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Abstract

Background

A reliable inference of networks from data is of key interest in the Neu-
rosciences. Several methods have been suggested in the literature to reliably
determine links in a network. To decide about the presence of links, these
techniques rely on statistical inference, typically controlling the number of false
positives, paying little attention to false negatives.

New Method

In this paper, by means of a comprehensive simulation study, we analyse the
influence of false positive and false negative conclusions about the presence or
absence of links in a network on the network topology. We show that different
values to balance false positive and false negative conclusions about links should
be used in order to reliably estimate network characteristics. We propose to
run careful simulation studies prior to making potentially erroneous conclusion
about the network topology.

Results

Our analysis shows that optimal values to balance false positive and false
negative conclusions about links depend on the network topology and charac-
teristic of interest.
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Comparison with Existing Methods

Existing methods rely on a choice of the rate for false positive conclusions.
They aim to be sure about individual links rather than the entire network. The
rate of false negative conclusions is typically not investigated.

Conclusions

Our investigation shows that the balance of false positive and false negative
conclusions about links in a network has to be tuned for any network topology
that is to be estimated. Moreover, within the same network topology, the results
are qualitatively the same for each network characteristic, but the actual values
leading to reliable estimates of the characteristics are different.
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1. Introduction

Recently, many research groups have focused on the inference of networks
from data such as brain networks from observed electroencephalography or func-
tional magnetic resonance imaging data (Bullmore and Sporns, 2009; Pessoa,
2014; Petersen and Sporns, 2015; Sporns et al., 2004). Particular emphasis is
paid to the understanding of the normal functioning, e.g. healthy brain, as well
as malfunctioning, e.g. diseased brain, of these networks. In the example of the
brain, this promises to disclose information about how the brain processes sig-
nals and how alterations thereof cause specific diseases. A key hypothesis is that
important characteristics are not specific to individual subjects but rather com-
mon in a given population. This is reflected by the fact that brain networks, but
also other networks, are typically classified into few main prototypic networks
(Newman, 2010, 2002), e.g., Erdés-Rényi (Erdés and Rényi, 1959, 1960), Watts-
Strogatz (Watts, 1999; Watts and Strogatz, 1998), Barabdsi-Albert (Barabdsi
and Albert, 1999; Barabdsi and Pésfai, 2016) networks. In our work we consider
binary undirected networks of these three topologies.

These prototypical models for networks are in turn characterised by few
parameters; procedures have been described to generate these networks with
their well-established characteristics (Newman, 2010, 2002). Some of the key
characteristics are the node degree distribution, the number of links, the global
clustering coefficient, and the efficiency. We considered these characteristics
in our study since they are meaningful in random networks and give a global
description in large networks (Newman, 2010).

In the Inverse Problem, the challenge is to infer the network topology from
data. Two challenges are particularly relevant: (i) the reliable inference of links
in the network once the nodes have been fixed (Mader et al., 2015; Zerenner
et al., 2014) and (ii) the successful usage of the characteristics above to uniquely
determine the topology of network (Bialonski et al., 2010, 2011).



The correct reconstruction of networks is hampered not only by false con-
clusions about links due to statistical uncertainties, but also by unobserved
processes (Elsegai et al., 2015; Guo et al., 2008; Ramb et al., 2013) and noise
contamination (Nalatore et al., 2007; Newbold, 1978; Sommerlade et al., 2015)
to name just a few challenges of network reconstruction. Classical statistical
methods to estimate links in a network aim to identify present links with high
certainty, e.g. (Jalili and Knyazeva, 2011; Quinn and Keough, 2002; Devore,
2011; Schinkel et al., 2011; De Vico Fallani et al., 2014; Chavez et al., 2010;
Honey et al., 2007). Therefore, typically the rate of false positive conclusions
about links is chosen and consequences for the rate of false negative conclusions
about links are accepted. We investigate if these common rules of false positive
conclusions and false negative conclusions should be modified to achieve a more
reliable inference of the correct topology of network. To this aim, we analyse
their influence on the network topology and characteristic.

