growth Treatment (umol CO,—-Cm~2s~') NEE (umol CO,-Cm ™25 1)
NEE GPP ER Arelate Gageron Gleva Prometeo
Tillering (0-80 days) AWD —6.12 +£ 044 1191 £0.72° 579 & 047> —425 + 0.62° —6.71 £ 0.84° —7.28 £ 0617 —6.23 + 1.04°
CF —6.13+£0.67° 1514 +£097° 9.01+084" —7.98+1.38" —6.84 + 0.59° —5.73 + 0.70° —4,00 + 1.93®
Panicle initiation (81-95 days) AWD —25.67 + 1.64% 33.03 £2.31° 806+ 1.38% —2733 +£210% —2496 4+ 3369 —2843 +280¢ —21.22 & 4.99°
CF —20.88 £2.17° 2911 +£3.11° 968+ 1.75® —1923 £ 621°¢ —26.09 & 3.009 —18.56 & 4.71°¢ —19.65 & 3.22¢
Flowering (96-118 days) AWD —19.64 &+ 0.93°  29.60 &+ 1.65° 9.95+ 1.04* —18.53 + 2489 —2229 + 1.50¢ —21.42 +0.769 —16.33 + 1.58"
CF —2035 4+ 1.20°¢ 3016 + 175" 9.82 + 0.95° —2456 + 326 —18.95+ 0.89"¢ —21.92 + 141 —1595 + 222"
Ripening (119-135 days) AWD —10.68 &+ 1.25° 1554 & 1.47° 4.86 &+ 049°  —12.16 + 2.62%%° —13.54 +2.84% —933 4295  —7.67 &+ 093%
CF —12.32 4+ 1179 1915+ 1.80° 6.83 & 0.82%° —12.58 + 2.47%%° —16.00 & 2.38% —12.24 £ 2.29°°° —847 + 1.59%°
Season mean AWD —1542 +£ 096 2241 +122* 7.4+ 048 —1557+2.02° —1687+187° —16.62+2.06° —1250+ 1.71°
CF —14.66 & 0.92* 2314+ 1.17° 877 £053* —15954+212° —1657 &£ 1.69° —1444+1.77° —11.68 + 1.65°
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temperature: F(19,1) = 18.4, P-value <0.001). The general trend for
both the AWD and CF treatments was that NEE became more negative
(i.e. increasing net C uptake) up to day 98, when the plants reached re-
productive maturity and all the plots were flooded. This was followed
by a gradual shift towards less negative values (i.e. decreasing net C up-
take) up to day 119, when the plots were drained in preparation for har-
vesting (Fig. 3). NEE (C uptake) was the most negative during panicle
initiation (days 81-95; —23.28 4 1.91) and flowering (days 96-119;
—20.00 & 1.07), and the most positive during tillering (days 0-80;
—6.13 4 0.56) and ripening (119-135, —11.50 4 1.21). Soil tempera-
ture affected NEE by increasing CO, fluxes when the soils were warmer;
i.e. the overall trend was towards more negative values (i.e. greater net
C uptake) when temperatures were warmer. For instance, when tem-
peratures reached their highest during flowering in August (~30 °C),
NEE was also at its most negative. When comparing the soil tempera-
ture means between the AWD and CF treatments, no significant differ-
ence was observed (AWD = 24.9 4 2.6, CF = 25.0 + 25.1 °C).

When using a two-way ANOVA on the GPP data, the results also
showed no significant effect of treatment, cultivar or their interaction
on GPP. For the pooled data, GPP under AWD averaged 22.41 £ 1.22
pumol C m~2 s~ (range: 54.41 to 3.87 umol C m~—2 s~ '), while for CF,
GPP averaged 23.14 + 1.17 umol C m~2 s~ ! (range: 49.21 to 4.79)
(Table 3). Analysis using a linear mixed effects model (with the same in-
dependent variables as the NEE analysis above) indicated that once
again treatment and cultivar showed no significant effect but that
growth stage and soil temperature significantly affected GPP (growth
stage: F(16,1) = 6.0, P-value <0.01; soil temperature: F(16,1) = 14.0,
P-value <0.001). The general trend for GPP followed that of NEE, with
the most positive fluxes (net C uptake) during panicle initiation (days
81-95; 31.07 + 2.71) and flowering (days 96-119; 29.88 + 1.70), and
least positive during tillering (days 0-80; 13.53 + 0.85) and ripening
(119-135,17.35 + 1.64) (Fig. 3). Higher GPP fluxes were also observed
with higher soil temperatures.

