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Abstract 8 

The correct identification of ‘sedimentary’ folds and fabrics created during gravity-driven 9 

deformation of unlithified successions from those ‘tectonic’ structures formed during regional 10 

deformation is essential when interpreting geological histories preserved within the rock record. 11 

This topic has become increasingly relevant over the past 40 years as improved seismic 12 

resolution and coverage have led to the realisation that significant portions of unlithified 13 

sediments along the continental margins undergo gravity-driven deformation to create mass 14 

transport deposits (MTD’s). The late-Pleistocene Lisan Formation, exposed in the Dead Sea 15 

Basin, was chosen as a case study because it remains poorly lithified, and structures developed 16 

within it are unequivocally related to ‘soft-sediment’ deformation (SSD) created when the 17 

succession underwent downslope-directed movement. This work tests various assertions 18 

previously used to deduce if structures were formed in unlithified sediments or during ‘hard-19 

rock’ deformation (HRD) associated with subsequent tectonism. Within the Lisan Formation, we 20 

describe veins developed along fractures, and cleavage forming axial-planar to folds, that are 21 

structures previously assumed to be restricted to HRD. In addition, truncated folds, incorporation 22 

of deformed fragile fragments into overlying sediment, and cross-cutting clastic dykes are all 23 

indicative of SSD. The key diagnostic feature in establishing SSD is the sedimentary infill of 24 

irregular erosive surfaces that truncate underlying structures. Although compaction and 25 

diagenesis have not played a significant role in the case study, caution should be exercised when 26 

examining structures preserved in the rock record as folds and fabrics originally created by SSD 27 

may be considerably enhanced and altered where significant overburden exists. 28 

 29 

Keywords: soft-sediment deformation, mass transport deposit, Dead Sea 30 

1. Introduction 31 

Improved mapping of the ocean floor, combined with better seismic imaging of the subsurface, 32 

has led to the realisation that significant portions of the continental margins are associated with 33 

gravity-driven slumping of unlithified sediments, resulting in mass transport deposits (MTDs) 34 

(e.g Scarselli et al., 2016 and references therein). Similar, but as yet largely unrecognised, 35 

MTD’s may be preserved within the geological record, but their recognition may be hindered by 36 

subsequent geological processes and tectonism (see Waldron and Gagnon, 2011). Identification 37 

of structures attributable to ‘soft-sediment’ deformation (SSD) (see Maltman, 1984), rather than 38 

‘hard-rock’ deformation (HRD) marking subsequent tectonism of lithified successions, can 39 

therefore be problematic. It has intrigued geologists for more than a century (e.g. Grabau, 1913, 40 

p.660; see Maltman 1994a), and is encapsulated by McCallien (1935, p.426) who notes “the 41 

question arises of whether the inversion (of strata) occurred upon the sea bottom or posteriorly 42 

during the (regional) folding” (see also Jones, 1939; Woodcock, 1976, 1979; Elliot and 43 

Williams, 1988). While the identification of syn-sedimentary extensional ‘growth’ faults is 44 

relatively straightforward, the interpretation of contractional folds and fabrics created while 45 
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sediments were unlithified remains more challenging. Indeed, folds created during SSD and 46 

HRD may be geometrically indistinguishable from one another. The misidentification of 47 

contractional structures formed during SSD may have profound consequences in the 48 

interpretation of regional geological histories and is perhaps the most critical relationship to 49 

determine with confidence.  50 

Criteria for the recognition of SSD in subsequently lithified rocks have been the focus of a 51 

number of publications (e.g. Woodcock, 1976; Elliot and Williams, 1988; McClay, 1991, p.13; 52 

Maltman, 1994a, b; Waldron and Gagnon, 2011). However, such criteria have been established 53 

either within ancient lithified sequences, with inherent uncertainties as to the true nature of 54 

structures, or from drill cores through unlithified successions that offer only a restricted and narrow 55 

view of such structures. The late-Pleistocene Lisan Formation was chosen as a case study because it 56 

remains poorly lithified, and folds and thrusts developed within it are unequivocally related to SSD 57 

associated with downslope movement of MTDs towards the Dead Sea Basin (Alsop and Marco, 58 

2012a) (Fig. 1a,b). We are therefore able to confidently discuss structures associated with 59 

contractional SSD that in other areas may have been described in the context of HRD.  60 

