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Abstract
Foreign function interfaces (FFIs) allow programs written in one language (called the host language)
to call functions written in another language (called the guest language), and are widespread
throughout modern programming languages, with C FFIs being the most prevalent. Unfortunately,
reasoning about C FFIs can be very challenging, particularly when using traditional methods which
necessitate a full model of the guest language in order to guarantee anything about the whole
language. To address this, we propose a framework for defining whole language semantics of FFIs
without needing to model the guest language, which makes reasoning about C FFIs feasible. We
show that with such a semantics, one can guarantee some form of soundness of the overall language,
as well as attribute errors in well-typed host language programs to the guest language. We also
present an implementation of this scheme, Poseidon Lua, which shows a speedup over a traditional
Lua C FFI.
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1 Introduction

Often, programming languages are designed with a specific purpose or task in mind. For
example, domain specific languages (DSLs) exist for a variety of domains (e.g., querying
databases), and a programmer will often choose a DSL when solving a problem that falls in
its domain. But, when a programmer wants to write code which touches on several domains,
they turn to more general-purpose languages (e.g., Java) to give them the tools they need
to do everything they need to do, even though the language might be worse at any one
given task as compared to a DSL written specifically for it. With so many programming
languages to choose from, not only is picking the right language non-trivial, picking the
“wrong” language may come back to haunt you.

To make choosing a language easier, many programming languages are equipped to
interoperate with other languages, and one of the most common forms of interoperation is
the foreign function interface (FFI). FFIs allow code written in one language (called the
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16:2 Reasoning About Foreign Function Interfaces

host language) to call functions written in another language (called the guest language),
and also interface with data from the guest language, typically accomplished with wrapper
code surrounding guest language values and regulating access to them. By and large the
most common form of language interoperation is the C FFI, since C is so fast; C FFI’s are
available for Python, Lua and many other dynamic languages.

Semantically, interfacing with C exposes one to all of C’s foibles and irregularities: Memory
accesses can fail, return values of an incorrect type, or cause system-specific undefined behavior.
As such, FFI’s are usually avoided in language semantics, and assumed to be either benign
or absent. Unfortunately, proving properties of the behavior of a C FFI using conventional
techniques is challenging:

Of the existing body of work on formal specification of language interoperation, some are
designed with a very specific use case in mind [6][1], and others propose general frameworks [16]
which are difficult to use when reasoning about interoperation with C; these general approaches
rely on fully defined semantics for all interoperating languages, which is usually infeasible
when one of those languages is C.

In this paper, we aim to describe what behavioral guarantees remain true in the presence
of an FFI, how a language hosting an FFI can guarantee its own type correctness at the
interface, and how that can motivate the implementation of an FFI. We propose a framework
which allows typed languages with a C FFI to be formalized and easily reasoned about without
a full model of C. Our approach relies on a merger of the guest and host language’s type
systems, which allows us reason statically about the whole language and the host language’s
use of the FFI. Additionally, without a model of C, our semantics is nondeterministic – as
there’s no telling what an arbitrary C function might do – and we develop a novel method to
reason about these nondeterministic semantics. In principle, this approach works well for
interoperation with other languages too, though our model of C’s memory and C’s types in
the host language make languages with similar memory behavior to C’s most suitable.

As an example of our framework in action, we also present both the semantics and
implementation of Poseidon Lua, a Typed Lua C FFI. In Poseidon Lua, Typed Lua interfaces
with C by holding direct pointers to C data, and is equipped to dereference these pointers,
cast them, allocate C data directly, as well as call arbitrary C functions. We prove conditional
soundness of Poseidon Lua, and prove that if anything “goes wrong” in well-typed Poseidon
Lua programs, C code is at fault for the error. Interestingly, merging the type systems of the
constituent languages eliminates the need for wrapper code around guest language values,
which contributes to improved overall performance.

The main contributions of this paper are:
a framework for merging type systems of guest and host language to allow interoperation
that can be easily reasoned about;
a semantics for Poseidon Lua, a Typed Lua C FFI, implemented with our framework;
an implementation, Poseidon Lua;
improved performance results over the previously existing Lua C FFI.

2 Background

In this section, we will provide requisite background for understanding our proposed frame-
work, as well as our prototype implementation, Poseidon Lua. We will begin with an overview
of foreign function interfaces, as we are describing a framework for reasoning about them.
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We will also discuss taint analysis, since the concept of taint features prominently in our
semantics. We will then discuss Lua, Typed Lua, and Featherweight Lua, as all are crucial
to understanding our language Poseidon Lua. We end the section with a quick highlight of
some related work.

2.1 Foreign Function Interfaces
A foreign function interface (FFI) is a framework in which code written in one language (called
the host language) may call code written in another language (called the guest language) as
well as interface with data from that guest language. In an FFI, the guest language typically
exports an API of available functions to the host language, and the host language calls
said functions through the function interface. In addition to this function interface, a data
interface is required to manage the use of one language’s data in the other language.

FFIs are prevalent in modern programming. They date back to Common Lisp [11], which
first introduced the concept of calling functions written in another language. Many dynamic
languages, such as Python [23] and Perl [19], have easy-to-use C FFIs, allowing programmers
to quickly and easily call functions written in C, a language known for its speed. In fact,
C FFIs are very common, particularly in systems where performance is critical: Scientific
computing environments, such as MATLAB [15] and Julia [9], carry out intensive numeric
computations and simulations, and often programmers turn to external C functions available
through an FFI to speed up the running time of their computationally intensive programs.
This provides the user with an easy-to-use scripting language front end which may not be
very performant, but with the ability to call fast functions when speed becomes an issue.

Most C FFIs interface with C in environments where C has access to all memory, including
that of the host language, but there are exceptions where C is an embedded language with
restricted access. One popular such system is Emscripten [29]. Emscripten is a source-to-
source compiler from LLVM to JavaScript; its goal is to provide a way to run code on the
web which can be compiled with LLVM but not natively run in browsers. Since JavaScript
can run in essentially any web setting, compiling a language such as C to JavaScript would
enable it to run reliably on a browser. With Emscripten, this can be done by first compiling
the original source code down to LLVM, and then translating this to JavaScript. In terms of
semantics, C is isolated to its own heap, and cannot interfere with JavaScript’s; we use this
style of isolation in our own semantics.

Idiomatic FFI usage is to minimize the data interface between the languages to the point
where only primitive, scalar values are passed between the languages, as sharing actual
structured data has unfortunate behavior: Often, if the FFI even has the capability to allow
the host language to store pointers to guest structures, they are mediated through a wrapper.
This wrapper problem is insidious: Consider, for example a list. With each access to the
next element of a list, a new wrapper must be allocated, and the old wrapper discarded, so a
series of simple accesses instead becomes a series of allocations. If the FFI has no capability
to access structured guest data, as in Lua’s built-in C FFI, the programmer has to write a
C accessor for every member they want to access. While the definition of these accessors
can be automated, they still incur the FFI to actually access the data, as the accessors are
written in C.

Even in systems which generate the data interface statically, such as JNI [20] and
SWIG [26], you still need wrappers. Imagine that we are using JNI or SWIG to interface with
C. The problem there is that because no type system resembling C’s is actually integrated
into the host’s type system, some layer is needed to make a working data interface, and that
layer works exactly the same as in a fully-dynamic FFI. (Note that SWIG can be a partial
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exception depending on the host language: If the host language lets you hold raw pointers, it
just generates a bunch of wrapper functions, instead of wrapper objects.) Our scheme, on
the other hand, avoids using wrappers at all, with our strategy of integrating the guest type
system into that of the host; this is discussed in more detail Section 3.

There has been some previous work on formally specifying FFIs, and language in general.
One example is early work by M. Abadi and coauthors [1], which explores dynamic typing in
a statically typed language, a mixing of two very different language paradigms. Other work
by K. Gray [6] tackles the problem of multi-language object extension, and presents a sound
calculus modelling the language interoperability and the semantics of objects written in one
language being extended in another. Additional work by J. Matthews and R. B. Findler [16]
realizes whole language semantics by defining full semantics for host and guest languages, and
uses boundaries to explicitly regulate value conversions. For our purposes, these approaches
are either too specific [1][6], or do not generalize to reasoning about languages with a C
FFI [16]. One particular work has a similar motivation to ours and has a fairly generalizable
approach: linking types presented by Patterson and Ahmed [22]. This is discussed below in
Section 2.4.

2.2 Dynamic Taint Analysis
Introduced by Newsome and Song in their paper [18], dynamic taint analysis is a technique
initially developed for tracing potential error propagation through a system, in order to
detect exploits on commodity software. The idea is that some data sources are considered
untrusted, and data which originates from these sources is labelled with taint. This allows for
the tracking of potential errors, and also can be used to restrict what the tainted data can
be used for. In addition, if there is an error in the program that involves some of the tainted
data, information on what potentially caused the error is all available as taint information.

The idea of dynamic taint analysis can be generalized to the tracking or propagation
of any tagged (tainted) data in a program. In this work, we adapt the concept of taint to
reasoning about a C FFI without modelling C: when a C call occurs, we cannot say what
will happen, but we can reason about what could happen. We can model arbitrary C calls
by tagging any data which could have been modified by the call with taint information
identifying it, and should an error occur involving any of this data, the taint can point to
the call which tampered with the data. Note that this is a property of the semantics for the
purpose of proofs; we do not demand that an implementation track dynamic taint. This is
explained in detail in Sections 3.2 and 4.

2.3 The Base for Poseidon Lua
Later in this work, we will be presenting Poseidon Lua, a Typed Lua C FFI. In this section,
we present variants of Lua, the host language in Poseidon Lua. First we discuss the Lua
language itself, before turning our attention to its variants and extensions.