Two-way ANOVA on the ER data also showed no significant effect of
treatment, cultivar or interaction on ER. For the pooled data, ER under
AWD averaged 7.14 + 0.48 umol C m~2 s~ ! (range: 0.58 to 26.99

umol C m—2 s~ 1), for CF, ER averaged 8.77 + 0.53 umol C m~2 s™!
(range: 0.54 to 30.34) (Table 3). The linear mixed effects model
(again, using the same independent variables as NEE) indicated that
only aboveground biomass (straw) significantly affected ER (F(16,4.5)
= 1, P-value <0.03), with the biggest fluxes during panicle initiation
(days 81-95; 8.87 & 1.57 umol C m™2 s~ !) and flowering (days
96-119; 9.89 + 1.00 umol C m~2 s~ 1), when the plants were at their
largest (Fig. 3).

3.2. RA, RH and decomposition rates

RA was the dominant contributor to ER for all the cultivars under
both treatments, accounting for 83 4 8% of ER (data pooled between
treatments and among cultivars; Fig. 4a). RA dominated ER throughout
the growing season and at key stages of plant growth. In contrast, mean
RH for the pooled data set was approximately 16 4+ 8% of ER. At its
highest, RH reached a maximum of only 29 + 16% of ER in the CF
plots, when the plants were tillering (i.e. day 77; Fig. 4b).

There was no significant difference in RA and RH between the CF and
AWD treatments when the data were pooled across all plant growth
stages (i.e. for RA, AWD = 82 + 9% and CF = 84 + 8%. For RH, AWD
= 18 4 9 and CF = 16 + 8; Fig. 4a). However, we observed significant
treatment effects during specific plant growth stages. For instance, dur-
ing ripening, RA accounted for a significantly smaller proportion of ER in
the AWD compared to the CF treatment (P < 0.05; AWD = 73 £ 12%
versus CF = 90 + 7%; Fig. 7b), whereas RH accounted for a significantly
greater proportion of ER in the AWD compared to the CF treatment (P <
0.05; AWD = 27 4 12% versus CF = 10 4 7%). This significant differ-
ence between treatments was caused by a significant overall reduction
in ER, and a shift in the relative proportions of RA and RH between the
two treatments. In the AWD treatments, RA declined going from
flowering to ripening, while RH showed the opposite trend (Fig. 4b).
By contrast, in the CF treatments, neither ER, RA or RH showed a signif-
icant shift going from flowering to ripening. For example, ER in the AWD
treatments declined from 9.89 + 1.00 to 5.85 + 0.66 umol C m ™2 s~!
going from flowering to ripening. Likewise, RA declined from 90 + 3%
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Fig. 3. Gross primary productivity (GPP), ecosystem respiration (RE) and net ecosystem exchange (NEE) under alternate wetting and drying (AWD) and permanent flooding (CF) for the
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during flowering to 73 + 12% during ripening. In contrast, RH rose by
16%, going from 10 4 3% during flowering to 27 + 12% during ripening.

In the decomposition experiment, we found that approximately 42%
of the buried rice straw in litter bags was lost over the 90-day incubation
period (—0.03% decomposition rate day™'). There was no significant
difference between the CF and AWD plots (AWD: y = 95.01-3.18x,
CF: y = 94.86-3.32x) (Fig. 5), and decomposition was not a strong pre-
dictor of soil CO, fluxes (RH) for the pooled dataset (¥ = 0.0732).