The manuscript is structured as follows. An introduction to network topolo-
gies and their characteristics is given in Section 2.1. Section 2.2 explains sta-
tistical errors and their influence on the network topology. A simulation study
in the case of Erdos-Rényi, Watts-Strogatz and Barabasi-Albert networks is
presented in Section 3.

2. Materials and Methods

In this section, network topologies and their characteristics are described
(Section 2.1). We summarise statistical errors and suggest a distance measure
to quantify their influence on the estimation of network characteristics (Section
2.2).

2.1. Network Characteristics

A network G is defined as a set of nodes with links between them. To
quantify the topology of networks, different network characteristics have been
described (Olbrich et al., 2010). Here, we consider four network characteristics:
node degree, number of links, global clustering coefficient and efficiency. The
node degree describes the number of links of a node. For example, if the node
v has k links attached, its node degree is d, = k. Typically the node degree
distribution is used to characterise the entire network. The number of links
refers to half of the sum over the node degrees.

The global clustering coefficient describes how well the neighbours of a node
are connected. More precisely it measures the conditional probability that given
one node connected to other two nodes, these are also connected to each other
(Olbrich et al., 2010).

For two randomly selected nodes 7,5 in a network of n nodes, the shortest
path length ¢;; measures the number of steps separating them if the shortest
path is taken. The average path length v = ﬁ ) oy ¢;; gives a measure
of the sparsity of the network. The efficiency ¢ = ﬁ > £ ﬁ is defined
as the sum of the inverse of the shortest paths lengths. Since the shortest



path is infinitely long for unconnected nodes, taking the average of the shortest
path length in a network with unconnected nodes is not meaningful. Efficiency
for unconnected nodes will be zero, therefore a meaningful network average of
efficiency can be obtained.

Different network topologies have been described (Newman, 2003). Here, we
investigate Erdés-Rényi (Erdés and Rényi, 1959, 1960), Watts-Strogatz (Watts,
1999; Watts and Strogatz, 1998) and Barabési-Albert (Barabdsi and Albert,
1999) networks, as key examples of networks.

Erdos-Rényi networks are random networks in which each pair of nodes is
connected with independent probability p.. The probability mass function of
the node degree distribution of a Erdds-Rényi network

n—1
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is a binomial distribution (Newman, 2010).

Watts-Strogatz networks are also referred to as small-world networks. They
are characterised by a high local connectivity with some long-range “short-cuts”.
Watts-Strogatz networks are built from a regular network with node degree 2c.
Nodes are arranged on a circle; therefore, each node has ¢ nearest clockwise
as well as ¢ nearest counterclockwise neighbours. With probability p, each link
connecting a node to one of its nearest neighbours is reconnected to another node
randomly chosen. The node degree distribution has probability mass function
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in the assumption that n > ¢, (Menezes et al., 2017). Here, we study Watts-
Strogatz networks with ¢ = 2.

Barabési-Albert networks are so-called scale free networks. They are con-
structed by adding nodes to an existing network. The degree of the existing
nodes influences the probability for a new link. Each new node is connected to
the network with a certain number b of links. The probability for one of these
b links to be formed with any existing node is proportional the degree of that
node. The node degree distribution has probability mass function (Barabdsi
and Poésfai, 2016)

2b(b+1) 3)
k(k+1)(k+2)

Note that Eq. (3) is of type P(d, = k) = c1k~°2, where ¢; and ¢y are constants,
i.e., it follows a power law.

P(d, = k) =

2.2. Inference Reliability

In the Neurosciences different methods to identify nodes of a brain net-
work exist. For our purposes the method of identifying nodes is not relevant.
Therefore, we assume a fixed set of nodes. Once nodes have been fixed, sev-
eral methods have been suggested in the literature to address the challenge of



reliable inference of links in the network. To determine the presence of links,
these techniques usually rely on statistical inference, (Jalili and Knyazeva, 2011;
Quinn and Keough, 2002; Devore, 2011; Schinkel et al., 2011; De Vico Fallani
et al., 2014; Chavez et al., 2010; Honey et al., 2007).