2.3.1 Lua
Lua is a lightweight dynamic imperative scripting language with lexical scoping and first class
functions. Lua is extensible, and offers many metaprogramming mechanisms to facilitate
adaptation of the language. Its main data structure is an associative array known as the
table, which can stand in for most common data structures, such as arrays, records, and
objects. The functionality of tables can be further augmented through metamethods, which
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are essentially hooks for the Lua compiler. Classic object-oriented programming patterns,
such as methods and constructors, can be easily encoded in Lua with these table extensions.
A C FFI was developed for Lua by Facebook [3]: called luaffifb, it is a standard C FFI
which wraps C data for use by Lua. Note that we did not implement Poseidon Lua on top of
LuaJIT [21], as the implementation merely serves as a demonstration of our semantics, and
JIT compilers are less amenable to such modifications. Also, LuaJIT offers the same sort of
data interface that we do, but without types and with boxed references to C structures – our
techniques would thus apply to it for better performance.

Our approach to reasoning about FFIs involves embedding the type system of the guest
into the host language, but Lua has no type system to embed into! For this reason, Lua is not
the host language in Poseidon Lua – as we need a type system, we chose Typed Lua as a base.

2.3.2 Typed Lua
Lua is a dynamic language, and as is often the case with these languages (see TypeScript [17]
and Typed Racket [27]), there have been a few attempts at adding types in some form. One
such example with Lua specifically is Tidal Lock [12], a static analyzer relying on simple
type annotations. Another is Typed Lua, an optional type system for Lua [14].

In their design of Typed Lua, Maidl et al. performed an automated analysis of existing
Lua programs to obtain a clear picture of how programmers use the language; they paid
close attention to idiomatic Lua code to ensure that their design aligned with conventional
language use. Typed Lua is optionally typed, which means that the type annotations are
removed when code is compiled. Typed Lua accounts for a large subset of Lua, but a few
parts are omitted, namely polymorphic functions and table types, and certain uses of the
setmetatable function. The type system of Poseidon Lua largely matches Typed Lua’s, and
a full discussion will appear in Section 4.1.

Like other optionally and gradually typed languages, a program written in Typed Lua has
an initial stage of type compilation. First, the Typed Lua code gets translated (i.e., compiled)
to its corresponding Lua program, and it’s during this first phase of compilation that the
type information is used. At “type compile” time, typed code can be checked statically for
type errors before being translated. The type information has no effect on the generated Lua
code; Typed Lua programs are type checked by the compiler, and if they are well-typed, the
compiler simply erases the types, generating plain Lua. Then, this Lua code is compiled to
bytecode and run on the Lua virtual machine.

This multistage process means that there are two distinct versions of Lua involved in
running a Typed Lua program. For clarity, in our discussion of Poseidon Lua we will use
the following terminology: Typed Lua will be referred to as the typed language or the user
language, since this is the language in which the programmer will be writing programs. Then,
the untyped language or the run-time language refers to the subset of Lua resulting from the
compilation of user language programs and additional expressions needed to deal with C.
Both of these languages’ grammar and operational semantics are given in Section 4.

In giving a prototype using our framework we needed to develop a formal representation
of Poseidon Lua. Poseidon Lua is formalized using a core calculus based on Featherweight
Lua (FWLua) [10], itself a core calculus of Lua (discussed next).

2.3.3 Featherweight Lua
There have been a few formal specifications of Lua. First, a semantics was developed by
M. Soldevila and coauthors [25] to gain a deeper understanding of Lua programs; it was
mechanized in PLT Redex [4] using reduction semantics with evaluation contexts. Another
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semantics, not unlike Featherweight Java [8] and LambdaJS [7], proposes a core calculus for
Lua. Called Featherweight Lua (FWLua) [10], this semantics focuses on formalizing what
authors deem to be the essential features of Lua: first-class functions, tables, and metatables.
Remaining Lua features, including expression sequencing and control structures, are shown to
reduce into FWLua through an extensive desugaring process. The FWLua specification [10]
also provides a reference interpreter written in Haskell.

The principle goal of FWLua is to capture core Lua idioms, and a crucial aspect of the
Lua language is its table construct. Under the hood, Lua handles table access and table
write with rawsget and rawset functions, respectively; these are not typically written by the
programmer, but are part of how Lua drives table functionality. In their design of FWLua,
the authors modelled table access and table write wholly with these rawget and rawset
operations, and together with other basic semantic constructs (e.g., functions and binary
operations) propose functions which mimic the semantics of full-fledged Lua. For example,
to capture Lua’s scoping rules, FWLua reserves certain tables to be so-called “scope tables”:
the _local table is one such example and is always accessible, and changes whenever a new
scope is entered while keeping a reference to its outer scope in its _outer member. This way,
variable access (say, of x) is desugared into a function which first searches through _local,
and if x is not present in _local, then it searches recursively through _local._outer, and
so on until x is located, producing nil if x is not found. This proved challenging to reason
about, so we chose to promote variables to first-class language members.

To contrast Lua and FWLua, consider the following, which illustrates table construction
in Lua:

local t = {}
t.x -- nil , uninitialized table members are nil
t.x = 42 -- t.x is now 42
t[0] = "hello" -- tables may be indexed like arrays
t["hi"] = 3.14 -- equivalent to t.hi

As you can see, tables can be accessed in a variety of ways in Lua, and have syntax
which specifically supports different access styles, be it array-style or record-style. Tables
are incrementally constructed, and can be extended at any time, much like dynamic object
extension in JavaScript or other dynamic languages. In FWLua, the above translates (with
a line-by-line correspondence) to:

rawset (_local , "t", {})
rawget ( rawget (_local , "t"), "x")
rawset ( rawget (_local , "t"), "x", 42)
rawset ( rawget (_local , "t"), 0, "hello")
rawset ( rawget (_local , "t"), "hi", "hello")

Here we see the rawset and rawget functions are used to write and read from a table,
respectively. As we mentioned earlier, FWLua desugars variables into special table members:
The table _local deals with local variables, and the table _ENV deals with global variables.

2.4 Related Work: Linking Types
Linking types, presented by Patterson and Ahmed [22], consider a different approach to
reasoning about language interoperation. This work considers the languages working together
as components within a larger language, which itself encompasses behavior of one language as
well as the added behavior of making calls to the other language. Linking types themselves
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are designed to allow programmers to express and reason about one language’s features in
another (possibly) less expressive language which has no concept of those features. With
linking types, the programmer can annotate a program to indicate where it interfaces with
more expressive code in the linked language. Then, with these types, reasoning about the
behavior of the whole program becomes possible.

Although both their work and ours are motivated by the same essential problem, they
require modelling of both languages and focus more on the language of types than on
semantics or proofs. In our work, we take a notably different approach in deciding not to
model the behavior of the guest language, and instead work with the semantics of the point
of intersection (i.e. the boundary between host and guest), using nondeterminism to consider
the potential outcomes of the guest language calls. We believe that our types could be
expressed in terms of linking types with no meaningful change to our semantics or proofs,
but have not investigated this.

3 The Problem

FFIs are ubiquitous in programming, and C FFIs are by far the most common, but they
are usually excluded from formal treatments of programming languages. Unfortunately,
traditional methods of reasoning about FFIs necessitate a full semantic model of the guest
language to show anything about the overall system: Defining a formal semantics for C is
very involved, and, any such semantics will be compiler-dependent. For example, while the
CompCert [2] project was groundbreaking in their implementation of a formally verified C
compiler, their guarantees are limited to C programs compiled with this compiler, and do
not hold for C programs compiled on other compilers (such as gcc).

Hypothetically, if we had a whole language semantics for a system with a C FFI, what
might we be interested to show? One result of interest would be some form of type soundness
for the host language, to ensure that the inclusion of the FFI in the semantics didn’t cause any
strange issues. Additionally, we might like to show that if any failures occur in a well-typed
program calling a C FFI, then C is in some way at fault for the failure. In this work, we
show that we can get these results even without a full model of C!

To achieve this, we will need to be able to reason statically about use of the FFI (i.e., the
host’s interface with the guest). The function interface of an FFI exports function handles, so
we can at least check that functions are being called and used correctly, even if we don’t know
exactly what they do. However, the data interface of FFIs is typically built up dynamically,
and cannot be reasoned about statically. Indeed, in a conventional FFI, wrappers are built
up at run-time as values flow from one language to another, and dynamically regulate access
to underlying data.

In order to fully guarantee that the host language’s use of the C FFI is correct, we need
the data interface to be static, and we can achieve this by embedding C’s type system into
the type system of the host language. This way, the host language can express C types and
statically check its own use of C data instead of relying on run-time wrapper code like in
traditional approaches. As it happens, with this scheme wrappers are no longer necessary,
and their removal results in improved performance; this is discussed further in Section 5.

It’s not enough to have a system in place to statically reason about the host language’s
use of the C FFI, as we still need to consider how we can model calls to C when we have no
model of the C code, and how we can reason about the resulting semantics.
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3.1 Taint and Nondeterminism
With no model of foreign C code, a well-typed call to a C function exhibits nondedeterminism.
Without analyzing the C code we cannot reason statically about what exactly the function
does (e.g., a C function could dereference a null pointer or otherwise crash the program).
To account for this, at least two semantic rules for guest language calls are required: one
modelling a successful call where the function didn’t crash and returned something to the
host language execution, and another modelling failure, where the function failed to do so
(or, more generally, failed to successfully pass execution back to the host). Note that the
rule for failure must have strictly more permissive preconditions that any rule modelling a
successful call, as failure must always be an option.

Unfortunately, this simple model of nondeterministic success and failure of a particular
call does not fully account for all effects that C can have. For instance, executing a C
function could free some memory that the host program has access to while still terminating
and returning successfully, and the next dereference of a pointer to that memory would
fail or return unexpected values. To fully account for this case where a successful C call
has detrimental side effects, we need some additional mechanism to indicate to subsequent
reductions that the function may have tampered with some data.