Drainage did not appear to influence the decomposition rate-soil CO,
flux relationship.

3.3. Plant biomass, allocation and net primary productivity
NPP was significantly affected by cultivar (F(3,105) = 7.9, p-value

<0.001), treatment (F(1,105) = 28.4, p-value <0.001) and stage of
growth (F(3,105) = 128.7, p-value <0.001). For the effect of cultivar,
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we found that some plants showed significantly less total plant biomass
than others (Fig. 6). For example, total plant biomass for Gleva (1957 +
142 ¢ m~2) was significantly lower than cultivars such as Gageron and
Prometeo (2313 + 167 and 2473 + 173 g m 2, respectively). This dif-
ference was particularly observed during panicle initiation (Gleva:
1869 + 200; Arelate: 2186 + 201; Prometeo 2833 + 323 g m™?)
(Fig. 7). For the effect of treatment, we generally found that the CF treat-
ment has slightly greater total biomass than AWD (CF = 2447 +
113 gm ™2 versus AWD = 2038 + 112) (Fig. 6). This was specifically ev-
ident at the flowering growth stage where the total biomass was greater
under the CF treatments (3009 + 110) compared to the AWD treat-
ments (2429 + 57 ¢ m~2) (Fig. 8). For the effect of growth stage, the
overall trend was towards increasing total plant biomass gradually as
the season progressed. Pair-wise comparisons (Tukey-Kramer HSD, P
< 0.05) indicated significant differences among the growth stages, ex-
cept during flowering and ripening, where differences were not statisti-
cally significant. Total plant biomass was lowest during tillering (991 +
66 g m—2) and rose rapidly during panicle initiation (2325 +
121 g m—2), reaching its largest during flowering (2719 4 103 g m2)
and ripening (2934 + 73 g m—2).

ANPP was significantly affected by cultivar and growth stage (culti-
var: F(3,105) = 11.8, p-value <0.001; growth stage: F(3,105) = 181.7,
p-value <0.001). For the effect of cultivar, we found that Gleva produced
less aboveground biomass (AWD = 1247 + 191; CF = 1253 +
178 g m—2) compared to Gageron (AWD = 1545 + 235; CF = 1692
+ 212 g m~2) and Prometeo (AWD = 1587 + 213; CF = 1944 +
236 g m~2). This was specifically observed during the panicle initiation
growth stage (Prometeo: 1884 + 240; Arelate: 1221 £ 126; Gleva:
1085 + 199 g m—2) (Figs. 6 and 7). For the effect of growth stage, the
overall trend was an increase in aboveground biomass at every key
growth stage; tillering had the smallest aboveground biomass (e.g.
376 + 30 g m~2) and ripening the largest (2398 + 52 ¢ m~2). When
analysing the grain separately to the straw, there were no statistically
significant differences between cultivars or treatment.

BNPP was significantly affected by treatment, growth stage, and a
treatment by growth stage interaction. For the effect of treatment (F
(1,105) = 19.3, p-value <0.001), we found that belowground biomass
was significantly lower in AWD (613 + 31 g m~2) compared to CF
(819 & 43 g m~?) (Fig. 6). For the effect of growth stage ((F(3, 105)
= 12.6, p-value <0.001), we found that root biomass tended to vary at
different stages of plant growth. Belowground biomass was lowest

during tillering (616 + 76 g m~2), and highest during panicle initiation
(883 + 62 g m—2) and flowering (828 + 66 g m™2). Belowground bio-
mass was at intermediate levels during ripening (537 + 28 g m~2). The
three-way ANOVA indicated that root biomass was significantly differ-
ent among all the different growth stages, except for panicle initiation
and flowering which did not differ significantly from each other
(Tukey-Kramer HSD, P < 0.05) (Fig. 7). We also found a weak but signif-
icant growth stage by treatment interaction ((F(3,105) = 3.3, p-value
<0.02)); during tillering, AWD and CF treatments showed significant
difference in belowground biomass (AWD = 443 + 52 compared to
CF = 788 + 60 g m—2) (Fig. 8).