Two types of errors exist when making these statistical inferences: (i) an ab-
sent link (C') may be erroneously assumed to be present by the method (CP),
this is a false positive conclusion and referred to as a type I error; (ii) a present
link (C') may remain undetected (CP) by the method, this is a false negative
conclusion and referred to as a type II error. We call a = P(CP|C) the proba-
bility of a false positive conclusion and 3 = P(CP|C) the probability of a false
negative conclusion. These two probabilities (a and ) are related and cannot
be fixed independently. A standard choice is to set a = 0.05 and neglect inves-
tigation of 3, focussing on reliably detecting individual links of the network.

Let G denote the true network. As a consequence of the choice of a and
thereby (3, leading to a non-zero probability of detecting false positive and false
negative links, the network we detect GP will be a “mixture” of true links,
false positive links, absent links and false negative links. Therefore, the number
of detected links is generally different to the number of links of G. Also the
node degree distribution, the global clustering coefficient and the efficiency are
in general biased. We quantify the bias for each characteristic using a distance
between distributions. Several distance measures are conceivable and have been
investigated; for sake of simplicity and to make the arguments clearer, we only
consider the distance

= |p1 — pol (4)

between two distributions, as the modulus of the difference of the distribution’s
mean values. For example, the distance between the node degree distribution
of G, which has mean s, and the node degree distribution of G, which has
mean pgo, is § = |,U'G - ‘LLGD|.

To investigate the relation between e and f numerically we simulate N = 100
data points taken from a bivariate normal distribution. To inspect in particular
links with medium strength, we vary the simulated correlation between 0.36 and
0.46 in steps of 0.02. For each value, we repeated the simulation 10,000 times
and tested for correlation using Pearson’s correlation test. From this test we
inferred the probability that the 100 simulated data points are not correlated,
the so-called p—value of the test. Based on the 10,000 p—values of the correlation
tests we inferred the relation between 1/ and « (see Fig. 1). Visual inspection
of Fig. 1 shows that a linear relationship is a good approximation. Fitting linear
functions to the curves shows that their respective slopes vary between 0.1-1073
and 1.1-1073. These slopes will differ if different simulation parameters, such as
the number of data points N, are chosen. The more data points are considered
the more accurate the analysis. Note that the inverse proportionality of o and
B implies that an infinite number of data points IV is needed to have both «
and S equal to zero.

As an example of how the choice of o and consequently [ affects the es-
timated network characteristics, we consider Erdds-Renyi networks G, . The
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Figure 1: Relation between 1/8 and « for correlation of 100 simulated data points. Colours
refer to different correlation coefficients used for the simulation, as indicated in the legend.
The slopes of linear functions fitted to these curves vary between 0.1-1073 and 1.1-1073.

parameter p. was varied between 0.01 and 0.99 in steps of 0.01. The detected
networks Gzl?c were generated by artificially introducing false positive links with
probability « and false negative links with probability 5. We varied o between
0.005 and 0.1 in steps of 0.001, the relation between a and § was fixed by

-3
g0 (5)

«

which represents a choice motivated by our simulations (Fig. 1). Moreover, this
choice corresponds to a method, which has high sensitivity and specificity, i.e.,
0.005 < a, 8 < 0.2. For each value of p. and «, 200 networks with n = 100 nodes
were generated. Figure 2 shows the true densities of the node degree derived
from G, (dashed lines) together with the average densities derived from the
detected networks G7 (solid lines). Results for two different values of a are
shown. Different colours represent different Erdos-Renyi networks defined by
the parameter p,, for clarity, densities are plotted for p. in steps of 0.1 only.

The distances (Eq. 4) between the true density and the detected density for
each pair of p. and « are shown in Fig. 3. For some values of p. the distance is
negligible, which means the detected node degree is almost identical to the true
node degree. The optimal «, i.e. the one with the smallest distance between
true density and detected density, depends on p..