To model the fact that black-box C code may arbitrarily modify data, we use the concept
of taint as described in 2.2; here, even successful calls to C functions will taint the memory
locations which may have been modified (i.e. all the memory C has access to). The presence
of taint at a memory location indicates that use of the location is nondeterministic: the next
use of the location could either succeed, indicating that no fatal modification was made, or
it could fail, indicating that the location was fatally modified by the call which placed the
taint. Note that success in accessing a tainted location does not mean that the value at
that location is the value that was there before it became tainted, it just means that the
access did not crash; C could still have changed the value in a way that was not fatal to the
program. Crucially, successfully using a tainted location will clean or remove the taint, as
from that moment until the next C call we are sure that the location is not somehow broken,
and that its value will not change (unless overwritten by Lua).

In summary, nondeterminism and taint together enable us to express the effects that
C may have on the host language program without modelling C. Note that since we use a
nondeterministic semantics for C and thus avoid modelling its behavior, in principle this
approach works well with other languages. However, our model of C’s memory and C’s types
in the host language make languages with similar memory behavior to C’s most suitable.

To demonstrate this framework, we will present the semantics of Poseidon Lua, a Typed
Lua C FFI. A high-level description of Poseidon Lua will be given in the next section.

3.2 Overview of Poseidon Lua
Essentially, Poseidon Lua is Typed Lua with a C FFI. It is fine-grained relative to standard
FFIs: Unlike traditional FFIs, in Poseidon Lua the type systems of Lua and C are merged
through a Lua pointer type, and the language has syntax with which the Lua programmer
can allocate and manipulate these pointers. Specifically, Poseidon Lua allows you to: allocate
and use C data, cast said pointers, and call C functions. The formal semantics are discussed
fully in Section 4.

In our semantics of Poseidon Lua, Lua directly holds C values through a pointer to some
location in a C store, which is separate from Lua’s store. Structs are laid out in the C
store as they would be in C, taking up space proportional to the number of struct members;
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these members can then be accessed with an offset equal to its position in the list of struct
members (like accessing elements in an array). As explained, with no model of C, C function
calls are nondeterministic, with successful calls taint everything in the C store – for this
reason, our formalization includes optional taint information in the C store. Access to clean
(i.e., taint-free) locations in the C store are deterministic, while accesses to tainted locations
are not, and in the event of successful access to a tainted location the taint can be removed
and future accesses to that same location become deterministic (at least, until the next call
to a C function).

Another interesting application of taint is in modeling C’s undefined behaviour, of which
one classic example is casting pointers. In Poseidon Lua, as in C, pointers to C values
may be downcast. To model this in our formal semantics, we include types in the C
store, alongside taint and the values themselves – the C store is thus a list of triples of
(value, type, optional taint). This way, we can model the cast of a Lua pointer (to a C value)
to some type T by changing the type held at the pointer’s location in the C store to T . But
that’s not quite enough, as casting pointers is undefined behavior in C, and we can use taint
to cleanly capture this: Once cast, the location becomes tainted, and the next access to that
location is nondeterministic. In this scenario, taint indicates the cast location’s potential for
undefined behavior when it is accessed.

Another use of taint in Poseidon Lua is in our modelling of allocation of C pointers. In
C, the calloc function initializes the allocated memory with 0s, so in allocating a pointer to
a pointer, one is actually allocating a pointer to a 0 (which is to be treated as a pointer)!
Indeed, if one were to dereference the second pointer, one would be dereferencing 0 which
leads to a segmentation fault in most circumstances (0, of course, is NULL in C). To achieve
this in our semantics, we taint the allocated memory location when a (Lua pointer to a) C
pointer is being allocated, to indicate the potential failure of the next access to this location.

Even though we don’t model C, we do make some assumptions about C’s behavior: For
one, we assume that C does not touch Lua’s memory, and that its effects are contained to an
explicitly defined C store: in other words, the shared memory has clearly defined bounds.
This mirrors reality in most other FFIs, where guest code and data is not aware of host code
and data. However, it is technically possible for C code to violate this assumption. We also
make a simplifying assumption that all allocation and access is by word, which reduces the
complexity of C data accesses without loss of generality. We require that C doesn’t write new
or mutate existing Lua code, otherwise we would have to scrutinize existing expressions that
have yet to be reduced and would be unable to prove anything. We additionally make no
explicit mention of the stack pointer, which would needlessly complicate function calls and
returns for no real benefit. Further, C functions cannot call Lua functions in our formalization,
so as to package all of C’s effects into one black box; this is possible through callbacks, but
would again be very complex without meaningfully improving the semantics. Finally, we
disregard threads, which avoids needing to reason about the effects of concurrency on top of
the effect of C, a layer of complexity which is outside of the scope of this project.

4 Semantics

Poseidon Lua is our proof-of-concept for the ideas discussed in Section 3. Having highlighted
some of the stranger corners of our formal specification of Poseidon Lua in Section 3.2, we
will now discuss the C FFI in its entirety.

In Poseidon Lua, Lua primarily interacts with C by calling C functions, and our merger of
the two languages necessitates that C values be a part of the broader language. To represent
these C values, Typed Lua has a concept of a Lua pointer to a C value, which is Lua’s
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T ::= nil nil type
| value top type
| ref T reference type
| T1 ∪ T2 union type
| L literal type
| B base type
| T1 →L T2 function type
| {f1, ..., fn} table type
| ptrL TC Lua pointer type

TC ::= int C integer type
| T 1

C →C T 2
C C function type

| ptrC TC C pointer type
| {s1 : T 1

C , ..., sn : Tn
C} C struct type

f ::= s : T field
| const s : T const field

L ::= b boolean literal
| n numberliteral

| s stringliteral

B ::= boolean base types
| number
| string

Figure 1 The Poseidon Lua type system.

window to accessing C data. This means that Lua never deals directly with C values per se,
and instead deals with pointers to these values. As mentioned previously, we implement the
additional functionality of allocating C data as well as downcasting C pointers, both directly
from Lua code without needing to call C.

We start by describing the type system in detail, and follow with a presentation of a core
calculus which models the language. Then, we discuss the typing and reduction relations
before concluding with a discussion of soundness and other interesting proven results.

4.1 Type Systems
Poseidon Lua’s type system is a combination of Typed Lua’s [14] and C’s type systems. For
illustrative purposes, we chose a subset of C’s type system which highlights some of C’s
interesting features without getting bogged down in the low-level details; we only formalized
integers, pointers, structs, and functions. These are not limitations of the concept, merely
simplifications made to the formalization. The story is similar with Typed Lua’s type system;
our function type only has a single argument type, and multivariate functions are curried to
repeated application of single variable functions, by which a single argument function type
suffices. In fleshing out this type system for our core calculus, we found no need for Typed
Lua’s type variables, recursive types, and projection types, and were able to greatly simplify
their table type. Further, to simplify reasoning about Lua, we only allow string indexing in
tables. Again, these are not limitations of the language, and are only simplifications for the
purposes of formalization.

Our types are given in Figure 1, and explained in detail throughout this section. Type
ordering is as follows:

value is a supertype of all types;
nil is the type of Lua’s nil value, and is a subtype of all base types;
union types are supertypes of their members;
literal types are the types of literals (e.g. the literal type of 5 is 5), and base types are
the more general typical types of these literals (e.g. the base type of 5 is number) – that
said, literal types are subtypes of their corresponding base types;
function types are contravariant in their argument types, and covariant in their re-
turn types;
table types have width subtyping: A table type T is a supertype of a table type T ′
which has a superset of all of the fields of T (in other words, adding extra fields preserves
the subtyping relationship);
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table types have depth subtyping only on const fields: If a table type T has a const
field x with type Tx, and a table type T ′ has all the same fields as T except that field
x has type T ′x, where T ′x <: Tx, then T ′ <: T (in other words, const field types may be
specialized while preserving the subtyping relationship)

C’s types are included in the Typed Lua type system (and made accessible to the user)
via the “Lua pointer” C type ptrL TC ; here, ptrL denotes a Lua pointer type, and TC is the
C type being pointed to (e.g., ptrL int is a Lua pointer to a C integer). As explained above,
Lua only ever deals with pointers to C values, and not C values themselves: the only access
to C values is through this pointer. C’s type system is consequently entirely self contained,
and is a strict subset of Lua’s with no ability to reference Lua types. In some sense, C is
“plugged” in to Lua through the ptrL TC type.

While we don’t formally model C, we do need some information on C functions in order
to ensure that everything shakes out properly at run-time. For example, in our semantics we
model C functions as black boxes with no function body, and we ask for parameter and return
types for these functions to ensure that they are called with correctly-typed arguments, even
though the function bodies themselves are not modeled. What this means is that we can
make sure that the functions are called correctly, but are not responsible for their internal
behavior. Indeed, FFIs typically export function types as part of their API and may not
always export their code – this is the situation modeled by our semantics. This is also
analogous to a user calling a library for which the source code is not provided, even when
the library is written in the same language as the “library host” language.

4.2 The Language
In this section, we present a core calculus modelling Poseidon Lua, akin to FWLua [10]. We
will discuss the language of expressions, both typed and untyped, before moving on to the
typing judgment and reduction relation.

We present two languages (in the same manner as Typed Lua, recall from Section 2.3.2):
The language of untyped expressions E, also known as the language of run-time expressions,
is the language that will actually reduce at run-time, and the language of typed expressions
TE is the language that programmers will interface with and program in, with a few minor
caveats which will be discussed in time. Roughly, the typed language corresponds to Typed
Lua with our added C FFI, and the untyped language corresponds to a subset of Lua with
additional expressions for C interoperation. We begin with the typed language TE .

4.2.1 Typed Language
Figure 2 presents the language of typed expressions, representing the language that the
programmer will be interfacing with, with some notable exceptions. The Lua dereference
and location update expressions, and the Lua location value are not explicitly written by the
programmer; they are artifacts of our typing judgment which will be presented in Section 4.3.
We sometimes refer to the aforementioned expressions as intermediate expressions; the typed
language without these is the user language.