While recognising that complications may arise if regional tectonism (rather than gravity-61 

driven deformation) affects unlithified successions (Waldron and Gagnon, 2011; Korneva et al., 62 

2016), this study concentrates on SSD structures that formed during gravity-driven slumping 63 

(e.g. Alsop et al., 2017a and references therein). We raise two important research questions that 64 

may aid in the interpretation and diagnosis of SSD and HRD in ancient lithified sequences: 65 

i) How do we distinguish folds and fabrics developed during SSD and HRD? 66 

ii) Could SSD fabrics be enhanced during subsequent compaction and diagenesis? 67 

 68 

2. Geological Setting 69 

The Dead Sea Basin is a pull-apart basin developed between two left-stepping, parallel fault 70 

strands that define the sinistral Dead Sea Fault (Garfunkel, 1981) (Fig. 1a). This fault has been 71 

active since the early Miocene (Nuriel et al., 2017) including during deposition of the Lisan 72 

Formation in the late Pleistocene (70-15 ka) (Haase-Schramm et al., 2004). The Lisan Formation 73 

comprises a succession of alternating aragonite-rich and detrital-rich laminae on a sub-millimetre 74 

scale that are interpreted as annual varve-like cycles (Begin et al., 1974). Activity along the Dead 75 

Sea Fault has resulted in numerous earthquakes which triggered SSD and slumping of MTDs 76 

(e.g. El-Isa and Mustafa, 1986; Marco et al., 1996). The upper part of the Lisan Formation that 77 

we examine is less than 40 ka (Haase-Schramm et al., 2004), has never developed a thick (< 10 78 

m) overburden, and remains unlithified to the present day. In fact, the Lisan Formation currently 79 

still contains 25% fluid (Arkin and Michaeli, 1986, see also Frydman et al., 2008), and is 80 

generally considered to have been fluid-saturated at the time of deformation (e.g. Alsop et al., 81 

2016), meaning that it was susceptible to loss of shear strength and SSD during seismicity (e.g. 82 

Maltman, 1994a; Weinberger et al., 2016). Further evidence that the Lisan Formation remained 83 

poorly cemented at the time of deformation is provided by analysis of thin sections that reveal a 84 

lack of brecciation (Alsop and Marco, 2011). Re-mobilisation of sediments following thrusting 85 

(Alsop and Marco, 2011), and injection of numerous clastic dykes that cut the MTD horizons, 86 

and are sourced from within the lower portions of Lisan Formation (Levi et al., 2008), also 87 

demonstrate that structures within the Lisan Formation were unequivocally created during SSD. 88 
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The case study area (N 31º0449.6 E 35º2104.2) is located at Wadi Peratzim on the Am’iaz Plain, 89 

which is a down-faulted block directly east of the Dead Sea western border fault zone (Fig. 1b).  90 

 91 

3. Observations of structures created during soft-sediment deformation 92 

3.1. Truncation of folds 93 

Individual MTDs within the Lisan Formation are typically <1.5 m thick and are capped by 94 

undeformed horizontal beds (Fig. 2a). Upright and recumbent slump folds within the MTDs 95 

display truncation of their hinges and limbs (Fig. 2b-e). In some cases, tens of centimetres of 96 

stratigraphy have been removed from the upper fold limbs via erosive down-cutting along 97 

relatively planar (Fig. 2b,c) or irregular surfaces (Fig. 2d,e) (Alsop and Marco, 2012b). The 98 

truncation of folds indicates that they formed prior to erosive down-cutting. 99 

 100 

3.2. Sedimentary infilling of erosive surfaces 101 

Erosive surfaces are overlain by sedimentary ‘caps’ that comprise mud, silt, sand and millimetre-102 

scale aragonite fragments, which infill irregularities and topography along the surface (Fig. 2e-i). 103 

Such sedimentary caps, which may be graded, are 2-10 cm thick (and exceptionally up to 30 104 

cm), with sharp irregular bases and planar, horizontal upper surfaces (Fig. 2e-g). Occasionally, 105 

topographic highs, created by underlying folds, are overlain by caps and sediments that display 106 

drape folding, characterised by thinning over ‘highs’ and thickening towards underlying ‘lows’ 107 