To have a general result for the optimal choice of o when estimating a
network characteristic of a given network topology, we sum over p. to marginalise
out the influence of p. for each a. We call this integrated quantity the total
distance &, i.€.

Otot = Z 5(pc)~ (6)

To identify the optimal choice of «, we are interested in finding where the
minimum of the total distance ;. is located. Figure 4 shows §;,; for the example
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(a) Solid lines: G with a = 0.05,8 = 0.02. Dotted lines: Gp,
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(b) Solid lines: G2 with o = 0.02, 8 = 0.05. Dotted lines: Gp,

Figure 2: Densities of the node degree distributions for Erdés-Rényi networks of n = 100
nodes and different parameters p. = 0.01,...,0.91 in steps of 0.1 represented by colour. The
densities of the node degree distributions for the respective original networks Gp,. (dotted
lines) and detected networks G (solid lines) are shown.

of the node degree of Erdos-Rényi networks. In this example, the minimum of
d¢0t 1s located at o« = 0.030. This suggests that in order to optimally reconstruct
the node degree of an Erdds-Rényi network a = 0.03 should be chosen, which
is close to the standard choice of a = 0.05 but distinctively smaller.

3. Results

We applied our analysis to Erdés-Rényi, Watts-Strogatz and Barabési-Albert
networks. For each network topology, we investigated four different network
characteristics: node degree, number of links, global clustering coefficient and
efficiency. The distance ¢, which depends on both « and the parameter of the
network topology (pe, b or p,.) is presented as density plot for all the investigated
characteristics and network topologies in Fig. 5. All 12 investigated scenarios



Figure 3: Distance  between node degree distributions of Erdés-Rényi networks with 100

nodes depending on « and p.. Distance § is measured

by calculating the difference between

the mean of two corresponding distributions, Eq. (4). Colour code expresses distance values.
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Figure 4: Total distances dtot between node degree d
depending on a. The minimum is located at a = 0.030.
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istributions of Erdés-Rényi networks

show a dependence of the distance on the choice of «, suggesting that an opti-
mum exists. For some scenarios, in particular node degree and number of links
for Watts-Strogatz and Barabési-Albert networks, dependence of the distance

on the parameter (p, or b) is negligible. For ot

her scenarios such as the global

clustering coefficient in Watts-Strogatz networks the question arises if marginal-
ising out the influence of p, is distorting the results. Detailed results for each
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Figure 5: Distance § for Erdés-Rényi, Barabdsi-Albert, and Watts-Strogatz networks with
100 nodes. Distance ¢ is measured by calculating the difference between the mean of two
corresponding distributions, Eq. (4), and it is expressed by colour code, from blue to yellow.
For each network topology we vary the control parameter p. from 0.01 to 0.99 in steps of 0.01,
b from 1 to 10 in steps of 1, or p, from 0.01 to 0.99 in steps of 0.01 on the x—axis, and the
probability of false positive a from 0.005 to 0.1 in steps of 0.001 on the y—axis.

network topology are presented below.

For Erdos-Rényi networks of n = 50, n = 100, and n = 250 nodes we varied
pe from 0.01 to 0.99 in steps of 0.01. Figure 2 shows an example of some of these
values in steps of 0.1. The results of the total distance d;.¢ for the node degree
of Erdés-Rényi networks are shown in Fig. 4. The minimum of d;; is located at



a = 0.030 (8 = 0.033). For the remaining network characteristics, the Erdds-
Rényi networks also show a clear minimum of the total distance in dependence
on «. The specific values of « for the respective minimal total distances however
vary; they are summarised in Table 1. The optimal « for efficiency is noticeably
smaller than for the other network characteristics. Moreover, we chose a broad
range for p. to cover the broad spectrum of Erdés-Rényi networks. Marginalising
out the dependence of the distance d on p. may therefore be distorting our
results (see also dependence on p. in Fig. 5). For a specific application we thus
recommend narrowing the range of p. to values relevant for the application.