These expressions largely describe a core calculus of Typed Lua, with the exception of
the following C expressions:

C downcast denotes the cast of expression te to C type TC ;
C allocation allocates a C pointer to a value of C type TC ;
C deref is used to dereference the C pointer expression te;
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te ::= vt value
| {s1 = v1, ..., sn = vn} table
| letx : T := te1 in te2 let binding
| x := te variable update
| locn := te location update
| deref te Lua dereference
| te1 op te2 binary operation
| te1(te2) function call
| x variable
| te1.te2 dot access
| te1.te2 := te3 dot update
| cast te TC C downcast
| callocTC C allocation
| derefC te C deref
| te1; te2 sequence

vt ::= nil nil value
| r register
| c constant
| locn Lua location
| λx : T.te Lua function
| cfun TC C function
| ptrnTC C pointer

r ::= regn table store loc

c ::= n number
| b boolean
| s string

op ::= +,−, ∗, / arithmetic
| ≤, <,≥, > order
| ∧,∨ boolean
| .. concatenation
| == equality

Figure 2 The language of typed expressions.

C function describes a C function with type signature TC . The type TC is required by
the type transformation to type these functions, as it cannot leverage the function body
(as is the case with traditional functions);
C pointer is a pointer to location n in the C store, with expected C type TC ;
Access to C structs is done through the dot access and dot update expressions (so long as
te1 is a C struct), and calling C functions is done through the function call expression
(so long as te1 is a C function).

Besides the C expressions, the typed language is standard or otherwise directly analogous to
some untyped expression, which we will discuss in more detail shortly.

Typed expressions will all compile into equivalent run-time expressions where the types
have been erased. We explore this run-time language next.

4.2.2 Untyped Language
The untyped language describes the expressions which will reduce/evaluate at run-time.
Generally speaking, they are analogous to some equivalent typed expression where the types
have been erased. This language essentially describes a core calculus of Lua, based on
FWLua (described in Section 2.3.3), though we added sequencing, let bindings, variables,
table literals, and of course C interoperability. The full language can be found in Figure 3.

FWLua is a core calculus of Lua, and a number of minor modifications were required
when adapting FWLua to describe Typed Lua, particularly with tables. Recall that tables
are the principle data structure in Lua; as discussed previously, FWLua desugars all of
Lua’s table manipulation into the dual rawget and rawset constructs. For the purposes of
formalization, we needed to relax FWLua’s extreme desugaring; one example of this being
the table literal (table) expression. FWLua handles table construction incrementally: an
empty table is first created and stored, and then it is populated with the values at the
programmer’s discretion. Unfortunately, this scheme fails in typed languages, as the empty
table is not a subtype of any non-empty tables, so we include a table literal to allow the
expression of a full table when needed for assignments.
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e ::= v value
| {s1 = v1, ..., sn = vn} table
| rawget e1 e2 table select
| rawset e1 e2 e3 table update
| e1 op e2 binary operation
| e1(e2) Lua fun. appl.
| x variable
| x := e var. assignment
| locn := e location update
| deref e Lua dereference
| letx := e1 in e2 let binding
| cget e nTC C store access
| cset e1 n e2 TC C store update
| ccall e1 e2 TC β C function call
| calloc TC β C allocation
| cast e TC β C downcast
| e1; e2 sequence
| errβ error expression

v ::= nilL nil value
| r register
| c constant
| locn Lua store loc.
| ptrL nTC C store pointer
| λx.e Lua function
| cfun C function

vC ::= ptrC n C store pointer
| n C number literal

Figure 3 The language of untyped, run-time expressions.

Our function expression is unchanged from FWLua, though we must include a new C
function expression to allow FFI calls. Unlike the Lua function, which is a traditional lambda
expression, the C function has far less information in it – indeed, it has no function body!
Most of the information needed for a C call is stored in the C function call expression itself.

For accesses into C structs, we have the cget and cset expressions, analogous to rawget
and rawset. cget and cset are also used for accessing and writing to C pointers, which will
be discussed in more detail in Section 4.4. In cget e nTC , e is a pointer into the C store, n
is the offset of the access, and TC is the type that the cget is expecting to read. Similarly
in cset e1 n e2 TC , e1 is a pointer into the C store, n is an offset, e2 is the value to write,
and TC is the type that the cset is expecting the store to contain at the referenced pointer
(recall that we store type information for each pointer in the C store).

To call functions, programmers may write a standard function application as te1(te2) in
the typed language of Figure 2. The type transformation can, depending on the type of te1,
transform the application into either a Lua function application or a C call. The Lua function
call expression e1(e2) is straightforward, so let us focus on the C call: In ccall e1 e2 TC β, e1
is the C function being called, e2 is the argument to that function, TC is the function’s type,
and β is an identifier associated with the call (its line of code). The type is necessary since
C calls exhibit nondeterministic behavior, and we can leverage TC to reason about the value
that is returned from the function. The line of code information β is related to taint, which
we will describe fully when giving the semantics of the calls.

There are also a few expressions for functionality unique to C. As one might expect,
calloc TC β allocates something of C type TC , and β is the identifier uniquely associated with
the allocation, which allows a trace-back if a run-time error occurs. cast e TC β downcasts
the pointer e to type TC , and again β is a unique identifier associated with the cast.

4.3 Typing Judgment
Making a distinction between typed and untyped languages (or user and run-time languages)
makes sense in many optionally or gradually typed languages, where a typed language is
compiled into an untyped language which will be the one executing at run-time (recall the

ECOOP 2019



16:14 Reasoning About Foreign Function Interfaces

two stage compilation process described in the context of Typed Lua in Section 2.3.2). In
these settings the typing judgment often needs to be modified to connect the languages
together. We define a type transformation relation, a modification of the standard typing
judgment relation, which transforms/compiles a typed expression into its corresponding
untyped expression:

Γ,K ` te : T  e (1)

Here, Γ is the typing environment, which assigns types to variables, and K is the typing
context, containing information about the various store typings. Our run-time environment
contains three stores: a table store for Lua tables, a C store for C values, and a variable
store for variables. K can thus be broken up into three store typings: ΣT describing the
table store, ΣC for the C store, and ΣV for the variable store. Roughly speaking, the type
transformation takes a typed expression te and “compiles” it into an untyped expression e,
assigning to it type T in the context of Γ and K.

In the following typing rules, some auxiliary functions will appear in the preconditions to
simplify the notation. They are as follows:

goodLayout (n, TC ,ΣC) checks to see if location n in the C store typing ΣC represents
type TC . If TC is a primitive type or a pointer type, this succeeds if ΣC(n) = TC . As for
structs, recall that they are laid out contiguously in the store: If TC is a struct type (for
example, {s1 : T 1

C , ..., sn : Tn
C}), then each of the fields must be present in ΣC with the

correct type, i.e. for all fields si we must have ΣC(n+ i) = T i
C .

offsetForType (s, TC) computes the offset of member s in structure type TC . Our formal-
ization of the C store lays out structs according to their type, and this function relates
their type (TC) to their layout in the store.

As we mentioned, in Poseidon Lua, Lua can interact with C in the following ways:
allocation and access of C data, C function calls, and casting of C pointers. In this section
we will focus on the typing rules for the expressions describing this FFI. The full typing rules
are given in Appendix A.1.

We will first consider the rule for allocation of C data.

validType(TC) β unused
Γ,K ` calloc TC : ptrL TC  calloc TC β

(TT_CAlloc)

In Poseidon Lua, programmers can allocate Lua pointers to C data types (here, TC),
provided that the type is valid for allocation. For this to be the case, TC must either be
a primitive type, pointer type, or struct (itself recursively made up of valid types). This
prevents programmers from making nonsensical statements, such as allocating C functions in
Lua. The β here is needed when allocating C pointers: In C, allocating a pointer to a pointer
can cause issues if the innermost pointer is not properly initialized, due to the default values
that C inserts (pointer values are often initialized to 0, which is an invalid memory address
for C to access). This semantics will be dealt with in due course, and the inclusion of β
in the calloc expression is crucial to achieving the desired behavior – this will be further
discussed in Section 4.4.

Having seen C allocation, we turn our attention to typing (Lua pointers to) C values:

n < length(ΣC)
goodLayout(n, TC ,ΣC)

Γ, (ΣT ,ΣC ,ΣV ) ` ptrL nTC : ptrL TC  ptrL nTC

(TT_Lua_Ptr)
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C values are always “hidden behind” a Lua pointer in Poseidon Lua, and so from Lua’s
point of view all C values have some ptrL type. In the expression ptrL nTC , n is the location
referenced by the pointer, and TC specifies the type that the location is intended to have.
The type information is required since structures do not directly inhabit the C store, and
so accessing a structure would be impossible with a simpler rule, since ΣC(n) will never
have a struct type; the type information allows us to check to see if location n does in fact
correspond to TC using the goodLayout auxiliary function, and only allow the pointer to
type if it does. The typing rule for dereferencing these pointers follows.

Γ,K ` te : ptrL TC  e

validForCDeref (TC) TL = coerceCType(TC)
Γ,K ` derefC te : TL  cget e 0 TC

(TT_Var_C_Deref)

Here, beyond ensuring that te is in fact a Lua pointer, we need to ensure that it is a
pointer to a type that we can dereference. The C store is made up entirely of primitives
and pointers, so we disallow dereferencing of things of another type (for example, we cannot
dereference a C function pointer). Because our type transformation deals with Lua types
only, we need to coerce TC into a Lua type to type this expression: Indeed, at run-time
the dereference will coerce the value it obtains from the C store, and the coercion at this
level allows such an expression to type. Note also the untyped expression corresponding to
the dereference: cget can play the part of either simple dereferencing and also struct field
access, depending on the value of its offset parameter (here, 0). An offset of 0 indicates
that we are either getting the first member in a struct, or simply dereferencing a pointer to
non-struct data.

