
Static Analysis for
Asynchronous JavaScript Programs
Thodoris Sotiropoulos1

Athens University of Economics and Business, Greece

Benjamin Livshits
Imperial College London, UK
Brave Software, London, UK

Abstract
Asynchrony has become an inherent element of JavaScript, as an effort to improve the scalability
and performance of modern web applications. To this end, JavaScript provides programmers with a
wide range of constructs and features for developing code that performs asynchronous computations,
including but not limited to timers, promises, and non-blocking I/O.

However, the data flow imposed by asynchrony is implicit, and not always well-understood by
the developers who introduce many asynchrony-related bugs to their programs. Worse, there are few
tools and techniques available for analyzing and reasoning about such asynchronous applications.
In this work, we address this issue by designing and implementing one of the first static analysis
schemes capable of dealing with almost all the asynchronous primitives of JavaScript up to the 7th
edition of the ECMAScript specification.

Specifically, we introduce the callback graph, a representation for capturing data flow between
asynchronous code. We exploit the callback graph for designing a more precise analysis that respects
the execution order between different asynchronous functions. We parameterize our analysis with
one novel context-sensitivity flavor, and we end up with multiple analysis variations for building
callback graph.

We performed a number of experiments on a set of hand-written and real-world JavaScript
programs. Our results show that our analysis can be applied to medium-sized programs achieving 79%
precision, on average. The findings further suggest that analysis sensitivity is beneficial for the vast
majority of the benchmarks. Specifically, it is able to improve precision by up to 28.5%, while it
achieves an 88% precision on average without highly sacrificing performance.

2012 ACM Subject Classification Theory of computation → Program analysis; Software and its
engineering → Semantics

Keywords and phrases static analysis, asynchrony, JavaScript

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.8

Related Version A full version of the paper is available at https://www.imperial.ac.uk/
media/imperial-college/faculty-of-engineering/computing/public/1718-pg-projects/
SotiropoulosT-Static-Analysis-for-Asynchronous-JavaScript-Programs.pdf.

Funding The work described here was partially supported by the CROSSMINER Project, which
has received funding from the European Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No. 732223.

Acknowledgements We would like to thank the anonymous ECOOP reviewers, as well as Max
Schlueter and Dimitris Mitropoulos for their insightful comments and feedback.

1 The work of this author was mostly done while at Imperial College London.

© Thodoris Sotiropoulos and Benjamin Livshits;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 8; pp. 8:1–8:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2019.8
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1718-pg-projects/SotiropoulosT-Static-Analysis-for-Asynchronous-JavaScript-Programs.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1718-pg-projects/SotiropoulosT-Static-Analysis-for-Asynchronous-JavaScript-Programs.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1718-pg-projects/SotiropoulosT-Static-Analysis-for-Asynchronous-JavaScript-Programs.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Static Analysis for Asynchronous JavaScript Programs

1 Introduction

JavaScript is an integral part of web development. Since its initial release in 1995, it has
evolved from a simple scripting language – primarily used for interacting with web pages –
into a complex and general-purpose programming language used for developing both client-
and server-side applications. The emergence of Web 2.0 along with the dynamic features of
JavaScript, which facilitate a flexible and rapid development, have led to a dramatic increase
in its popularity. Indeed, according to the annual statistics provided by Github, which is the
leading platform for hosting open-source software, JavaScript is by far the most popular and
active programming language from 2014 to 2018 [14].

Although the dominance of JavaScript is impressive, the community has widely criticized
it because it poses many concerns as to the security or correctness of the programs [36].
JavaScript is a language with a lot of dynamic and metaprogramming features, including
but not limited to prototype-based inheritance, dynamic property lookups, implicit type
coercions, dynamic code loading, and more. Many developers often do not understand or
do not properly use these features. As a result, they introduce errors to their programs –
which are difficult to debug – or baleful security vulnerabilities. In this context, JavaScript
has attracted many engineers and researchers over the past decade to: (1) study and reason
about its peculiar characteristics, and (2) develop new tools and techniques – such as type
analyzers [19, 23, 21], IDE and refactoring tools [6, 7, 8, 11], or bug and vulnerability
detectors [28, 15, 34, 31, 5, 37] – to assist developers with the development and maintenance
of their applications. Program analysis, and especially static analysis, plays a crucial role in
the design of such tools [38].

Additionally, preserving the scalability of modern web applications has become more
critical than ever. As an effort to improve the throughput of web programs, JavaScript
has started to adopt an event-driven programming paradigm [4]. In this context, code is
executed asynchronously in response to certain events, e.g., user input, a response from a
server, data read from disk, etc. In the first years of JavaScript, someone could come across
that asynchrony mainly in a browser environment e.g., DOM events, AJAX calls, timers,
etc. However, in recent years, asynchrony has become a salient and intrinsic element of the
language, as newer versions of the language’s core specification (i.e., ECMAScript) have
introduced more and more asynchronous features. For example, ECMAScript 6 introduces
promises; an essential element of asynchronous programming that allows developers to track
the state of an asynchronous computation easily. Specifically, the state of a promise object
can be: (1) fulfilled when the associated operation is complete, and the promise object tracks
its resulting value, (2) rejected when the associated operation has failed, and (3) pending
when the associated operation has been neither completed nor failed.

Promises are particularly useful for asynchronous programming because they provide an
intuitive way for creating chains of asynchronous computation that facilitate the enforcement
of program’s execution order as well as error propagation [12, 11]. Depending on their state,
promises trigger the execution of certain functions (i.e., callbacks) asynchronously. To do so,
the API of promises provides the method x.then(f1, f2) for registering new callbacks (i.e.,
f1 and f2) on a promise object x. For example, we call the callback f1 when the promise is
fulfilled, while we trigger the callback f2 once the promise is rejected. The method x.then()
returns a new promise which the return value of the provided callbacks (i.e., f1, f2) fulfills.
Since their emergence, JavaScript developers have widely embraced promises. For example,
a study in 2015 showed that 75% of JavaScript frameworks use promises [12].