(Fig. 2e-i). These relationships demonstrate that deformation occurred prior to deposition of the 108 

overlying sedimentary caps that are interpreted to be deposited out of suspension following slope 109 

failure (Alsop et al., 2016). 110 

 111 

3.3. Incorporation of folded sedimentary clasts  112 

Sedimentary caps within the Lisan Formation may incorporate centimetre-scale angular 113 

fragments of aragonite laminae that, in some instances, contain pre-existing folds (Fig. 3a). 114 

Fragments of folded aragonite were locally formed, reworked and incorporated into sedimentary 115 

caps during SSD associated with individual MTD events (Alsop and Marco, 2012b). Fragments 116 

containing folds unequivocally demonstrate that deformation occurred prior to incorporation of 117 

clasts into the sedimentary cap. 118 

 119 

3.4. Cross-cutting clastic dykes 120 

Clastic dykes are created by fluidization and injection of over-pressured sediment along 121 

hydraulic fractures during seismic events (Levi et al., 2006; 2008). Within the Lisan Formation, 122 

individual clastic dykes are typically <30 cm in width, and may branch and intrude across 123 

several different MTDs and undeformed horizons (Fig. 3b,c). Clastic dykes display internal 124 

banding that is parallel to the margins of the intrusion and may reflect multiple ‘pulses’ of flow 125 

during injection (Fig. 3c). The sharply cross-cutting nature of clastic dykes provides clear 126 

evidence that they were intruded after slumping of MTDs. 127 

 128 

3.5. Folding and axial-planar cleavage 129 

Slump folds within the Lisan Formation are defined by thin detrital beds that display a parallel 130 

style of folding, together with extreme thickening of weak aragonite-rich beds into fold cores 131 

(see Alsop et al. 2017a for details) (Figs. 2b, 3d,e). Competent, thin, detrital beds may also 132 
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define classical ‘S’- and ‘Z’-verging parasitic fold geometries around larger scale folds (Fig. 3d). 133 

Axial-planar cleavages and associated intersection lineations have also been described from 134 

slump folds of the Lisan Formation (Alsop and Marco, 2014). These include grain-shape fabrics 135 

defined by aragonite fragments, together with spaced fracture cleavage (Fig. 3e) and crenulation 136 

cleavage (Fig. 3f,g). The cleavage is axial-planar to both recumbent and upright folds which are 137 

restricted to MTD horizons. These observations of folds and fabrics demonstrate that, at the time 138 

of folding, mud-rich units were locally more competent than the aragonite beds. 139 

 140 

3.6. Mineralised cleavage and thrust planes 141 

Within some mud-rich units of the Lisan Formation, the spaced fractures and cleavage associated 142 

with slumping is marked by gypsum that has precipitated as ~1 mm thick veins along the 143 

cleavage plane (Fig. 3h,i). Gypsum is formed along extensional fractures displaying syn-144 

sedimentary thickening and ‘growth’ of hangingwall strata (Fig. 3h,i), and also along some of the 145 

larger thrust planes defining imbricate systems within the MTDs (Alsop et al., 2017a). The 146 

presence of gypsum along cleavages and faults within deformed horizons indicates that it 147 

precipitates in unlithified sediments during or very shortly after MTD emplacement. 148 

 149 

4. How do we distinguish folds and fabrics developed during SSD and HRD? 150 

4.1. Regional patterns of folds and fabrics 151 

Folds and fabrics generated by SSD within MTDs may define coherent patterns of fold vergence 152 

consistent with downslope movement towards the basin depocentre (Fig. 4a.1). Within the Dead 153 

Sea Basin, the slump folds of the Lisan Formation define a simple radial pattern of slumping 154 

extending for more than 100 km along strike and directed towards the depocentre of the basin 155 

(Alsop and Marco, 2012a; Weinberger et al., 2017) (Fig. 1b). If the pattern of fold and fabric 156 

vergence can be linked directly to gross basin geometry, then this supports a sedimentary origin. 157 