4. Discussion

4.1. No change in net ecosystem exchange and carbon storage with reduced
water inputs

The rice paddies under both water management systems were net
sinks of atmospheric C and did not differ significantly from each other
in terms of NEE, GPP, RE or decomposition rates for the seasonal mean
or during any of the key stages of plant growth measurement. Mean
daily NEE in the CF rice paddy was —15.21 + 0.95 g C m 2 d™!
(range:-38.87 to —0.61), and GPP 24.01 + 1.20g Cm~2d~! (range:
51.07 to 4.97), affirming prior results of rice paddy studies using eddy
covariance techniques in East Asia, India and the USA, where NEE esti-
mates are between 5 and —39 and GPP between 5 and 50 g C
m~2 day~! (Alberto et al., 2009; Bhattacharyya et al., 2013; Miyata
et al., 2005; Nay-Htoon et al., 2018; Saito et al., 2005; Swain et al.,
2016). However, unlike in other studies where they reported a more
positive NEE in intermittently flooded systems (Alberto et al., 2014;
Liu et al,, 2013; Miyata et al., 2000), mean daily NEE fluxes under
AWD in this study were very similar to CF (—16.00 & 1.00 g C m 2
d™! (range: —38.39 to —0.70), and GPP 23.26 + 1.27 gCm 2d ™!
(range: 56.46 to 4.02)), challenging our first hypothesis (H1). This is be-
cause ER was unchanged under more aerobic soil conditions, which also
runs counter to what was expected in our second hypothesis (H2), but
is supported by the results from decomposition experiment where no
change was observed in decomposition rate##.

Rates of NEE and GPP were more affected by the specific stage of
plant development and soil temperature, rather than with water man-
agement. There was a clear seasonal trend in CO, fluxes, with more
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negative NEE values (i.e. increasing net C uptake) observed as the rice
plants reached heading to flowering growth stage, followed by a steep
decline in net C uptake (i.e. less negative NEE values) as the plants
reached maturity. These results are consistent with other rice studies,
and are explained by an increase in GPP as aboveground plant biomass
and leaf area index (LAI) increases as plants reach heading and
flowering growth stages (Alberto et al., 2009; Campbell et al., 2001;
Miyata et al., 2005; Saito et al., 2005). This is subsequently followed by
a decline in GPP towards the ripening growth stage due to leaf senes-
cence or reduction in leaf greenness (Pakoktom et al., 2009; Swain
et al., 2016). Factors such as temperature and light play an important
role in regulating rates of ER, NEE and GPP, with peaks in temperature
and light availability during July and August facilitating high rates of C
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uptake during heading and flowering. (Krishnan et al., 2011;
Wohlfahrt and Gu, 2015; Xin et al.,, 2017). One potential issue is that
the relationships between growth stage or temperature and C fluxes
could be confounded, because mean air temperatures are generally
warmer during later phases of plant growth.

Unlike NEE and GPP, ER was more affected to changes in above-
ground biomass, but not to plant growth stage or temperature. Autotro-
phic respiration dominated ER in this study site (AWD = 82% and CF =
84% of ER), with RH accounting for a much smaller proportion (AWD =
18% and CF = 16% of ER) of ER. The proportion of RH from our CO,
partitioning experiment was within the range (16 + 8% of ER) of
other cropland systems (5-40%), so these data are not unusual in and
of themselves (Hanson et al., 2000; Suleau et al., 2011; Swinnen,

Maturity

Flowering

B Total biomass

Fig. 8. Mean aboveground (straw + grain) and belowground biomass (roots) for the two treatments using aggregated cultivar data at the four key growth stages. Different lower case
letters represent significant differences (P > 0.05) among the different stages of growth and treatments for belowground, aboveground and total biomass, separately. Errors bars

indicate standard 1 error of the mean.
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1994). Our findings are also broadly in agreement with other paddy
studies that have sought to partition RA and RH by measuring soil CO,
flux between unvegetated plant rows (i.e. RH ranging from 0.02 to
391 g Cm 2d ") (Igbal et al, 2009; Liu et al., 2013; Nishimura
Seiichi et al., 2014), emphasizing the important role of plant metabolism
in modulating ER and NEE in rice systems. While it is somewhat surpris-
ing that temperature did not play a more important role in regulating
ER, the relative importance of aboveground biomass and RA in deter-
mining rates of ER suggests that ER during the growing season may be
more strongly determined by the growth and activity of the plant com-
munity, rather than by abiotic variables such as temperature.