T. Sotiropoulos and B. Livshits 8:3

1 asyncRequest(url, options)
2 .then(function (response) {
3 honoka.response = response.clone();
4
5 switch (options.dataType.toLowerCase()) {
6 case "arraybuffer":
7 return honoka.response.arrayBuffer();
8 case "json":
9 return honoka.response.json();

10 ...
11 default:
12 return honoka.response.text();
13 }
14 })
15 .then(function (responseData) {
16 if (options.dataType === "" || options.dataType === "auto") {
17 const contentType = honoka.response.headers.get("Content-Type");
18 if (contentType && contentType.match("/application\/json/i")) {
19 responseData = JSON.parse(responseData);
20 }
21 }
22 ...
23 });

Figure 1 Real-world example that mixes promises with asynchronous I/O.

Building upon promises, newer versions of ECMAScript have added more language
features related to asynchrony. Specifically, in ECMAScript 8, we have the async/await
keywords. The async keyword declares a function as asynchronous that returns a promise
fulfilled with its return value, while await x defers the execution of an asynchronous function
until the promise object x is settled (i.e., it is either fulfilled or rejected). The latest edition
of ECMAScript (ECMAScript 9) adds asynchronous iterators and generators that allow
developers to iterate over asynchronous data sources.

Beyond promises, many JavaScript applications are written to perform non-blocking I/O
operations. Unlike traditional statements, when we perform a non-blocking I/O operation,
the execution is not interrupted until I/O terminates. By contrast, the I/O operation is done
asynchronously, which means that the execution proceeds to the next tasks while I/O takes
place. Programmers often mix asynchronous I/O with promises. For instance, consider the
real-world example of Figure 1. At line 1, the code performs an asynchronous request and
returns a promise object that is fulfilled asynchronously once the request succeeds. Then,
this promise object can be used for processing the response of the server asynchronously. For
instance, at lines 2–23, we create a promise chain. The first callback of this chain (lines 2–14)
clones the response of the request, and assigns it to the property response of the object
honoka (line 3). Then, it parses the body of the response, and finally, the return value of the
callback fulfills the promise object allocated by the first invocation of then() (lines 5–13).
The second callback (lines 15–23) retrieves the headers of the response – which the statement
at line 3 assigns to honoka.response – and if the content type is “application/json”, it
converts the data of the response into a JSON object (lines 17–19).

Like the other characteristics of JavaScript, programmers do not always clearly understand
asynchrony, as a large number of asynchrony-related questions issued in popular sites like
stackoverflow.com2 [27, 26], or the number of bugs reported in open-source repositories [39,
5] indicate. However, existing tools and techniques have limited (and in many cases no)

2 https://stackoverflow.com/

ECOOP 2019

https://stackoverflow.com/

8:4 Static Analysis for Asynchronous JavaScript Programs

support for asynchronous programs. Designing static analysis for asynchrony involves several
challenges not addressed by previous work. In particular, existing tools mainly focus on the
event system of client-side JavaScript applications [18, 33], and they lack the support of the
more recent features added to the language, such as promises. Also, many previous tools
conservatively consider that all the asynchronous callbacks processed by the event loop – the
program point that continuously waits for new events to come and is responsible for the
scheduling and execution of callbacks – can be called in any order [18, 33, 21]. However, such
an approach may lead to imprecision and false positives. Back to the example of Figure 1, it is
easy to see that an analysis that does not respect the execution order between the first and the
second callback will report a type error at line 17 (access of honoka.response.headers.get
(" Content - Type ")). Specifically, an imprecise analysis assumes that the callback defined
at lines 15–23 might be executed first; therefore, honoka.response, assigned at line 3, might
be uninitialized.

In this work, we tackle the issues above, by designing and implementing a static analysis
that deals with asynchronous JavaScript programs. To do so, we first propose a model for
understanding and expressing a wide range of asynchronous constructs found in JavaScript.
Based on this model, we design our static analysis. We propose a new representation,
which we call callback graph, that provides information about the execution order of the
asynchronous code. The callback graph proposed in this work tries to shed light on how data
flow between asynchronous code is propagated. Contrary to previous works, we leverage
the callback graph and devise a more precise analysis that respects the execution order of
asynchronous functions. Furthermore, we parameterize our analysis with one novel context-
sensitivity option designed for asynchronous code. Specifically, we distinguish data flow
between asynchronous callbacks based on the promise object that they belong to, or the next
computation that the execution proceeds to.

Contributions. Our work makes the following four contributions:
We propose a calculus, i.e., λq, for modeling asynchrony. Our calculus unifies differ-
ent asynchronous idioms into a single model. Thus, we can express promises, timers,
asynchronous I/O, and other asynchronous features found in the language (§2).
We design and implement a static analysis that is capable of handling asynchronous
JavaScript programs by exploiting the abstract version of λq. To the best of our knowledge,
our analysis is the first to deal with JavaScript promises (§3.1).
We propose the callback graph, a representation that illustrates the execution order
between asynchronous callbacks. Building on that, we propose a more precise analysis,
(i.e., callback-sensitive analysis) that internally consults the callback graph to retrieve
information about the temporal relations of asynchronous functions so that it propagates
data flow accordingly. Besides that, we parameterize our analysis with a novel context-
sensitivity option (i.e., QR-sensitivity) used for distinguishing asynchronous callbacks.
(§3.2, §3.3).
We evaluate the performance and the precision of our analysis on a set of micro benchmarks
and a set of real-world JavaScript modules. For the impatient reader, we find that our
prototype is able to analyze medium-sized asynchronous programs, and the analysis
sensitivity is beneficial for improving the analysis precision. The results showed that
our analysis is able to achieve a 79% precision for the callback graph, on average. The
analysis sensitivity (i.e. callback- and QR-sensitivity) can further improve callback graph
precision by up to 28.5% and reduce the total number of type errors by 13.9% as observed
in the real-world benchmarks (§4).