Ideally, a viable mechanism to trigger SSD, such as sediment overloading and/or seismicity, 158 

should also be apparent. Both the gross basin geometry and triggering mechanisms may become 159 

more difficult to interpret in the ancient rock record where the palaeogeography and tectonic 160 

setting are less well-constrained. 161 

  Alternatively, if regional contraction is the cause of folds and fabrics during HRD, then 162 

there should ideally be abundant evidence of folding and thrusting (that may also involve 163 

underlying basement), together with consistent directions of vergence reflecting large-scale 164 

tectonic controls (Fig. 4b.1). 165 

 166 

4.2. Folds and fabrics are truncated by overlying sequences 167 

Folds and fabrics created during SSD are abruptly truncated by overlying erosive surfaces within 168 

the Lisan Formation, (Figs. 2b-f, 4a.2). Erosive truncation of underlying structures demonstrates 169 

that they were created at or close to the sediment surface, and were then exposed to surficial 170 

processes. In the rock record, a careful distinction needs to be drawn between truncating surfaces 171 

that are tectonic detachments, and are typically planar and bedding-parallel (or actually cut up-172 

section) (Fig. 4b.2), versus those of sedimentary origin that are erosive and may be highly 173 

irregular and infilled by overlying sediments (Fig. 4b.2). A further caveat in determining SSD is 174 

that erosion was ‘syn-depositional’ with respect to the underlying succession, rather than a 175 

potentially much later angular unconformity. Such regional unconformities may be readily 176 
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distinguished where they display significant relief and cross-cut several underlying stratigraphic 177 

units. In addition, regional unconformities are frequently marked by contrasting sedimentary 178 

facies (if not metamorphic grades) in the overlying and underlying sequences. Conversely, 179 

truncations associated with SSD are more typically restricted to particular MTD horizons, with 180 

sedimentation of similar facies to that incorporated in the MTD simply resuming after the failure 181 

event. While MTDs and their associated unconformities are repeatedly developed after each 182 

successive failure event, regional unconformities cutting HRD will typically be less frequent and 183 

more widely spaced in vertical sections. 184 

 185 

4.3. Folds and fabrics are restricted to particular horizons. 186 

SSD is only developed within particular horizons, while intervening beds between these MTDs 187 

remain undeformed within the Lisan Formation (Figs. 2a, 4a.3). However, these intervening beds 188 

locally thicken to infill deformation-related topography in underlying MTDs (Alsop and Marco, 189 

2013). Although deformation being restricted to a particular horizon has been quoted as a 190 

reliable means to separate SSD from tectonic structures, Elliot and Williams (1988) have pointed 191 

out that tectonic deformation may itself become restricted along bedding-parallel detachments 192 

(Fig. 4b.3). While HRD is perhaps less likely to be restricted to particular stratigraphic horizons, 193 

and will be prone to migrate up or down section when traced laterally, the key criterion in 194 

distinguishing SSD and HRD is that sediment infills topography along the irregular top surface 195 

of MTDs.  196 

 197 

4.4. Folds and fabrics are incorporated into overlying horizons. 198 

Folded aragonite layers may become detached and incorporated into the detrital capping layer 199 

that is deposited above erosive unconformities (Figs. 3a, 4a.4). The relatively large size (up to 10 200 

cm long) of some folded clasts, coupled with their broken and disaggregated appearance, 201 

suggests that they were fragile and could not have survived transportation over long distances. 202 

The implication is that the folded fragments were derived from the immediately underlying 203 

MTD. Such relationships could not be created during HRD unless a significant unconformity 204 

existed along the top of a deformed succession, and this should be distinguishable by its greater 205 

extent and potential to cut more deeply across underlying sequences. While basal conglomerates 206 

overlying regional unconformities may contain fragments of underlying folded lithologies 207 

created during HRD (Fig. 4b.4), the incorporation of folded clasts that can be shown to have 208 

been fragile and disaggregating at the time of deposition is distinctive of MTDs. In addition, 209 

regional unconformities transecting underlying HRD structures may contain rounded clasts of 210 

‘exotic’ lithologies that are less likely within sedimentary caps marking SSD (Fig. 4b.4). 211 

 212 

4.5. Folds and fabrics are cut by clastic dykes. 213 

If folds and fabrics are cut by injected clastic dykes (e.g. Figs. 3b, 4a.5), then this provides clear 214 

evidence that these structures were formed by SSD during deposition of the succession rather 215 

than by a later HRD event. However, care must be taken when interpreting clastic dykes to 216 

ensure that sediment is injected, rather than ‘neptunian’ where sediment may simply fall in and 217 

fill an existing open fissure within lithified rocks (Fig. 4b.5). Such neptunian infills may be 218 

marked by horizontal stratification, reflecting successive infill events, whereas injected clastic 219 