Results for our AWD treatment are novel and important from a cli-
mate change mitigation perspective, because these data imply that
soil and ecosystem C stocks in European rice soils are less likely to be
destabilised by a shift towards less water-intensive production systems,
such as AWD or other forms of intermittent drainage. Thus, in addition
to the benefits of reduced emissions of CH, under AWD, there is no ad-
ditional risk of enhanced soil C loss, which could offset the potential cli-
mate benefits of AWD in a European context. However, our results are
also surprising because other intermittent drainage studies suggest
that aerobic soil conditions can enhance ER (Liu et al.,, 2013; Nishimura
Seiichi et al., 2014), with some paddy systems changing from a net sink
to a source of CO, with increased soil drainage (Miyata et al., 2000), Our
findings also run counter to expectations from other human-affected
temperate wetlands (e.g. managed peatlands), where investigators
have observed enhanced SOM mineralization and ecosystem C loss fol-
lowing drainage (Boyd, 1995; Hooijer et al., 2010; Jungkunst Hermann
and Sabine, 2007; Moore and Dalva, 1993). One possible explanation
is that the 1-2 week wetting-drying cycle for our AWD system was
not sufficient to cause an observable shift in the carbon metabolism of
the soil; this interpretation is supported by findings from our leaf litter
decomposition experiment, which showed no significant difference in
decay rates between AWD or CF treatments, implying that the underly-
ing carbon metabolism of the soil was not altered by AWD. Alterna-
tively, it is possible that the low C stock of these soils (1.3%, 13.66 +
3.32 g Kg~') meant that there was relatively little labile OM to oxidise
or that the quality (i.e. relative lability of the SOM) was too poor to sup-
port high rates of RH, even under more aerobic conditions (Muhr et al.,
2011; Swails et al., 2019). However, this interpretation of the data is not
fully supported by the results of the decomposition experiment; under a
situation where soil RH is constrained by a combination of both low
redox potential and labile C availability, then one would predict that al-
leviation of both these conditions would lead to a significant increase in
rates of organic matter utilization. Yet in the decomposition experiment,
we did not see a significant increase in decay rates of rice straw under
AWD.

4.2. Effects of water management and cultivar on plant productivity, alloca-
tion and yield

Even though NEE, GPP, ER and decomposition rates did not differ sig-
nificantly among treatments or cultivars, we did observe differences in
plant productivity and allocation. Crucially, however, yield was not sig-
nificantly impacted by water management, partially supporting H3. The
overall trend was towards slightly greater total plant biomass in the CF
compared to AWD treatments, partially falsifying H3. No significant ef-
fect of AWD on yield has also been observed in an experiment in
Bangladesh. However, they also recorded consistently higher harvest
index values on plants grown under AWD, which was attributed to a
change in the allocation of resources, with either the number of tillers
or productive tillers increasing with drier conditions (Norton et al.,
2017a,2017b). Differences between water treatments were particularly
evident during the flowering stage of growth, when differences in total
plant biomass were most pronounced between water treatments.