T. Sotiropoulos and B. Livshits 8:5

v ∈ V al ::= ... | ⊥
e ∈ Exp ::= ...

| newQ() | e.fulfill(e) | e.reject(e) | e.registerFul(e, e, . . .) | e.registerRej(e, e, . . .)
| append(e) | pop() | •

E ::= ...
| E.fullfill(e) | v.fulfill(E) | E.reject(e) | v.reject(E)
| E.registerFul(e, e, . . .) | v.registerFul(v, . . . , E, e, . . .)
| E.registerRej(e, e, . . .) | v.registerRej(v, . . . , E, e, . . .)
| append(E)

Figure 2 The syntax of λq.

2 Modeling Asynchrony

As a starting point, we need to define a model to express asynchrony. The goal of this model
is to provide us with the foundations for gaining a better understanding of the asynchronous
primitives and ease the design of a static analysis for asynchronous JavaScript programs.
This model is expressed through a calculus called λq; an extension of λjs which is the core
calculus for JavaScript developed by Guha et. al. [16]. Our calculus is inspired by previous
work [26, 25], however, it is designed to be flexible so that we can express promises, timers,
asynchronous I/O, and other sources of asynchrony found in the language up to ECMAScript
7, such as thenables. Also unlike previous work – as we will see later on – our calculus enables
us to model the effects of the exceptions trapped by the event loop. Additionally, we are
able to handle callbacks that are invoked with arguments passed during callback registration;
something that is not supported by the previous models. However, note that λq does not
handle the async/await keywords and the asynchronous iterators/generators introduced in
the recent editions of the language.

2.1 The λq calculus
The key component of our model is queue objects. Queue objects are closely related to
JavaScript promises. Specifically, a queue object – like a promise – tracks the state of an
asynchronous job, and it can be in one of the following states: (1) pending, (2) fulfilled or
(3) rejected. A queue object may trigger the execution of callbacks depending on its state.
Initially, a queue object is pending. A pending queue object can transition to a fulfilled or
a rejected queue object. A queue object is fulfilled or rejected with a value. This value is
later passed as an argument of the corresponding callbacks. Once a queue object is either
fulfilled or rejected, its state is final and cannot be changed. We keep the same terminology
as promises, so if a queue object is either fulfilled or rejected, we call it settled.

2.1.1 Syntax and Domains
Figure 2 illustrates the syntax of λq. For brevity, we present only the new constructs added
to the language. Specifically, we add eight new expressions:

newQ(): This expression creates a fresh queue object in a pending state. It has no callbacks
associated with it.
e1.fulfill(e2): This expression fulfills the receiver (i.e., the expression e1) with the value
of e2.

ECOOP 2019

8:6 Static Analysis for Asynchronous JavaScript Programs

a ∈ Addr = {li | i ∈ Z∗} ∪ {ltime, lio}
π ∈ Queue = Addr ↪→ QueueObject

q ∈ QueueObject = QueueState× Callback∗ × Callback∗ ×Addr∗

s ∈ QueueState = {pending} ∪ ({fulfilled, rejected} × V al)
clb ∈ Callback = Addr × F × V al∗

κ ∈ ScheduledCallbacks = Callback∗

κ ∈ ScheduledT imerIO = Callback∗

φ ∈ QueueChain = Addr∗

Figure 3 The concrete domains of λq.

e1.reject(e2): This expression rejects the receiver (i.e., the expression e1) with the value
of e2.
e1.registerFul(e2, e3, . . .): This expression registers the callback e2 to the receiver. This
callback is executed only when the receiver is fulfilled. This expression also expects
another queue object passed as the second argument, i.e., e3. This queue object will
be fulfilled with the return value of the callback e2. This allows us to model chains of
promises where a promise resolves with the return value of another promise’s callback.
This expression might receive optional parameters (i.e., expressed through “. . . ”) with
which e2 is called when the queue object is fulfilled with ⊥ value. We will justify the
intuition behind that later on.
e1.registerRej(e2, e3, . . .): The same as e.registerFul(. . .), but this time the given callback is
executed once the receiver is rejected.
append(e): This expression appends the queue object e to the top of the current queue
chain. As we will see later, the top element of a queue chain corresponds to the queue
object that is needed to be rejected when the execution encounters an uncaught exception.
pop(): This expression pops the top element of the current queue chain.
The last expression • stands for the event loop.

Observe that we use evaluation contexts [9, 16, 27, 25, 26] to express how the evaluation
of an expression proceeds. The symbol E denotes which sub-expression is currently being
evaluated. For instance, E.fulfill(e) describes that we evaluate the receiver of fulfill, whereas
v.fulfill(E) implies that the receiver has been evaluated to a value v, and the evaluation
now lies on the argument of fulfill. Beyond those expressions, the λq calculus introduces a
new value, that is, ⊥. This value differs from null and undefined because it expresses the
absence of value. Thus, it does not have correspondence with any JavaScript value.

Figure 3 presents the semantic domains of λq. In particular, a queue is a partial map
of addresses to queue objects. The symbol li – where i is a positive integer – indicates an
address. Notice that the set of the addresses also includes two special reserved addresses,
i.e., ltime, lio. We use these two addresses to store the queue objects responsible for keeping
the state of callbacks related to timers and asynchronous I/O respectively (Section 2.1.4
explains how we model those JavaScript features). A queue object is described by its state –
recall that a queue object is either pending or fulfilled and rejected with a value – a sequence
of callbacks executed on fulfillment, and a sequence of callbacks called on rejection. The
last element of a queue object is a sequence of addresses. These addresses correspond to

T. Sotiropoulos and B. Livshits 8:7

the queue objects that are dependent on the current. A queue object q1 depends on q2,
when q1 is settled whenever q2 is settled. This means that when the queue object q2 is
fulfilled (rejected), q1 is also fulfilled (rejected) with the same value as q2. We create such
dependencies when we settle a queue object with another queue object. In this case, the
receiver is dependent on the queue object used as an argument.