dykes may display internal flow banding parallel to the dyke margins (Figs. 3c, 4a.5). In 220 
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addition, linking of clastic dykes directly into underlying source layers also provides evidence 221 

for the injection of sediment. Finally, caution should be exercised as clastic dykes can inject 222 

during regional contraction, and thereby potentially cut folds related to HRD (e.g. Palladino et 223 

al., 2016).  224 

 225 

4.6. Fold style and axial-planar fabrics.  226 

During SSD, unlithified muds may undergo buckle folding and appear more competent than 227 

adjacent sands, principally due to the greater porosity of sand allowing more water to be retained 228 

thereby reducing shear strength (Fig. 4a.6) (see Waldron and Gagnon, 2011). Conversely, 229 

lithified sandstones are generally more competent than adjacent mudstones during HRD (Fig. 230 

4b.6). Within the case study, some thin mud layers display buckle fold geometries suggesting 231 

they are more competent than the surrounding aragonite-rich horizons (Figs. 2b, 3d, 4a.6). 232 

Although it has previously been suggested by Alsop and Marco (2013, p.66) that folds formed 233 

during SSD do not develop parasitic fold hinges, we now recognise thin detrital-rich horizons 234 

defining trains of buckle folds that switch vergence as the layer is traced around higher-order 235 

fold hinges (Figs. 3d, 4a.6). The presence or absence of parasitic ‘S’ and ‘Z’ folds should not 236 

therefore be used as a discriminator of the SSD or HRD origin of folds.  237 

  While the potential relationship of sedimentary fabrics to the axial planes of slump folds 238 

has been previously debated (e.g. Elliot and Williams, 1988; McClay, 1991; Maltman, 1994b), it 239 

has now been shown that folds created by SSD within the Lisan Formation display a range of 240 

axial-planar grain-shape, crenulation and fracture cleavages (Figs. 3d-f, 4a.6) (Alsop and Marco, 241 

2014; Weinberger et al., 2017). Crenulation cleavage is created by microfolding of the 242 

millimetre-scale aragonite- and detrital- rich laminae, while fracture cleavage is associated with 243 

shear and displacement of laminae (see Alsop and Marco, 2014 for further details) (Fig. 3e-g). 244 

Thin section analysis of crenulation hinges and axial planar fractures from the Lisan Formation 245 

was presented by Alsop and Marco (2014, their fig. 3) and reveals no evidence of pressure 246 

solution or solution mass transfer, with fractures being perfectly sharp and lacking any trace of 247 

insoluble residue along them. The cleavages observed from the Lisan Formation were therefore 248 

created during SSD, and similar fabrics have also been recorded from deeper-water siliclastic 249 

sediments in older (Carboniferous) sequences (e.g. Strachan and Alsop 2006, p.460; Sobiesiak et 250 

al. 2017, p.184). We emphasise that the presence or absence of axial-planar fabrics cannot 251 

therefore be used to distinguish folds created during HRD or SSD across a range of lithologies 252 

and settings. 253 

 254 

4.7. Folds and fabrics are mineralised. 255 

Although thin gypsum veins are developed along fabrics and syn-sedimentary faults within the 256 

Lisan Formation (Figs. 3h,i, 4a.7), mineralisation is more typically considered to be restricted to 257 

tectonic faults linked to HRD (Fig. 4b.7) (McClay, 1991, p.14). Indeed, Elliot and Williams 258 

(1988, p.181) note that brittle structures “locally contain vein filling of secondary minerals, 259 

which indicates that lithification was advanced before deformation” and “this is not to be 260 

expected in the near-surface deformation of sediments”. This view has however been questioned 261 

by Maltman (1994b, p.304) who cites examples of mineralisation associated with SSD. Our 262 

observation that thin gypsum veins form along fabrics (Figs. 3h,i, 4a.7) shows that the presence 263 

of mineralised cleavage planes is insufficient evidence to categorically demonstrate that cleavage 264 
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was formed by HRD. Although precipitation of gypsum along fabrics (and for that matter thrust 265 

planes) could arguably be slightly later, the observation that gypsum has formed along, and is 266 

restricted to such fabrics and faults within individual MTDs, suggests that gypsum precipitated 267 

during (and shortly after) SSD. We therefore contend that the presence or absence of 268 

mineralisation cannot be used to differentiate structures formed during HRD from those created 269 

via SSD. 270 

 271 

5. Could SSD fabrics be enhanced during subsequent compaction and diagenesis? 272 

Farrell and Eaton (1988) suggest that the two main processes responsible for forming or 273 

modifying SSD fabrics are liquidization and compaction. There is, however, no evidence within 274 

the Lisan Formation that liquidization (where grains undergo particulate flow) has played a 275 

major role as millimetre-scale laminae remain intact despite the development of fold-related 276 

fabrics (see Alsop and Marco, 2014). Compaction is created by overburden imparting a pure 277 

strain, resulting in vertical shortening and enhancement of sub-horizontal fabrics created during 278 