Network Topology n =50 n =100 n = 250
and Characteristic « I5] « I5] « 15}
Erdos-Rényi:
node degree 0.031 | 0.032 | 0.030 | 0.033 | 0.031 | 0.032
number of links 0.031 | 0.032 | 0.030 | 0.033 | 0.031 | 0.032
global clustering coeff | 0.035 | 0.029 | 0.031 | 0.032 | 0.031 | 0.032
efficiency 0.016 | 0.063 | 0.012 | 0.083 | 0.020 | 0.050
Barabési-Albert:
node degree 0.018 | 0.056 | 0.012 | 0.083 | 0.007 | 0.143
number of links 0.018 | 0.056 | 0.012 | 0.083 | 0.007 | 0.143
global clustering coeff | 0.024 | 0.042 | 0.021 | 0.048 | 0.019 | 0.053
efficiency 0.015 | 0.067 | 0.010 | 0.100 | 0.007 | 0.143
Watts-Strogatz:
node degree 0.009 | 0.111 | 0.007 | 0.143 | 0.004 | 0.250
number of links 0.009 | 0.111 | 0.007 | 0.143 | 0.004 | 0.250
global clustering coeff | 0.008 | 0.125 | 0.006 | 0.167 | 0.004 | 0.250
efficiency 0.009 | 0.111 | 0.006 | 0.167 | 0.004 | 0.250

Table 1: Table of a and 8 values for minimal total distances dtot of each network topology
and characteristic.

The set of Barabasi-Albert networks of n = 50, n = 100, and n = 250 nodes
was chosen with average degree typical for networks in neuroscience (Papo et al.,
2014; Stanley et al., 2013) by using parameters b = 1 to b = 10 varying in steps
of 1. The total distances d;,; for the node degree of networks with n = 100 nodes
are shown in Fig. 6. The minimum is found for a = 0.012 (8 = 0.083), it is more
pronounced than that for the Erdés-Rényi networks. Again, the other network
characteristics and number of nodes all show a single minimum. The values
for optimal a and (8 are summarised in Table 1. For this network topology a
noticeably different optimal value for a was found for the clustering coefficient.

Finally, we considered a set of Watts-Strogatz networks of n = 50, n =
100, and n = 250 nodes with parameter p, varied between 0.01 and 0.99 in
steps of 0.01. We analysed distances between the distributions of the node
degree, the number of links, the global clustering coefficient and the efficiency.
The minimum of the total distance for the node degree of networks with n =
100 nodes is found for @ = 0.007 (8 = 0.143). The total distances between
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Figure 6: Total distance dtot between node degree distributions of Barabasi-Albert networks
of n =100 nodes depending on o. The minimum is located at a = 0.012 (8 = 0.083).
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Figure 7: Total distance d:ot between node degree distributions for Watts-Strogatz networks
of n = 100 nodes depending on o. The minimum is located at a = 0.007 (8 = 0.143).

node degree distributions for these networks are shown in Fig. 7. For all four
characteristics and different values of n clear minima can be identified and the
values for optimal « are similar (Table 1). The results for the efficiency however
have to be interpreted with case as the distance showed a clear dependence on

the parameter p, (see Fig. 5).

4. Discussion

We consider three topologies of networks Erdés-Rényi, Watts-Strogatz, and
Barabdsi-Albert. For each topology, and for a specific characteristic, e.g. the
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node degree distribution, the number of links, the efficiency or global clustering
coefficient, the rate of false positive and false negative conclusions about links
can be optimally chosen in order to have less biased reconstruction.