Moving to the domains of callbacks, we see that a callback consists of an address, a
function, and a list of values (i.e., arguments of the function). Note that the first component
denotes the address of the queue object that is fulfilled with the return value of the function.
In the list of callbacks κ ∈ ScheduledCallbacks, we keep the order in which callbacks are
scheduled. Note that we maintain one more list of callbacks (i.e., τ ∈ ScheduledT imerIO)
where we store the callbacks registered on the queue objects located at the addresses ltime, lio.
We defer the discussion about why we keep two separate lists until Section 2.1.3.

A queue chain φ ∈ QueueChain is a sequence of addresses. In a queue chain, we store the
queue object that we reject, when there is an uncaught exception in the current execution.
Specifically, when we encounter an uncaught exception, we inspect the top element of the
queue chain, and we reject it. If the queue chain is empty, we propagate the exception to the
call stack as usual.

2.1.2 Semantics
Equipped with the appropriate definitions of the syntax and domains, in Figure 4, we present
the small-step semantics of λq which is an adaptation of previous calculi [25, 26]. Note that
we demonstrate the most representative rules of our semantics; we omit some rules for brevity.
For what follows, the binary operation denoted by the symbol · means the addition of an
element to a list, the operation indicated by :: stands for list concatenation, while ↓i means
the projection of the ith element.

The rules of our semantics adopt the following form:

π, φ, κ, τ, E[e]→ π′, φ′, κ′, τ ′, E[e′]

That form expresses that a given queue π, a queue chain φ, two sequences of callbacks κ and
τ , and an expression e in the evaluation context E lead to a new queue π′, a new queue chain
φ′, two new sequences of callbacks κ′ and τ ′, and a new expression e′ in the same evaluation
context E, assuming that the expression e is reduced to e′ (i.e., e ↪→ e′). The [e-context]
rule describes this behavior.

The [newQ] rule creates a new queue object and adds it to the queue using a fresh
address. This new queue object is pending, and it does not have any callbacks related to it.

The [fulfill-pending] rule demonstrates the case when we fulfill a pending queue
object with the value v, where v 6= ⊥, and v 6∈ dom(π) (i.e., it does not correspond to any
queue object). First, we change the state of the receiver object from “pending” to “fulfilled”.
Second, we update the already registered callbacks (if any) by setting the value v as the only
argument of them (forming the list t′). Third, we asynchronously fulfill any queue object
that depend on the current one (see the list d). To do so, we form the list of callbacks f .
Every element (α, λx.x, [v]) ∈ f contains the identity function λx.x that is invoked with the
value v. Upon exit, the identity function fulfills the queue object α, where α ∈ d. Then, we
add the updated callbacks t′ and the list of functions f to the list of scheduled callbacks κ.
Notice that the receiver must be neither ltime nor lio. Also, note that the callbacks of f are
scheduled before those included in t′ (i.e., κ′ = κ :: (f :: t′)). This means that we fulfill any
dependent queue objects before the execution of callbacks.

ECOOP 2019

8:8 Static Analysis for Asynchronous JavaScript Programs

e-context
e ↪→ e′

π, φ, κ, τ, E[e]→ π′, φ′, κ′, τ ′, E[e′]

newQ
freshα π′ = π[α 7→ (pending, [], [], [])]

π, φ, κ, τ, E[newQ()]→ π′, φ, κ, τ, E[α]

fulfill-pending
v 6= ⊥ (pending, t, k, d) = π(p) v 6∈ dom(π)

t′ = 〈(α, f, [v]) | (α, f, a) ∈ t〉 f = 〈(α, λx.x, [v]) | α ∈ d〉
κ′ = κ :: (f :: t′) χ = (fulfilled, v) π′ = π[p 7→ (χ, [], [], [])]

p 6= ltime ∧ p 6= lio

π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ′, τ, E[undef]

fulfill-pend-pend
π(p) ↓1= pending v ∈ dom(π)

(pending, t, k, d) = π(v) π′ = π[v 7→ (pending, t, k, d · p)]
π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ, τ, E[undef]

fulfill-pend-ful
π(p) ↓1= pending v ∈ dom(π) π(v) ↓1= (fulfilled, v′)

π, φ, κ, τ, E[p.fulfill(v)]→ π, φ, κ, τ, E[p.fulfill(v′)]

fulfill-settled
π(p) ↓1 6= pending

π, φ, κ, τ, E[p.fulfill(v)]→ π, φ, κ, τ, E[undef]

registerFul-pending
(pending, t, k, d) = π(p) t′ = t · (p′, f, [n1, n2, . . . , nn])

π′ = π[p 7→ (pending, t′, k, d)]
π, φ, κ, τ, E[p.registerFul(f, p′, n1, n2, . . . , nn)]→ π′, φ, κ, τ, E[undef]

registerFul-fulfilled
p 6= ltime ∧ p 6= lio π(p) ↓1= (fulfilled, v)

v 6= ⊥ κ′ = κ · (p′, f, [v])
π, φ, κ, τ, E[p.registerFul(f, p′, n1, n2, . . . , nn)]→ π, φ, κ′, τ, E[undef]

registerFul-fulfilled-⊥
p 6= ltime ∧ p 6= lio π(p) ↓1= (fulfilled,⊥)