SSD (Farrell and Eaton, 1988). It has also been suggested by Maltman (1981) that with 279 

increasing depth of burial, diagenesis may ‘lock-in’ primary sedimentary fabrics related to 280 

settling or compaction of grains. Growth of any new mineral phases during diagenesis may be 281 

controlled by the orientation of this existing sedimentary fabric (Maltman, 1981). A number of 282 

criteria may help determine if the origin of a fabric is linked to subsequent compaction and 283 

diagenesis of MTD’s in the rock record. 284 

 285 

5.1. Thickness of overburden.  286 

Maltman (1981) suggests that the presence of interstitial water reduces intergranular friction 287 

thereby encouraging rotation of grains to create bedding-parallel compaction fabrics. This will 288 

occur “early in the history of the sediment, possibly within the first few metres of burial” 289 

(Maltman, 1981, p.476). This interpretation has however been subsequently questioned by Elliot 290 

and Williams (1988, p.174) who note that deformation fabrics are not preserved in drill core 291 

samples from modern sediment that is shallower than 100 m below the sea bed. Although the 292 

upper part of the Lisan Formation has never had a significant (typically <10 m) overburden, this 293 

could still be sufficient to generate compaction-related fabrics in some cases. Indeed, the 294 

palaeomagnetic inclination record from the Lisan Formation is interpreted to show a shallowing 295 

effect possibly linked to compaction (Marco et al., 1998). Thus, a degree of ambiguity remains 296 

as to the amount of overburden required to generate compaction fabrics in unconsolidated 297 

sediment, and limited overburden cannot be used as a basis to discount such fabrics. 298 

 299 

5.2. Distribution and orientation of folds and fabrics.  300 

As compaction post-dates the MTD event and is incrementally built up as overlying sediments 301 

are deposited, it should broadly affect both the buried MTD horizons and intervening non-302 

deformed units equally. It is therefore notable that within the case study, fabrics are not observed 303 

in the undeformed beds between individual MTDs. Within the Lisan Formation, the relatively 304 

weak and open nature of late-stage folds and fabrics previously attributed to compaction suggests 305 

its effects are also limited within MTDs (Alsop et al., 2016). Thrust faults and normal faults 306 

generated during slumping in the study area maintain classical dip angles of 30° and 60° 307 
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respectively (Alsop et al., 2017b). This indicates that they have not undergone significant 308 

flattening during any subsequent compaction.  309 

As compaction is a gravity-driven process, resulting fabrics are typically considered to be 310 

uniformly orientated and sub-horizontal. However, cleavage within the case study is variably 311 

dipping and fans around recumbent slump folds. Within a number of folds, the syn-slumping 312 

spaced cleavage also displays systematic kinematic reversals when traced around folds that are 313 

consistent with a flexural shear mechanism (Alsop and Marco, 2014). Sub-horizontal compaction 314 

or mimetic fabrics that fortuitously become axial-planar to recumbent slump folds would not be 315 

expected to display any such kinematic variation around the fold hinge as a) there is no genetic 316 

relationship between the fold and subsequent fabric, and b) offset across the cleavage planes 317 

would not occur following mimetic growth of minerals. Multiple sets of variably orientated 318 

cleavage, combined with kinematic reversals around fold hinges, are inconsistent with 319 

compaction or mimetic growth of fabrics. 320 

 321 

5.3. Deformation of vertical markers.  322 

Clastic dykes can act as markers to calculate the amount of vertical shortening associated with 323 

compaction. Based on folding of vertical clastic dykes, Smith (2000) calculated that there may 324 

be up to 30% compaction in some cases. Care should be taken as clastic dykes intruded within 325 

contractional settings may themselves be folded by tectonics rather than compaction (e.g. 326 