We consider C functions next.

Γ,K ` cfun (ct1 →C ct2) : (ct1 →C ct2) cfun
(TT_C_Function)

Here, note that the C function expression contains the whole type of the function, and
without a body the function trivially types. Type information is necessary because we don’t
model C’s semantics: In typical typing rules for functions, the return type can be determined
thanks to the function body, and we have no such body to rely on here. In some sense, this
is in line with what one would expect when dealing with FFIs, since part of their API is the
full type of the exported functions.

Let us consider how one calls these functions:

Γ,K ` te1 : (T →C T ′) e1
Γ,K ` te2 : T  e2 β unused

Γ,K ` te1(te2) : T ′  ccall e1 e2 T
′ β

(TT_C_Fun_Appl)

In rule TT_C_Fun_Appl, we type the function application according to its return type.
Note the T ′ in the compiled (on the right of the  ) C call: The untyped call requires the
return type for reduction to be possible, and we will discuss this in more detail in Section 4.4.
Since C calls are sources of taint, we include β as an identifier uniquely associated with the
call, which corresponds to the line of code occupied by the call. In the event of a failure, we
can determine which call (and, thus, which function handle) is to blame.

We will now consider reading from and writing to C structs. First, reading:

Γ,K ` te1 : ptrL T1  e1 structType(T1)
Γ,K ` te2 : s e2 s ∈ T1 n = offsetForType (s, T1)

Γ,K ` te1.te2 : T1(s) cget e1 n T1(s)
(TT_C_Dot_Access)
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Here, if te1 types to ptrL T1, T1 is a struct type, and te2 types to a string literal s which
is a field name in struct T1, then the C struct member access types. Note that te1 must
be a Lua pointer to a C struct, as C structs themselves are not allowed in Poseidon Lua
unless they are behind a Lua pointer. Also, the resulting cget is given the offset of field s in
T1 (determined with the offsetForType auxiliary function), since the C store lays out struct
members linearly in an array form.

Second, C struct member update:

Γ,K ` te1 : ptrL T1  e1 structType (T1)
Γ,K ` te2 : s e2 Γ,K ` te3 : T1(s) e3

s ∈ T1 n = offsetForType (s, T1)
Γ,K ` te1.te2 := te3 : value cset e1 n e2 T1(s)

(TT_C_Dot_Update)

As before, if te1 is a Lua pointer to a C struct type T1, and te2 is a string s which is a
member of that struct, and te3 is appropriately typed, we can type the C struct update. We
again emit an offset (in place of te2), which the cset will use when writing to the C store.

Finally, Poseidon Lua allows C values to be downcast, and they type as follows:

Γ,K ` te : ptrL T
′
C  e β unused

Γ,K ` ccast te TC : TC  ccast e TC β
(TT_C_Cast)

Here, we notice that casting must be done through the Lua pointer, and so long as TC is a
C type we allow the cast to go through. There is no mention of TC and T ′C being compatible
types, as C freely allows casting of pointers, and the cast merely changes the way that the
bits referred to by the pointer are read. As with previous mentions of β, it features here to
allow errors caused by the cast to be easily traced back to the cast.

At this point, we have explored each of the typing rules associated with Poseidon Lua’s
C FFI. In many cases, such as in TT_C_Fun_Appl, these rules transferred some type
information to their analogous run-time expressions in order to drive the run-time functionality
of the system. We discuss reduction of run-time expressions next.

4.4 Operational Semantics
The reduction relation on untyped expressions, describing the execution of programs, is:

e / σT / σC / σV → e′ / σ′T / σ
′
C / σ

′
V (2)

Here, e and e′ are expressions in the untyped language, σT and σ′T are table stores, σC

and σ′C are C stores, σV and σ′V are variable stores. At a high level, the table store σT is
a list of Lua tables, the variable store σV is a list of values, and finally the C store σC is
a list of (v, TC , β?) triples, where v is a C value, TC is its type, and β? is optional taint
information (∅ represents no taint, or a clean location). As we mentioned in Section 3.2, the
unusual inclusion of type information in the run-time C store is required to properly model
C downcast semantics.

To simplify notation, we sometimes write the reduction relation as:

e /S → e′ /S ′ (3)

We refer to S and S ′ above as the run-time environment; the set of all the stores making
up the state/context of the reduction.

It will be necessary to differentiate between C stores based on whether or not they are
tainted; for this purpose, we say that a C store is clean if none of the elements of the store are
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themselves tainted. To simplify discussion of tainted environments, we say that a run-time
environment is clean if its C store is also clean.

At the very highest level, we are formalizing a system wherein Lua code can interface
with C in the following manner: allocating C data, reading from and writing to some shared
memory with C, downcasting C values, and calling C functions.

Our formalization of Lua is based on FWLua [10], and we adapted their big-step semantics
to a more standard small-step equivalent. For our discussion of FWLua, see Section 2.3.3.
In order to mechanize our formalization, some simplifying modifications to FWLua were
required, namely the promotion of variables from syntactic sugar to full-fledged language
members. Of course, Lua allows you to declare and use variables, but FWLua desugars
variables into access to a special store carried around at run-time. Poseidon Lua requires
that FFI calls be made only from well-typed code, and so we adapted the type system of
Typed Lua [14], with some modifications made possible by our simplified semantics for Lua.

Notable in Poseidon Lua is the merger of Typed Lua’s and C’s type systems through the
Lua pointer type, and consequently the intermixing of values from both Lua and C. Lua
makes reference to C values through the Lua pointer expression, and can both access and
change the data contained in these pointers, as well as cast them to some C type. Lua may
also allocate Lua pointers to C values through the calloc expression, without needing to
make a ccall.

We will now turn our attention to the operational semantics of Poseidon Lua, with a
focus on the C FFI, mirroring discussion of the typing judgment in Section 4.3. The full
reduction rules are given in Appendix A.2. We start with the semantics of allocating C data.
Consider:

n = length (σC)
σ′C = σC + layoutTypeAndTaint (TC , β)

callocTC β / σT / σC / σV → ptrnTC / σT / σ
′
C / σV

(R_CAlloc)

The callocTC β expression allocates enough memory in the C store σC to accommodate
a value of type TC . The function layoutTypeAndTaint lays out type TC and taints pointer
members (as per our earlier discussion in Section 3.2). If TC either is or contains a C pointer
type, then we taint that location (with taint information β) to indicate to our system that
its behavior is undefined until it is successfully accessed or written to. If TC is a primitive
or pointer type, then we simply produce a triplet containing a default value (this is 0 for
pointers), the type TC , and taint if TC is a pointer type, and if TC is a struct, we lay out
each of its members in a similar fashion. Following allocation, a C pointer with the location
of the beginning of the newly allocated memory is produced.

Compared with C allocation, C calls have intricate semantics as we do not attempt to
model the bodies of arbitrary C functions. Instead, we treat the C functions like black boxes,
and consequently C function calls exhibit nondeterministic semantics, as any well-typed C
call can either succeed or fail if the function body is made up of arbitrary C code (recall that
we consider a call successful if it returns to executing the host language with some value
of the expected type). In the event of successful execution, we concern ourselves with the
return value and the call’s potential effects on the rest of the C data. Recall our discussion
that even if a call is successful, the function code might have altered the C store in a variety
of ways (such as freeing some existing memory), and we must account for this possibility.
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We will first consider the reduction rule for a successful C call.

value (v2) v = makeValueOfType (ct2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → v / σT / σ

′
C / σV

(R_CCall_Worked)

Here, ccall cfun v2 ct2 β calls a C function cfun with argument v2. In this case, the call
succeeds, and makeValueOfType (ct2) gives us v, something of type ct2. Of course, since it’s
possible that the call tampered with the C store, we taint the store with taint information
β, corresponding to the line of code of this function call. This notifies subsequent accesses
to these memory locations of potential tampering, which modifies the semantics of those
accesses. C function calls can also fail:

value (v2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → errβ / σT / σ

′
C / σV

(R_CCall_Failed)

To capture that both success and failure are possible outcomes, we ensure that the
premises of both rules are simultaneously satisfied: When all of R_CCall_Worked’s
preconditions are met, so are R_CCall_Failed’s (and vice-versa). The err β expression
is the result of the failing call, and indicates through taint information β which call is to
blame for the failure.

Having seen the intricacies of C calls, we will turn our attention to the semantics of
casting C pointers, another source of taint. For brevity, we only present the rule for casting
a clean location (the other rule is not notably different). Consider:

n < length(σC)
σC(n) = (v, TC , ∅) σ′C = update (σC , n, (v, T ′C , β))

ccast (ptrL nTC) T ′C β / σT / σC / σV → ptrL nT
′
C / σT / σ

′
C / σV

(R_CCast)

Here, the location n in σC is updated with the new type T ′C and taint information
associated with the cast (thanks to the update auxiliary function – update(s,l,v) reads as
“update s at location l with value v”). In C, casting a pointer merely changes how the bits
being pointed to are read, and the cast may even cause an error; we achieve similar semantics
with taint. When attempting to read location n in σC after it was cast, taint indicates that
the access should be nondeterministic. To keep our system as general as possible, we don’t
attempt to model the cast per se, and the next read will replace v with a new value of type
T ′C if successful, or fail with an error. We discuss the semantics of accesses next.

Thus far, we focused on the introduction of taint and fairly direct sources of nondetermin-
ism, and we will turn our attention to taint’s effect on the semantics of our system, as well as
how it can be removed from the run-time environment. As an example, recall our semantics
for C casts: When casting a location to some type TC , the location becomes tainted. Now,
imagine that the next use of the location is to store something of type TC in it; if this write
succeeds, from then on we are sure about the value present at the location. Such an operation
is said to clean the taint from the location; in our formalization, taint represents uncertainty
about a C value, and once we become certain of it (e.g., we have accessed the value and no
errors have occurred) we can safely remove the taint.