κ′ = κ · (p′, f, [n1, n2, . . . , nn])
π, φ, κ, τ, E[p.registerFul(f, p′, n1, n2, . . . , nn)]→ π, φ, κ′, τ, E[undef]

registerFul-timer-io-⊥
p = ltime ∨ p = lio π(p) ↓1= (fulfilled,⊥)

τ ′ = τ · (p′, f, [n1, n2, . . . , nn])
π, φ, κ, τ, E[p.registerFul(f, p′, n1, n2, . . . , nn)]→ π, φ, κ, τ ′, E[undef]

append
p ∈ dom(π) φ′ = p · φ

π, φ, κ, τ, E[append(p)]→ π, φ′, κ, τ, E[undef]

pop

π, p · φ, κ, τ, E[pop()]→ π, φ, κ, τ, E[undef]

error
φ = p · φ′

π, φ, κ, τ, E[err v]→ π, φ′, κ, τ, E[p.reject(v)]

Figure 4 The semantics of λq.

T. Sotiropoulos and B. Livshits 8:9

Remark. When we fulfill a queue object with a ⊥ value (i.e., v = ⊥), we do not update the
arguments of the callbacks registered on the queue object p. In other words, we follow all
the steps described in the [fulfill-pending] rule except for creating the list t′. We omit
the corresponding rule for brevity.

The [fulfill-pend-pend] describes the scenario of fulfilling a pending queue object
p with another pending queue object v. In this case, we do not fulfill the queue object p
synchronously. Instead, we make it dependent on the queue object v given as an argument.
To do so, we update the queue object v by adding p to its list of dependent queue objects
(i.e., d · p). Notice that both p and v remain pending.

The [fulfill-pend-ful] rule demonstrates the case when we try to fulfill a pending
queue object p with the fulfilled queue object v. Then, p resolves with the same value as the
queue object v. This is expressed by the resulting expression p.fulfill(v′).

The [fulfill-settled] rule illustrates the case when we try to fulfill a settled queue
object. This rule does not update the state.

The [registerFul-pending] rule adds the provided callback f to the list of callbacks
that we should execute once the queue object p is fulfilled. Note that this rule also associates
this callback with the queue object p′ given as the second argument. This means that p′
is fulfilled upon the termination of f . Also, this rule adds any extra arguments passed in
registerFul as the arguments of f .

The [registerFul-fulfilled] rule adds the given callback f to the list κ (assuming
that the receiver is neither ltime nor lio). We use the fulfilled value of the receiver as the
only argument of the given function. Like the previous rule, it relates the provided queue
object p′ with the execution of the callback. This time we do ignore any extra arguments
passed in registerFul, as we fulfill the queue object p with a value that is not ⊥.

The [registerFul-fulfilled-⊥] rule describes the case where we register a callback f
on a queue object fulfilled with a ⊥ value. Unlike the [registerFul-fulfilled] rule, this
rule does not neglect any extra arguments passed in registerFul. In particular, it makes them
parameters of the given callback. This distinction allows us to pass arguments explicitly to a
callback. Most notably, these arguments are not dependent on the value with which a queue
object is fulfilled or rejected. For example, this rules enables us to model extra arguments
passed in a timer- or asynchronous I/O-related callback (e.g., setTimeout(func, 10, arg1,
arg2), etc.).

The [registerFul-timer-io-⊥] rule is the same as the previous one, but this time we
deal with queue objects located either at ltime or lio. Thus, we add the given callback f to
the list τ instead of κ.

The [append] rule appends the element p to the front of the current queue chain. Note
that this rule requires the element p to be a queue object (i.e., p ∈ dom(π)). On the other
hand, the [pop] rule removes the top element of the queue chain.

The [error] rule demonstrates the case when we encounter an uncaught exception, and
the queue chain is not empty. In that case, we do not propagate the exception to the caller,
but we pop the queue chain and get the top element. In turn, we reject the queue object p
specified in that top element. In this way, we capture the actual behavior of the uncaught
exceptions triggered during the execution of an asynchronous callback.

2.1.3 Modeling the Event Loop
A reader might wonder why do we keep two separate lists, i.e., the list τ for holding callbacks
coming from the ltime or lio queue objects, and the list κ for callbacks stemming from any
other queue object. The intuition behind this design choice is that it is convenient for us to

ECOOP 2019

8:10 Static Analysis for Asynchronous JavaScript Programs

event-loop
κ = (q, f, a) · κ′ φ = [] φ′ = q · φ

π, φ, κ, τ, E[•]→ π, φ′, κ′, τ, q.fulfill(E[f(a)]); pop(); •

event-loop-timers-io
pick (q, f, a)from τ

τ ′ = 〈ρ | ∀ρ ∈ τ.ρ 6= (q, f, a)〉 φ = [] φ′ = q · φ
π, φ, [], E[•]→ π, φ′, [], τ ′, q.fulfill(E[f(a)]); pop(); •

Figure 5 The semantics of the event loop.

e ∈ Exp ::= ...
| addTimerCallback(e1, e2, e3, . . .) | addIOCallback(e1, e2, e3, . . .)

E ::= ...
| addTimerCallbackCallback(E, e, . . .) | addTimerCallback(v, . . . , E, e, . . .)
| addIOCallback(E, e, . . .) | addIOCallback(v, . . . , E, e, . . .)

Figure 6 Extending the syntax of λq to deal with timers and asynchronous I/O.

model the concrete semantics of the event loop correctly. In particular, the implementation
of the event loop assigns different priorities to the callbacks depending on their kind [25, 32].
For example, the event loop processes a callback of a promise object before any timer- or
asynchronous I/O-related callback regardless of their registration order.