For Erdds-Rényi networks, the values for « identified with our method are
close to standard choice of « of 0.05. Standard alpha values are suboptimal when
the topology of network is different. For the set of Barabési-Albert networks we
found that the value for a = 0.012 and consequently 5 = 0.083 yields the most
reliable results of the node degree. In this case, standard alpha values lead to a
bigger distance between distributions of the node degree. The Watts-Strogatz
networks yield the most reliable results for an even smaller value for @ = 0.007
and consequently 5 = 0.154. Moreover, for the optimal choice of « the corre-
sponding [ is rather high. This shows that the reliability of detecting individual
false negative links in a network is less important than failing to recognise false
positive links when network characteristics are estimated. Accepting a high rate
of false negative links may thus be required when the aim is to infer a specific
network characteristic.

This work shows that the standard choice of « of 0.05 is not optimal when
the aim is to reconstruct the entire network topology. Moreover, o needs to
be adjusted depending on specific network topologies and characteristics. For
example, consider Erdos-Rényi networks with p, = 0.11 and assume the rela-
tionship between o and § is Eq. 5. As result of 200 simulations, the mean of
the node degree distribution of the original network G, is 11 and the mean
for estimation using a = 0.05 is 15. Choosing o = 0.03 results in a mean of
the node degree distribution of 13. The choice of a = 0.03 is motivated by the
assumption that the original network is known to be an Erdés-Rényi network
with unknown parameter p., see Table 1. For the same study, when the aim is
to infer the efficiency €, we calculate € = 0.51 for the true network, ¢ = 0.56 for
the one with @ = 0.05, and € = 0.51 when o = 0.012. The more we know about
the network we want to infer the more accurate the reconstruction is since the
simulation study can be tuned accordingly.

As mentioned in Section 2.2, the relationship between o and § depends on
the number of data points IV, therefore the values of a and 8 leading to the
minimal distance will change for different values of N. Nevertheless, the results
will remain qualitatively the same.

The size of the network, i.e. the number of nodes, also influences the result.
The number of false positive and false negative conclusions about the presence
of links depends on the number of total links in the network. Keeping the same
rate of  and (8 and increasing, for example, the size of the network, leads to
larger number of false positive and false negative detections of links. As shown in
Table 1, for Erdés-Rényi networks the values of o and 3 leading to the minimal
distance almost do not change. The reason is that the number of links increases
proportionally with the number of nodes for each p.. This does not happen for
Barabdsi-Albert and Watts-Strogatz networks; the values of « leading to the
minimal distance present a decreasing trend because of their constructions.

We considered the node degree distribution, the number of links, the effi-
ciency, and the global clustering coeflicient as example characteristics to show
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that the results depend on the characteristic under investigation. Nevertheless,
our approach can be readily applied to other characteristics, as well as other
network topologies.

5. Conclusion

False conclusions about the presence of links in a network typically alter
network characteristics, such as the node degree distribution, the number of
links, the global clustering coefficient and the efficiency. Identification of the
underlying network topology relies on these characteristics and is thus hindered
by false conclusions about links as well. For these reasons, the analysis of false
positive and false negative conclusions about links is of key importance.

In this manuscript, assuming to know the underlying network topology, we
investigate the influence of false positive and false negative conclusions about
links in a network. We show that the values of o and [ leading to minimal
distance (difference in mean values) between the true network and the biased
one change depending not only on the network topology, but also on the net-
work characteristic of interest. Therefore, in the Inverse Problem, when the
challenge is to infer the network topology from data, different values for av and
B might be favourable when estimating different characteristics. We speculate
that our simulation study can be used as an iterative procedure to achieve a bet-
ter network reconstruction. Namely, when the network topology is not known
a priori, various values for « can be chosen to perform the first iteration step
of the network reconstruction. The result of this first step gives an idea of the
network topology we want to infer. For the second iteration step the value for
«a can be adjusted according to the findings of the first step. This procedure
can be iterated using the simulation study that we suggest in this paper in each
iteration step, ultimately leading to a reconstruction of the network tailored to
its previously unknown network topology.

This result suggests that in the Neurosciences, as well as in other scien-
tific fields, various values for statistical inference could be considered within a
simulation study to determine the optimal « for the network characteristic of
interest. If several network characteristics are of interest, it may be useful to
adjust the value of « for each characteristic.
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