In more formal terms, the presence of taint at a location in σC indicates that accessing
that location yields nondeterministic results. To capture this, we ensure that a read or
write to a tainted location can reduce to more than one expression under the same premises;
namely, said read or write can succeed or fail.
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Consider the following semantics for accessing a clean location in σC :

σC(n+ o) = (vC , TC , ∅) vout = coerceToLua(vC)
cget (ptrL nT

′
C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_No_Taint)

Here, the expression cget (ptrL nT
′
C) o TC accesses σC at location n with offset o, and

is expecting something of type TC . In this reduction rule, location n + o in σC is clean,
and so the (well-typed) store access cannot fail. The access steps to vout, which is the Lua
equivalent of the C value contained in σC , determined through the coerceToLua auxiliary
function. Note that the pointer’s type (T ′C) does not necessarily need to match the expected
type of the access (TC); this is because cgets can be used for struct member access, where
T ′C would be a struct type and TC would be the type of the member.

coerceToLua (vC) is a function which takes a C value v and coerces it to a Lua value. If
vC is a C integer, then it is coerced to a Lua constant with the same numeric value. If vC

is a C pointer ptrC m ct, then it is coerced into a Lua pointer ptrLua m ct (to the same
location). Otherwise, the coercion fails.

Note the presence of a type TC in the cget expression. A condition of reading (and
writing) from σC is that the type specified for the read must match the type held in σC .
This allows us to enforce the correct use of downcast locations, as the cast changes the type
in σC , and future reads (and writes) must specify the new type.

We will now consider accesses to tainted locations, which can either fail or succeed. First,
consider a successful access:

σC(n+ o) = (v, TC , β) v′ = makeValueOfType (TC)
σ′C = update (σC , n+ o, (v′, TC , ∅)) vout = coerceToLua(v′)

cget (ptrnT ′C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_Taint_Works)

Here, we access σC at location n with offset o, and are expecting something of type TC

as before. However, σC(n+ o) is tainted, resulting in nondeterminism (i.e. we do not know
whether an access to this value will fail or succeed). In this reduction rule, we deal with
the case of a successful access to tainted locations. Here, a successful access returns some
value of the appropriate type (thanks to the makeValueOfType auxiliary function). The C
store at n + o is cleaned and updated with the new value; from this moment on, use of
this location is deterministic. Note that the value was observed to be something of type
TC , though not necessarily the same value that was in that location before the C call which
initially necessitated the addition of the taint.

The following reduction rule deals with failing access:

σC(n+ o) = (v, TC , β)
cget (ptrnT ′C) o TC / σT / σC / σV → err β / σT / σC / σV

(R_CGet_Taint_Fails)

Here, the access fails, reporting the taint information identifying the call which tampered
with this data. Note that satisfaction of rule R_CGet_Taint_Works’s preconditions
implies satisfaction of this rule’s preconditions – this ensures that access to tainted locations
can fail in any situation that it can succeed.

Similar to cget, cset has nondeterministic semantics when dealing with tainted locations.
First, consider writes to clean locations:

σC(n+ o) = (v, TC , ∅) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2/ σT / σ

′
C / σV

(R_CSet_No_Taint)
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In the expression cset (ptrL nT
′
C) o v2 TC , we write v2 to location n with offset o in σC ,

and we expect the location to have type TC . Since location n+ o in σC is clean, the store
update cannot fail.

Note that we must first coerce v2 to a C value vput to store it in σC . coerceToC (v2) is
similar to the coerceToLua function, though it coerces Lua values to C instead. For example,
if v2 is a numeric constant, the function produces a C integer with the same numeric value,
and if v2 is a Lua pointer ptrL m ct, an equivalent C pointer ptrC m ct is produced.

The rule for csets on tainted locations is given below:

σC(n+ o) = (v, TC , β) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2 / σT / σ

′
C / σV

(R_CSet_Taint_Works)

Here, we again coerce v2 to a C value vput to location n with offset o in σC , and we
expect the location to have type TC . However, σC(n + o) is tainted, and so we are in a
state of nondeterminism. In rule R_CSet_Taint_Works, the write succeeds: We update
σC(n+ o) with the new value vput and clean the taint. Of course, failure is always an option:

σC(n+ o) = (v, TC , β)
cset (ptrL nT

′
C) o v2 TC / σT / σC / σV → err β / σT / σC / σV

(R_CSet_Taint_Fails)

In this parallel case to T_CSet_Taint_Works, the write fails, and reports the taint
information stored at σC(n+ o).

By now, we have explored each of the reduction relations related to Poseidon Lua’s C
FFI. In Section 3, we claimed that even without a model of C, as is the case in our system,
the merger of the type systems of C and Typed Lua allows us to prove meaningful and
interesting results about the language as a whole. The next section presents the results which
we have proved, and sketches the proofs.

4.5 Proofs
There are two major results that we would like to prove about our semantics of Poseidon
Lua. First, we would like to show some form of soundness, though clearly we can’t have
traditional type safety due to interoperation with C. Even so, we designed our semantics in
such a way as to track C’s effect on the overall system, and we can leverage that to show
(conditional) soundness of the host language. Note that our proofs are mechanized in Coq,
and this code in included in the artifact; a brief sketch of each proof is given here, but for
the full details refer to the code.

We start with a sketch of preservation.

I Theorem 1 (Preservation). For all K, te, T , e, S, and S′ such that {},K ` te : T  e,
e / S → e′ / S′, S is well-typed with respect to K, and both environments S and S′ are clean,
then there exists store typing K ′, typed expression te′, and type T ′ such that {},K ′ ` te′ :
T ′  e′ with T ′ <: T , S′ is well-typed with respect to K ′, and K ′ extends K.

Proof sketch. Standard proof by induction on the typing derivation {},K ` te : T  e.
Any case where the error expression is reached is in violation of the run-time environments
S and S′ being clean, as taint is required in order to get an error. J
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Essentially, the statement of preservation for Poseidon Lua differs from traditional
statements of preservation in the stipulation that the run-time environments S and S′ be
clean. Clean environments ensure that the C error expression cannot be reached, and that
the semantics are deterministic, as it’s the presence of taint which begets nondeterminism.

We can similarly show progress.

I Theorem 2 (Progress). For all K, te, T , e, and S such that {},K ` te : T  e, S is
well-typed with respect to K, and S is clean, then either e is a value, or there exists clean
environment S′, and expression e′ such that e / S → e′ / S′.

Proof sketch. Another standard proof by induction on the typing derivation {},K ` te :
T  e. As with preservation, any case where the error expression is reached is in violation
of the run-time environments S and S′ being clean. J

As was the case in preservation, the statement of progress here is distinguished by the
requirement that run-time environment S be clean. With a clean S′, progress connects
cleanly with preservation, allowing us to show soundness of Poseidon Lua contingent on clean
environments. A sketch of soundness follows.

I Theorem 3 (Soundness). For all K, te, T , e, and S such that {},K ` te : T  e, either
e diverges, or there exists clean environment S′, and value v such that e / S →∗ v / S′ and
all intermediate environments are clean.

Proof sketch. A standard proof, which basically amounts to applications of progress and
preservation, and the intermediate environment of each step in the chain of reductions is
guaranteed to be clean by construction (in a sense, progress generates clean environments). J

Roughly speaking, Theorem 3 states that Poseidon Lua programs in clean environments
do not get stuck. The restriction to clean environments is due to the guest language, C,
potentially interfering with the host language: C calls taint the environment, and accessing
tainted values can lead to a stuck state even in well-typed programs. This isn’t to say
that you can’t use C at all, as allocating simple pointers and structs does not taint the
environment, and it is equally valid if some taint was once present and had been cleaned by
successful accesses or writes.

So, what is the purpose of a soundness result such as the one presented here? What we
have shown is that programs cannot go wrong if we don’t venture into the C world, and
proving this is a baseline and sanity check of sorts: It is difficult to discuss the semantics of
the whole system if we do not at least know that one component of it is sound. Knowing
that a taint-free system allows sound execution allows, for instance, the argument that one
can recover sound execution by cleaning all tainted values out of the heap.

Unfortunately, our statement of soundness doesn’t say much for the realistic use case
of Poseidon Lua (and C FFIs in general), as these systems are designed to call C code.
That said, we are not without options: as before, our inclusion of taint allows us to reason
about C’s effects on the overall language. Crucially, failing C reductions result in the error
expression err β, and the taint information β can be used to identify the true culprit for the
crash, even if that culprit was some earlier, seemingly unrelated expression. In short, we can
show that C is to blame for failures in well-typed Poseidon Lua programs.

I Theorem 4 (Always Blame C). If the error expression err β is reached, then there exists
some C expression which is to blame.
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1 p = calloc Point
2 cCall1 (p)
3 cCall2 (p)
4 cCall3 (p)
5 print (p.x)
6
7

p = calloc Point
cCall1 (p)
print (p.x)
cCall2 (p)
print (p.x)
cCall3 (p)
print (p.x)

Figure 4 Illustrative example.

Proof sketch. Effectively, this can be shown by construction of our semantics. err β can
only be reached through reduction from a C expression, and the only way that such a
reduction can occur is if there was some taint in the run-time environment. In err β, β
is taint information which identifies some C call, cast, or allocation (as those are the only
expressions which can taint), and it’s the identified expression that will be blamed. J

At a high level, Theorem 4 indicates that run-time errors in well-typed Poseidon Lua
are attributable to C. This signifies that our interoperation scheme does not allow for any
additional errors which are the fault of the host language, and any errors introduced by the
C FFI can be traced back to C.

Taken together, Theorems 3 and 4 are analogous to soundness of static code and the
gradual guarantee in gradually typed languages [28][24], though the context is otherwise quite
different. This similarity betrays a certain connection between gradual typing and language
interoperation, a connection equally noted by aforementioned work on linking types [22].