In this context, Figure 5 demonstrates the semantics of the event loop. The [event-loop]
rule pops the first scheduled callback from the list κ. We get the queue object q included
in that callback, and we attach it to the front of the queue chain. Adding q to the top of
the queue chain allows us to reject that queue object, when there is an uncaught exception
during the execution of f . In this case, the evaluation of fulfill will not have any effect on the
already rejected queue object q (recall the [fullfill-settled] rule). Furthermore, observe
how the event loop is reduced, i.e., q.fulfill(f(a)); pop(); •. Specifically, once we execute the
callback f and fulfill the dependent queue object q with the return value of f , we evaluate
the pop() expression. This means that we pop the top element of the queue chain before
re-evaluating the event loop. This is an invariant of the semantics of the event loop: every
time we evaluate it, the queue chain is always empty.

The [event-loop-timers-io] rule handles the case when the list κ is empty. In other
words, the rule states that when there are not any callbacks that neither come from the
ltime nor the lio queue object, inspect the list τ , and pick non-deterministically one of those.
Selecting a callback non-deterministically allows us to over-approximate the actual behavior
of the event loop regarding its different execution phases [25]. Overall, the rule describes the
scheduling policy presented in the work of Loring et. al. [25], where initially we look for any
promise-related callback (if any). Otherwise, we choose any callback associated with timers
or asynchronous I/O at random.

2.1.4 Modeling Timers & Asynchronous I/O
To model timers and asynchronous I/O, we follow a similar approach to the work of Loring
et. al. [25]. Specifically, we start with an initial queue π that contains two queue objects: the
qtime, and qio that are located at ltime and lio respectively. Both qtime and qio are initialized
as ((fulfilled,⊥), [], [], []). We extend the syntax of λq by adding two more expressions. Figure 6

T. Sotiropoulos and B. Livshits 8:11

add-timer-callback
q = π(ltime)

π, φ, κ, τ, addTimerCallback(f, n1, . . .)→ π, φ, κ, q.registerFul(f, q, n1, . . .)

add-io-callback
q = π(lio)

π, φ, κ, τ, addIOCallback(f, n1, . . .)→ π, φ, κ, q.registerFul(f, q, n1, . . .)

Figure 7 Extending the semantics of λq to deal with timers and asynchronous I/O.

shows the extended syntax of λq to deal with timers and asynchronous I/O, while Figure 7
presents the rules related to those expressions.

The new expressions have high correspondence to each other. Specifically, the
addTimerCallback(. . .) construct adds the callback e1 to the queue object located at the
address ltime. The arguments of that callback are any optional parameters passed in
addTimerCallback, i.e., e2, e3, and so on. From Figure 7, we observe that the [add-timer-
callback] rule retrieves the queue object q corresponding to the address ltime. Recall again
that the ltime can be found in the initial queue. Then, the given expression is reduced to
q.registerFul(f, q, n1, . . .). In particular, we add the new callback f to the queue object
found at ltime. Observe that we pass the same queue object (i.e., q) as the second argument
of registerFul. Recall from Figure 4, according to the [fulfill-settled] rule, trying to
fulfill (and similarly to reject) a settled queue object does not have any effect on the state.
Beyond that, since q is fulfilled with ⊥, the extra arguments (i.e., n1,. . .) are also passed as
arguments in the invocation of f .

The semantics of the addIOCallback(. . .) primitive is the same with that of
addTimerCallback(. . .); however, this time, we use the queue object located at lio.

2.2 Expressing Promises in Terms of λq

The queue objects and their operations introduced in λq are very closely related to JavaScript
promises. Therefore, the translation of promises’ operations into λq is straightforward. We
model every property and method (except for Promise.all()) by faithfully following the
ECMAScript specification.

1 Promise.resolve = function(value) {
2 var promise = newQ();
3 if (typeof value.then === "function") {
4 var t = newQ();
5 t.fulfill(⊥);
6 t.registerFul(value.then, t, promise.fulfill, promise.reject);
7 } else
8 promise.fulfill(value);
9 return promise;

10 }

Figure 8 Expressing Promise.resolve in terms of λq.

ECOOP 2019

8:12 Static Analysis for Asynchronous JavaScript Programs

Example – Modeling Promise.resolve(). In Figure 8, we see how we model the
Promise.resolve() function in terms of λq

3. The JavaScript Promise.resolve() function
creates a new promise, and resolves it with the given value. According to ECMAScript, if
the given value is a thenable, (i.e., an object that has a property named “then” and that
property is a callable), the created promise resolves asynchronously. Specifically, we execute
the function value.then() asynchronously, and we pass the resolving functions (i.e., fulfill,
reject) as its arguments. Observe how the expressiveness of λq can model this source of
asynchrony (lines 4–6), which we cannot model through the previous work [26, 25]. First, we
create a fresh queue object t, and we fulfill it with ⊥ (lines 4, 5). Then, at line 6, we schedule
the execution of value.then() by registering it on the newly created queue object t. Notice
that we also pass promise.fulfill and promise.reject as extra arguments. This means
that those functions will be the actual arguments of value.then() because t is fulfilled
with ⊥. On the other hand, if value is not a thenable, we synchronously resolve the created
promise using the promise.fulfill construct at line 8.

3 The Core Analysis

The λq calculus presented in Section 2 is the touchstone of the static analysis proposed for
asynchronous JavaScript programs. The analysis is designed to be sound; thus, we devise
abstract domains and semantics that over-approximate the behavior of λq. Currently, there
are few implementations available for asynchronous JavaScript, and previous efforts mainly
focus on modeling the event system of client-side applications [18, 33]. To the best of our
knowledge, it is the first static analysis for ES6 promises. The rest of this section describes
the details of the analysis.