Interestingly, the differences in total plant biomass and productivity
were attributable to differences in belowground biomass and

productivity (BNPP) between water treatments, rather than due to dif-
ferences in aboveground biomass and productivity (ANPP), challenging
H4. Contrary to expectation, ANPP did not differ significantly among
water treatments, whereas BNPP was significantly lower in AWD com-
pared to CF treatments. We predicted that water stress might inhibit
leaf production and cause a decline in leaf area, leading to retarded
leaf growth and light interception, and hence reduce ANPP (Lilley and
Fukai, 1994). Likewise, in-line with plant allocation theory, we pre-
dicted that the plants would allocate more energy and resources to
roots over shoots, in response to reduced water supply (Sandhu et al.,
2017; Zhang et al., 2009). Contrary to expectation, we observed the op-
posite of these trends. We suspect that root growth may have been re-
stricted because AWD facilitated particle cementation and soil
compaction in the silty clay loam soils found at this study site, inhibiting
root growth (Rao and Revanasiddappa, 2006). In 2015, a penetrometer
survey was carried out on the same site as this study to determine
whether the load-bearing capacity of the soil was affected by periods
of draught. The results showed that the top 15-30 cm were harder
under AWD (1254 4 167 KPa) compared to CF (807 &+ 111 kPa) and
that once the plots were reflooded, the soils did not recover back to
their original softness. However, the soils were not hard enough to be
considered impactful on root growth. Alternatively, it is possible that
roots in the AWD treatment may have been growing more laterally or
vertically (i.e. >15 cm; below the sampling depth utilised in this
study) (Gu et al., 2017), and were not representatively sampled by our
sampling methodology.

In terms of the effect of cultivar, all of the cultivars showed similar
trends in productivity, allocation and yield, except the Gleva cultivar.
Gleva consistently showed lower aboveground biomass and ANPP at
all growth stages compared to the other cultivars. For all four cultivars
on both treatments, there was a rapid increase in ANPP as the rice
reached flowering stage, correlating with GPP. The only significant dif-
ference observed was a lower ANPP in Gleva at all growth stages, com-
pared to the other cultivars. However, even though GPP is primarily
controlled by LAI, the significantly lower aboveground biomass in
Gleva was not enough to significantly reduce GPP. On average among
the four cultivars, AWD delayed maturity by only two days; previous
fields trials have shown delays up 17 days, but similar to this study, no
significant loss in yields were reported (Howell et al., 2015; Sudhir-
Yadav Gill et al., 2011). The BNPP followed a different trend to ANPP,
where BNPP on all the cultivars increased up to panicle initiation and
then declined during flowering and even further at ripening. In other
rice studies, the proportion of photosynthetic C allocated underground
has also been documented to significantly decrease after tillering to ma-
turity (Watanabe et al., 2004).

5. Conclusions

This study demonstrates that using water saving techniques such as
AWD could be a workable solution for sustainable and environmentally
friendly rice cultivation in Northern Italy and potentially in the rest of
southern Europe, without the associated risks of enhancing C losses
from aerobic SOM decomposition or compromising crop yield. By deter-
mining the effects of AWD on ecosystem C dynamics, we were able to
establish the underlying mechanistic basis as to why no C losses were
observed. We hypothesised that NEE would be more positive under
AWD compared to CF due to increased ER (in particular RH) under aer-
obic soil conditions (H1 and H2). However, these hypotheses were
rejected because NEE, ER and RH were significantly unaffected by
AWD conditions. We also hypothesised that NPP and grain yield
would be similar in AWD compared CF (H3). This was confirmed with
yield showing no effect but greater plant biomass (NPP) was observed
under AWD. Interestingly BNPP was reduced while ANPP increased in
AWD compared to CF, challenging plant resource allocation theory
(H4). In our system, the main driving factors for C dynamics were
ANPP and soil temperature and not RH as previously thought. Whilst
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the overall investment of C to the root system was reduced under AWD
for the four rice cultivars, there was no effect of treatment on the above-
ground biomass or yield, suggesting only partial stress on the rice plants
under these controlled levels of water reduction. Our study therefore
highlights the importance of using ‘safe’ AWD and calls for further re-
search to push these boundaries and assess the impact of longer cycles
of AWD on C dynamics and over multiple years, considering our grow-
ing global need to conserve water. Additional studies are also needed to
incorporate a range of organic rich paddy soils to determine whether
soil C metabolism will increase when more labile organic carbon is
available.
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