As we know, program execution in a tainted environment is nondeterministic. In this
state, many executions are possible, and they can be categorized as follows: the program
either terminates successfully, terminates unsuccessfully, or it executes until the environment
is cleaned of taint. Interestingly, executions which clean the taint actually reclaim soundness,
and are deterministic at least until the next C call.

We can show one other interesting result about Poseidon Lua programs which call C.
First, recall that only clean locations gain taint when a C call occurred; this ensures proper
error tracking in the event of multiple C calls possibly tainting the same data. For an
illustrative example, consider the code in Figure 4.

Assume the leftmost program fails at the access to p.x, blaming cCall1 and identifying it
as the start of our search; here, we cannot say for sure which of cCall1, cCall2, or cCall3
mucked with p.x. However, we can generate a modified program which can isolate the
faulty C call. Consider the snippet on the right. If cCall1 was the culprit of the failure,
then the access immediately following it will fail. If not, and cCall2 was at fault, then the
access immediately after cCall2 will fail. If neither of these are true, then cCall3 is at fault,
causing the final access to p.x to fail. This amounts to fault localization: When we are
uncertain about which of a number of unsafe operations are at fault for a run-time failure,
we can generate a new program which isolates the faulty operation.
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5 Poseidon Lua: Implementation

As a demonstration of the practicality of these semantics, they have been implemented as
modifications to Lua 5.3.3 [13] and Typed Lua [14]. Lua is extended to provide low-level
interfaces, and Typed Lua is extended to make use of them with C types. The extensions to
Lua have no guarantees of safety or correctness on their own, and are treated as an internal
implementation language for the modifications of Typed Lua. Typed Lua is extended with
C types, through the addition of a C pointer in Lua which refers to C data (as explained
in Section 4.1).

Typed Lua’s grammar is extended as follows:

T ::= (all existing Typed Lua types) | PtrType
PtrType ::= ptr ptr* PtrTargetType
PtrTargetType ::= CVoidType | CPrimitiveType | Name
CType ::= CPrimitiveType | PtrType
CVoidType ::= void
CPrimitiveType ::= char | int | double
Statement ::= (all existing Typed Lua statements) | StructDeclaration
StructDeclaration ::= struct Name StructIdDecList end
StructIdDecList ::= StructIdDec StructIdDec*
StructIdDec ::= Id : CType
Expression ::= (all existing Typed Lua expressions) | CallocExpr
CallocExpr ::= calloc ( PtrTargetType )

T, in particular, is the existing Typed Lua non-terminal for types. As a consequence, any
variable, parameter or field in Poseidon Lua may contain a pointer to a C value, but may not
contain a C value directly. All other types are unmodified, and behave as they do in Typed
Lua. As in C, the Poseidon Lua compiler assures that every type named in a C pointer type
has a corresponding struct declaration, and that no name corresponds to multiple structure
declarations, and as in C, the struct declaration defines the memory layout of objects of that
type. Unlike in C, declarations are not required to precede uses of the type they declare. A
simple wrapper for calloc is provided to assure that allocations are always of the correct
size. For this prototype, we implemented only chars, ints and doubles, but there is no
conceptual limitation on implementing any other primitive type. For convenience, Poseidon
Lua also provides syntax and semantics for C arrays, but they are not discussed in this work.

This modified Typed Lua compiles to Lua, extended with intrinsics to manipulate memory
directly. Typed Lua code which doesn’t use C features is unchanged: That is, if C ptrs
are not used, calloc is not used, and the code passes type checking, then it compiles into
identical Lua code without type annotations or declarations (i.e. the types are erased).
Lua already provides a datatype, “light user data”, intended for storing pointers to C data,
and this datatype is used for all ptr-typed variables and fields. This is why Lua was used
for this prototype. However, Lua’s light user data is completely opaque to Lua code: In
order to use it, one must implement a C interface, from which the underlying pointers are
exposed. Our principle extensions to Lua are low-level operators to directly manipulate
memory through these pointers: CS_loadChar, CS_storeChar, and similar for ints, doubles
and pointers. In addition, CS_calloc and CS_free are provided to give direct access to
C’s calloc and free, a literal CS_NULL corresponding to C’s NULL is provided to check for
errors, and CS_loadString and CS_storeString are provided to convert between C strings
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struct House
num_rooms : int

end
local house_1 : ptr House = calloc (House)
house_1.num_rooms = 6

Figure 5 Simple Poseidon Lua code example.

local house_1 = CS_calloc (4)
CS_storeInt (house_1 , 0, 6)

Figure 6 Simple Lua code example compiled from Poseidon Lua.

(0-terminated char arrays) and Lua strings. “CS” in this context is an abbreviation of
“C Semantics”.

Each of these low-level operators converts data between Lua’s native data types and C’s,
given a C pointer stored in a Lua light user data, and an offset. The conversions themselves
are trivial. None of these operators are intended for direct use by end users. Instead, Poseidon
Lua’s Typed Lua implementation compiles code which uses C types – that is, code which
accesses members of ptr-typed variables or fields – to Lua which uses the correct operators.
Internally, each low-level operator is compiled to its own opcode in Lua’s bytecode.

As a simple example, the Poseidon Lua in Figure 5 compiles to the Lua in Figure 6.
As the changes in our semantics are concerned principally with C data, rather than C

functions, we use a modified luaffifb for the function component of the interface. Poseidon
Lua’s modified luaffifb is changed only by replacing their wrapper objects with Lua’s light
user data, which can then be handled by Typed Lua types. The jump between C and
Lua code incurs much less overhead than wrapping C data for use in Lua, so no further
modifications are necessary.

5.1 Performance
Poseidon Lua code which doesn’t use C types is just regular Typed Lua: when compiled into
Lua code this will be identical to the equivalent Typed Lua program being compiled into Lua,
and so will not display any performance difference. Thus, to compare the performance of
Poseidon Lua against luaffifb, we need benchmarks which particularly measure the access to
structured data. Unfortunately, we know of no benchmark suite intended specifically for this
purpose, so instead we ported four benchmarks from the Computer Language Benchmarks
Game [5]. The subset of benchmarks from CLBG were selected because they had Lua versions
which used structured data types. In each case, they were rewritten so that every structured
datatype used a C struct, the shape of which was taken from the C version of each benchmark.
In Poseidon Lua, these structs were represented as struct declarations, and in luaffifb, as
their dynamic declarations. In both cases, no actual C calls are made: The data is stored in
C-compatible structures, and accessed through them, but the benchmark code is entirely
Lua. We compare the performance of luaffifb, which uses wrappers, to Poseidon Lua, which
does not. We also include the original Lua benchmark, which does not use C structured data,
for reference, although we expect no significant performance difference with respect to it.
The results and standard deviations are shown in Table 1. As expected, Poseidon Lua shows
a substantial speedup over luaffifb, due to the absence of allocated wrappers at run-time.
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Table 1 Comparison of performance results over various benchmarks.

Poseidon Lua luaffifb Lua
Benchmark Time (s) Std. Dev. Time (s) Std. Dev. Time (s) Std. Dev.

binary-trees 18.8 0.447 202.4 2.97 22.0 0.707
n-body 4.0 0 40.6 1.14 4.0 0.707
spectral-norm 108.2 0 270.8 2.59 105.6 0.894
fannkuch-redux 66.8 2.95 528.8 9.68 55.0 0

Our performance is close to original Lua, though in some benchmarks the cost of converting
between C’s primitive types and Lua’s overwhelms other benefits.

The benchmarks were performed on Lua 5.3.3 as well as our modified version thereof, on
a quad-core 1.8GHz 64-bit Intel desktop PC running Ubuntu 14.04.3LTS.

6 Conclusions

In this paper, we presented a framework for reasoning about C FFIs without fully modelling
the guest language. This framework relies on making the data interface of the FFI static by
combining the type systems of the host and guest languages, and doesn’t require a model of
the guest language beyond its direct interactions with the host. We also saw how making the
data interface static eliminates the need for burdensome wrappers in FFI implementations,
as the host language can statically check its own use of the FFI instead of needing to rely on
the dynamic checks in the wrappers.

To showcase our framework, we presented Poseidon Lua, a Typed Lua C FFI. We gave the
formal semantics of the C FFI in Poseidon Lua, and even without modelling C were able to
guarantee some level of soundness of the host language, as well as prove that well-typed host
language code is not to blame for errors that occur. We also presented an implementation of
Poseidon Lua, and confirmed that making the data interface static does indeed improve the
performance of the FFI.