3.1 The Analysis Domains

l ∈ Âddr = {li | i is an allocation site} ∪ {ltime, lio}

π ∈ Q̂ueue = Âddr ↪→ P(̂QueueObject)

q ∈ ̂QueueObject = ̂QueueState× P(̂Callback)× P(̂Callback)× P(Âddr)

qs ∈ ̂QueueState = {pending} ∪ ({fulfilled, rejected} × V alue)

clb ∈ ̂Callback = Âddr × F × V alue∗

κ ∈ ̂ScheduledCallbacks = (P(̂Callback))∗

τ ∈ ̂ScheduledT imerIO = (P(̂Callback))∗

φ ∈ ̂QueueChain = (P(Âddr))∗

Figure 9 The abstract domains of λq.

3 For brevity, Figure 8 omits some steps described in the specification of the Promise.resolve() function.
For example, according to ECMAScript, if this value of the Promise.resolve() function is not an
object, then a TypeError is thrown. In the implementation, though, we follow all the steps that are
described in the specification.

T. Sotiropoulos and B. Livshits 8:13

Figure 9 presents the abstract domains of the λq calculus that underpin our static analysis.
Below we make a summary of our primary design choices.

Abstract Addresses: As a starting point, we employ allocation site abstraction for modeling
the space of addresses. It is the standard way used in literature for abstracting addresses
that keeps the domain finite [19, 27]. Notice that we still define two internal addresses, i.e.,
ltime, lio, corresponding to the addresses of the queue objects responsible for timers and
asynchronous I/O respectively.

Abstract Queue: We define an abstract queue as the partial map of abstract addresses to
an element of the power set of abstract queue objects. Therefore, an address might point to
multiple queue objects. This abstraction over-approximates the behavior of λq and allows us
to capture all possible program’s behaviors that might stem from the analysis imprecision.

Abstract Queue Objects: A tuple consisting of an abstract queue state – observe that the
domain of abstract queue states is the same as λq – two sets of abstract callbacks (executed
on fulfillment and rejection respectively), and a set of abstract addresses (used to store the
queue objects that are dependent on the current one) represents an abstract queue object.
Notice how this definition differs from that of λq. First, we do not keep the registration order
of callbacks; therefore, we convert the two lists into two sets. The programming pattern
related to promises supports our design decision. Specifically, developers often use promises
as a chain; registering two callbacks on the same promise object is quite uncommon. Madsen
et. al. [27] made similar observations for the event-driven programs.

This abstraction can negatively affect precision only when we register multiple callbacks
on a pending queue object. Recall from Figure 4, when we register a callback on a settled
queue object, we can precisely track its execution order since we directly add it to the list of
scheduled callbacks.

Finally, we define the last component of abstract queue objects as a set of addresses;
something that enables us to track all possible dependent queue objects soundly.

Abstract Callback: An abstract callback comprises one abstract address, one function,
and a list of values that stands for the arguments of the function. Recall that the abstract
address corresponds to the queue object that the return value of the function fulfills.

Abstract List of Scheduled Callbacks: We use a list of sets to abstract the domain that is re-
sponsible for maintaining the callbacks that are ready for execution (i.e., ̂ScheduledCallbacks

and ̂ScheduledT imerIO). In this context, the ith element of a list denotes the set of callbacks
that are executed after those placed at the (i− 1)th position and before the callbacks located
at the (i+ 1)th position of the lists. The execution of callbacks of the same set is not known
to the analysis; they can be called in any order. For example, consider the following sequence
[{x}, {y, z}, {w}], where x, y, z, w ∈ ̂Callback. We presume that the execution of elements
y, z succeeds that of x, and precedes that of w, but we cannot compare y with z, since they
are elements of the same set; thus, we might execute y before z and vice versa.

Note that a critical requirement of our domains’ definition is that they should be finite so
that the analysis is guaranteed to terminate. Keeping the lists of scheduled callbacks bound
is tricky because the event loop might process the same callback multiple times. Therefore,
we have to add it to the lists κ or τ more than one time. For that reason, those lists monitor
the execution order of callbacks up to a certain limit n. The execution order of the callbacks
scheduled after that limit is not preserved; thus, the analysis places them into the same set.

Abstract Queue Chain: The analysis uses the last component of our abstract domains to
capture the effects of uncaught exceptions during the execution of callbacks. We define it as a
sequence of sets of addresses. Based on the abstract translation of the semantics of λq, when

ECOOP 2019

8:14 Static Analysis for Asynchronous JavaScript Programs

the analysis reaches an uncaught exception, it inspects the top element of the abstract queue
chain and rejects all the queue objects found in that element. If the abstract queue chain is
empty, the analysis propagates the exception to the caller function as usual. Note that the
queue chain is guaranteed to be bound. In particular, during the execution of a callback,
the size of the abstract queue chain is always one because the event loop executes only one
callback at a time. The only case when the abstract queue chain contains multiple elements
is when we have nested promise executors. A promise executor is a function passed as an
argument in a promise constructor. However, since we cannot have an unbound number of
nested promise executors, the size of the abstract queue chain remains finite.

3.1.1 Tracking the Execution Order
Promises. Estimating the order in which the event loop executes promise-related callbacks
is straightforward because it is a direct translation of the corresponding semantics of λq. In
particular, there are two possible cases:

Settle a promise that has registered callbacks: When we settle (i.e., either fulfill or reject)
a promise object that has registered callbacks, we schedule those callbacks associated
with the next state of the promise by putting them on the tail of the list κ. For instance,
if we fulfill a promise, we append all the callbacks triggered on fulfillment on the list κ.
A reader might observe that when there are multiple callbacks registered on the same
promise object, we put them on the same set which is the element that we finally add to κ.
This is justified by the fact that an abstract queue object does not keep the registration
order of its callbacks.
Register a callback on an already settled promise: When we encounter a statement of the
form x.then(f1, f2), where x is a settled promise, we schedule either callback f1 or f2
(i.e., we add it to the list κ) depending on the state of that promise, i.e., we schedule the
callback f1 if x is fulfilled and f2 if x is rejected.