Palladino et al., 2016). Within the case study, vertical clastic dykes that cross-cut the MTDs 327 

preserve their original injection fabrics (e.g. Levi et al., 2006), and do not display any evidence 328 

of buckling linked to vertical compaction of the succession (Fig. 3b,c). 329 

 330 

6. Conclusions 331 

Folds and fabrics developed in the late-Pleistocene Lisan Formation were indisputably 332 

created via SSD during slumping of MTDs towards the Dead Sea Basin. Our observations are 333 

therefore directly relevant to the debate spanning over a century regarding the value of folds and 334 

fabrics in distinguishing SSD and HRD. We demonstrate that a range of criteria, including the 335 

restriction of folds and fabrics to within discrete horizons, their truncation by overlying erosive 336 

surfaces, the incorporation of fragile, folded clasts into sedimentary caps, the presence of vertical 337 

clastic dykes that injected across folds and fabrics, and vergence of folds towards the sedimentary 338 

depocentre, are all valuable tools when discriminating structures created during SSD and HRD. 339 

The style of folding in different lithologies, especially where mud is shown to be more competent 340 

than sand (Waldron and Gagnon, 2011), is also a key criterion when distinguishing folds created 341 

during SSD from those formed during HRD. Axial-planar fabrics are developed around folds 342 

within MTDs, and we conclude that such fabrics may not therefore be used to differentiate folds 343 

created during SSD or HRD. In addition, we show that mineralised (gypsum-filled) fractures and 344 

cleavages develop during SSD and cannot be considered diagnostic of HRD. The range of 345 

observations and evidence discussed above collectively leads us to conclude that compaction and 346 

diagenesis have not played a significant role in the modification of folds and fabrics in the case 347 

study. However, more general caution should be exercised as compaction and diagenesis have the 348 

potential to considerably enhance and alter folds and fabrics originally created by SSD and now 349 

preserved in the rock record where significant overburdens exist. 350 
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Continuing improvements in seismic resolution, as witnessed over the past 40 years, will 351 

help drive further understanding of structural and stratigraphic detail around modern MTDs, and 352 

this knowledge may ultimately aid in the recognition of large-scale SSD in the rock record. The 353 

single most useful criterion to distinguish structures formed during SSD are irregular erosive 354 

surfaces that truncate underlying structures and are themselves overlain and infilled by 355 

sedimentary caps and stratigraphy. This infilling ‘sedimentary fingerprint’ that thins across 356 

underlying structural highs, at the scale of the outcrop or seismic section, provides the most 357 

compelling evidence for a SSD origin. However, even in this situation care must be taken in the 358 

rock record that the erosive surface is not a subsequent regional unconformity. 359 

 360 
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 367 

Fig. 1 a). General map showing tectonic plates in the Middle East and the location of the Dead Sea Fault 368 

(DSF). b) Map of the Dead Sea showing the position of the study area, and mass transport deposit (MTD) 369 

slump directions (arrows). 370 

Fig. 2. Photographs from the Peratzim area of (a-c) truncated slump folds and (d-g) overlying 371 

sedimentary caps (denoted by double-headed arrows) that thin across (h-i) underlying structural ‘highs’. 372 

Scale is provided by a 10 cm chequered rule. 373 

Fig. 3. Photographs from the Peratzim area of a) folded aragonite fragments, b, c) injected clastic dykes, 374 

d) ‘S’ and ‘Z’ minor buckle folds. e) Spaced fracture cleavage and, f, g) crenulation cleavage that are 375 

axial-planar to slump folds. h, i) show extensional fractures marked by gypsum veining. Scale is provided 376 

by a 10 cm chequered rule and a 15 mm diameter coin. 377 

Fig. 4. Schematic cartoons summarising fold and fabric relationships linked to (a) soft-sediment 378 

deformation (SSD) in mass transport deposits (MTD), and (b) regional tectonics in hard-rock deformation 379 

(HRD). In a), more competent beds during SSD (such as detrital muds) are shown in brown, whereas in b) 380 

units behaving relatively competently during HRD are highlighted in yellow. In each case, basal 381 

detachments (BD) are highlighted in red, and unconformities (U/C) in blue. Circled numbers (1, 2 etc.) 382 

refer to specific relationships discussed in the text (Fig. 4a.1, 4b.2 etc.). 383 
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