While we focus on a C FFI, in principle our approach also works for other choices of guest
language, as we deliberately avoid modelling C. That said, our model of C’s memory and
C’s types in the host language make languages with similar memory behavior to C’s most
suitable, though one could plug in any type system and model memory differently if they are
so inclined. We focused on a C FFI because they are very common, and prove particularly
challenging to reason about with traditional methods.
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A Appendix

A.1 Full Typing Rules
validType(TC) β unused

Γ,K ` calloc TC : ptrL TC  calloc TC β
(TT_CAlloc)

n < length(ΣC)
goodLayout(n, T,ΣC)

Γ, (ΣT ,ΣC ,ΣV ) ` ptrL nTC : ptrL TC  ptrL nTC

(TT_Lua_Ptr)

Γ,K ` te : ptrL TC  e

validForCDeref (TC) TL = coerceCType(TC)
Γ,K ` derefC te : TL  cget e 0 TC

(TT_Var_C_Deref)

Γ,K ` cfun (ct1 →C ct2) : (ct1 →C ct2) cfun
(TT_C_Function)

Γ,K ` te1 : (T →C T ′) e1
Γ,K ` te2 : T  e2 β unused

Γ,K ` te1(te2) : T ′  ccall e1 e2 T
′ β

(TT_C_Fun_Appl)

Γ,K ` te1 : ptrL T1  e1 structType(T1)
Γ,K ` te2 : s e2 s ∈ T1 n = offsetForType (s, T1)

Γ,K ` te1.te2 : T1(s) cget e1 n T1(s)
(TT_C_Dot_Access)

Γ,K ` te1 : ptrL T1  e1 structType (T1)
Γ,K ` te2 : s e2 Γ,K ` te3 : T1(s) e3

s ∈ T1 n = offsetForType (s, T1)
Γ,K ` te1.te2 := te3 : value cset e1 n e2 T1(s)

(TT_C_Dot_Update)

Γ,K ` te : ptrL T
′
C  e β unused

Γ,K ` ccast te TC : TC  ccast e TC β
(TT_C_Cast)

∀ i, fi = si : Ti ∨ fi = const si : Ti ∀ i, Γ,K ` tvi : Ti  vi

Γ,K ` {s1 = tv1, ..., sn = tvn} : {f1, ..., fn} {s1 = v1, ..., sn = vn}
(TT_Table)

Γ,K ` te1 : T  e1
Γ + {x 7→ T},K ` te2 : T ′  e2

Γ,K ` letx : T := te1 in te2 : T ′  letx := e1 in e2
(TT_Let)

x ∈ Γ
Γ,K ` x : Γ(x) x

(TT_Var)
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n < length(ΣT )
Γ, (ΣT ,ΣC ,ΣV ) ` regn : ΣT (n) regn

(TT_Reg)

Γ,K ` te : ref T  e

Γ,K ` deref te : T  deref e
(TT_Var_Deref)

x ∈ Γ
Γ,K ` te : Γ(x) e

Γ,K ` x := te : T  x := e
(TT_Var_Assign)

Γ, (ΣT ,ΣC ,ΣV ) ` te : ΣV (n) e

Γ, (ΣT ,ΣC ,ΣV ) ` locn := te : T  locn := e
(TT_Loc_Update)

Γ + {x 7→ T},K ` te : T ′  e

Γ,K ` λx : T.te : (T →L T ′) λx.e
(TT_Function)

Γ,K ` te1 : (T →L T ′) e1
Γ,K ` te2 : T  e2

Γ,K ` te1(te2) : T ′  e1(e2)
(TT_Lua_Fun_Appl)

Γ,K ` te1 : T1  e1 tableType (T1)
Γ,K ` te2 : s e2 s ∈ T1

Γ,K ` te1.te2 : T1(s) rawget e1 e2
(TT_Dot_Access)

Γ,K ` te1 : T1  e1 tableType (T1)
Γ,K ` te2 : s e2 s ∈ T1

Γ,K ` te3 : T1(s) e3

Γ,K ` te1.te2 := te3 : value rawset e1 e2 e3
(TT_Dot_Update)

Γ,K ` te : T  e T <: T ′

Γ,K ` te : T ′  e
(TT_Subsumption)

c constant
Γ,K ` c : c c

(TT_Const)

Γ,K ` te1 : number e1 Γ,K ` te2 : number e2
op ∈ {+,−, ∗, /}

Γ,K ` te1 op te2 : number e1 op e2
(TT_Binop_Arith)
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Γ,K ` te1 : number e1 Γ,K ` te2 : number e2
op ∈ {<,≤, >,≥}

Γ,K ` te1 op te2 : boolean e1 op e2
(TT_Binop_Order)

Γ,K ` te1 : boolean e1 Γ,K ` te2 : boolean e2
op ∈ {∧,∨}

Γ,K ` te1 op te2 : boolean e1 op e2
(TT_Binop_Bools)

Γ,K ` te1 : string e1
Γ,K ` te2 : T2  e2

T2 ∈ {string,number}
Γ,K ` te1 .. te2 : string e1 .. e2

(TT_Binop_String)

Γ,K ` te1 : T1  e1
Γ,K ` te2 : T2  e2

Γ,K ` te1 == te2 : boolean e1 == e2
(TT_Binop_Eq)

Γ,K ` te1 : T1  e1
Γ,K ` te2 : T2  e2

Γ,K ` te1; te2 : T2  e1; e2
(TT_Sequence)

A.2 Full Reduction Rules
n = length (σC)

σ′C = σC + layoutTypeAndTaint (TC , β)
callocTC β / σT / σC / σV → ptrnTC / σT / σ

′
C / σV

(R_CAlloc)

value (v2) v = makeValueOfType (ct2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → v / σT / σ

′
C / σV

(R_CCall_Worked)

value (v2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → errβ / σT / σ

′
C / σV

(R_CCall_Failed)

n < length(σC)
σC(n) = (v, TC , ∅) σ′C = update (σC , n, (v, T ′C , β))

ccast (ptrL nTC) T ′C β / σT / σC / σV → ptrL nT
′
C / σT / σ

′
C / σV

(R_CCast)

σC(n+ o) = (vC , TC , ∅) vout = coerceToLua(vC)
cget (ptrL nT

′
C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_No_Taint)
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σC(n+ o) = (v, TC , β) v′ = makeValueOfType (TC)
σ′C = update (σC , n+ o, (v′, TC , ∅) vout = coerceToLua(v′))

cget (ptrnT ′C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_Taint_Works)

σC(n+ o) = (v, TC , β)

cget (ptrnT ′C) o TC / σT / σC / σV → err β / σT / σC / σV

(R_CGet_Taint_Fails)

σC(n+ o) = (v, TC , ∅) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2/ σT / σ

′
C / σV

(R_CSet_No_Taint)

σC(n+ o) = (v, TC , β) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2 / σT / σ

′
C / σV

(R_CSet_Taint_Works)

σC(n+ o) = (v, TC , β)
cset (ptrL nT

′
C) o v2 TC / σT / σC / σV → err β / σT / σC / σV

(R_CSet_Taint_Fails)

n = length (σT ) tn = buildTable({s1 = v1, ..., sn = vn})
{s1 = v1, ..., sn = vn} / σT / σC / σV → (reg n) / σT + tn / σC / σV

(R_Table)

value (e1) l = length(σV )
letx := e1 in e2 / σT / σC / σV → [x← l] e2 / σT / σC / σV + e1

(R_Let)

value (e2) l = length(σV )
(λx.e)(e2) / σT / σC / σV → [x← l] e / σT / σC / σV + e2

(R_Fun_App)

σV (l) = v value(v)
deref (loc l) / σT / σC / σV → v / σT / σC / σV

(R_Loc_Deref)

value (e) σ′V = update (σV , l, e)
loc l := e / σT / σC / σV → e / σT / σC / σ

′
V

(R_Loc_Update)
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σT (n) = T T (s) = v

rawget (regn) s / σT / σC / σV → v / σT / σC / σV

(R_Rawget)

value (e3) σT (n) = T s ∈ T
T ′ = update (T, s, e3) σ′T = update (σT , n, T

′)
rawset (regn) s e3 / σT / σC / σV → regn /σ′T / σC / σV

(R_Rawset)

e / σT / σC / σV → e′ / σ′T / σ
′
C / σ

′
V

x := e / σT / σC / σV → x := e′ / σ′T / σ
′
C / σ

′
V

(R_Var_Assign_Step_1)

e / σT / σC / σV /→ e′ / σ′T / σ
′
C / σ

′
V

loc l := e / σT / σC / σV → loc l := e′ / σ′T / σ
′
C / σ

′
V

(R_Loc_Update_Step_1)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

letx := e1 in e2 / σT / σC / σV → letx := e′1 in e2 / σ
′
T / σ

′
C / σ

′
V

(R_Let_Step)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

rawget e1 e2 / σT / σC / σV → rawget e′1 e2 / σ
′
T / σ

′
C / σ

′
V

(R_Rawget_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

rawget e1 e2 / σT / σC / σV → rawget e1 e
′
2 / σ

′
T / σ

′
C / σ

′
V

(R_Rawget_Step_2)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

rawset e1 e2 e3 / σT / σC / σV → rawset e′1 e2 e3 / σ
′
T / σ

′
C / σ

′
V

(R_Rawset_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

rawset e1 e2 e3 / σT / σC / σV → rawset e1 e
′
2 e3 / σ

′
T / σ

′
C / σ

′
V

(R_Rawset_Step_2)

value (e1) value (e2)
e3 / σT / σC / σV → e′3 / σ

′
T / σ

′
C / σ

′
V

rawset e1 e2 e3 / σT / σC / σV → rawset e1 e2 e
′
3 / σ

′
T / σ

′
C / σ

′
V

(R_Rawset_Step_3)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

e1(e2) / σT / σC / σV → e′1(e2) / σ′T / σ′C / σ′V
(R_Fun_App_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

e1(e2) / σT / σC / σV → e1(e′2) / σ′T / σ′C / σ′V
(R_Fun_App_Step_2)
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e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

e1 op e2 / σT / σC / σV → e′1 op e2 / σ
′
T / σ

′
C / σ

′
V

(R_Binop_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

e1 op e2 / σT / σC / σV → e1 op e
′
2 / σ

′
T / σ

′
C / σ

′
V

(R_Binop_Step_2)

value (e1) value (e2)
validL (e1) validR (e2)

e1 op e2 / σT / σC / σV → evalOp (e1, e2, op) / σT / σC / σV

(R_Binop)

e / σT / σC / σV → e′ / σ′T / σ
′
C / σ

′
V

cget e o T / σT / σC / σV → cget e′ o T / σ′T / σ′C / σ′V
(R_Cget_Step)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

cset e1 o e2 T /σT / σC / σV → cset e′1 o e2 T /σ
′
T / σ

′
C / σ

′
V

(R_Cset_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

cset e1 o e2 T /σT / σC / σV → cset e1 o e
′
2 T /σ

′
T / σ

′
C / σ

′
V

(R_Cset_Step_2)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

e1; e2 / σT / σC / σV → e′1; e2 / σ
′
T / σ

′
C / σ

′
V

(R_Seq_Step_1)

value (e1)
e1; e2 / σT / σC / σV → e2 / σT / σC / σV

(R_Seq_Step_Through)
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