Timers & Asynchronous I/O. A static analysis is not able to reason about the external
environment. For instance, it cannot decide when an operation on a file system or a request
to a server is complete. Similarly, it is not able to deal with time. For that purpose, we adopt
a conservative approach for tracking the execution order between callbacks related to timers
and asynchronous I/O. In particular, we assume that the execution order between those
callbacks is unspecified; thus, the event loop might process them in any order. However, we
do keep track the execution order between nested callbacks.

3.2 Callback Graph
In this section, we introduce the concept of callback graph; a fundamental component of our
analysis that captures how data flow is propagated between different asynchronous callbacks.
A callback graph is defined as an element of the following power set:

cg ∈ CallbackGraph = P(Node×Node)

We define every node of a callback graph as n ∈ Node = C × F , where C is the domain
of contexts while F is the set of all the functions of the program. Every element of a
callback graph (c1, f1, c2, f2) ∈ cg, where cg ∈ CallbackGraph has the following meaning:
the function f2 in context c2 is executed after the function f1 in context c1. We can treat the
above statement as the following expression: f1(. . .); f2(. . .);

T. Sotiropoulos and B. Livshits 8:15

I Definition 1. Given a callback graph cg ∈ CallbackGraph, we define the binary relation
→cg on nodes of the callback graph n1, n2 ∈ Node as:

n1 →cg n2 ⇒ (n1, n2) ∈ cg

I Definition 2. Given a callback graph cg ∈ CallbackGraph, we define the binary relation
→+

cg on nodes of the callback graph n1, n2 ∈ Node as the transitive closure of →cg:

n1 →cg n2 ⇒ n1 →+
cg n2

n1 →+
cg n2 ∧ n2 →+

cg n3 ⇒ n1 →+
cg n3, where n3 ∈ Node

Definition 1 and Definition 2 introduce the concept of path between two nodes in a
callback graph cg ∈ CallbackGraph. In particular, the relation →cg denotes that there is
path of length one between two nodes n1, n2, i.e., (n1, n2) ∈ cg. On the other hand, the
relation →+

cg describes that there is a path of unknown length between two nodes. Relation
→+

cg is very important as it allows us to identify the happens-before relation between two
nodes n1, n2 even if n2 is executed long after n1, that is (n1, n2) 6∈ cg. A property of a
callback graph is that it does not have any cycles, i.e.,

∀n1, n2 ∈ Node. n1 →+
cg n2 ⇒ n2 6→+

cg n1

Notice that if n1 6→+
cg n2, and n2 6→+

cg n1 hold, the analysis cannot estimate the execution
order between n1 and n2. Therefore, we presume that n1 and n2 can be called in any order.

Callback graph is computed on the fly as the analysis progresses. Callback graph exploits
both the lists κ and τ , and constructs the →cg relations between callbacks by respecting
their execution order as specified in those lists.

Previous work has proposed similar program representations for asynchrony. Madsen
et. al. [27] introduce the event-based call graph that abstracts the data-flow of the event-
based JavaScript programs. However, it does not support promises. More recently, promise
graph [26, 1] has been used for debugging promise-related programs. Our callback graph
is distinguished from promise graph, as it also captures callbacks that stem from timers or
asynchronous I/O. Therefore, we can handle common programming patterns where we mix
promises with asynchronous I/O (Figure 1). Also, since the promise graph aims to detect
anti-patterns related to promise code (e.g., unsettled promises), it does not track the order
in which promises are settled. Therefore, it misses the happens-before relations between the
corresponding callbacks.

3.3 Analysis Sensitivity
Here, we introduce two methods for boosting the analysis precision of asynchronous code.

3.3.1 Callback Sensitivity
Knowing the temporal relations between asynchronous callbacks enables us to capture how
data flow is propagated precisely. Typically, a naive flow-sensitive analysis, which exploits
the control flow graph (CFG), represents the event loop as a single program point with only
one context corresponding to it. Therefore – unlike traditional function calls – the analysis
misses the happens-before relations between callbacks because they are triggered by the same
program location (i.e., the event loop).

To address those issues, we exploit the callback graph to devise a more precise analysis,
which we call callback-sensitive analysis. The callback-sensitive analysis propagates the state
with regards to the →cg and →+

cg relations found in a callback graph cg ∈ CallbackGraph.
Specifically, when the analysis needs to propagate the resulting state from the exit point of a

ECOOP 2019

8:16 Static Analysis for Asynchronous JavaScript Programs

1 function foo() { ... }
2
3 var x = Promise.resolve()
4 .then(foo)
5 .then(function ff1() { ... })
6 .then(foo)
7 .then(function ff2() { ... })
8 .then(foo)
9 .then(function ff3() { ... });

Figure 10 An example program where we create a promise chain. Notice that we register the
function foo multiple times across the chain.

foo

ff3

ff2ff1

(a) QR-insensitive analysis

ff3ff2ff1foo[c1] foo[c2] foo[c3]

(b) QR-sensitive analysis

Figure 11 Callback graph of program of Figure 10 produced by the QR-insensitive and QR-
sensitive analysis respectively.

callback x, instead of propagating that state to the caller (note that the caller of a callback
is the event loop), it propagates it to the entry points of the next callbacks, i.e., all callback
nodes y ∈ Node where x→cg y holds. In other words, the edges of a callback graph reflect
how the state is propagated from the exit point of a callback node x to the entry point of a
callback node y. Obviously, if there is not any path between two nodes in the graph, that is,
x 6→+

cg y, and y 6→+
cg x, we propagate the state coming from the exit point of x to the entry

point of y and vice versa.

Remark. Callback-sensitivity does not work with contexts to improve the precision of the
analysis. We still represent the event loop as a single program point. As a result, the state
produced by the last executed callbacks is propagated to the event loop, leading to the join
of this state with the initial one. The join of those states is then again propagated across
the nodes of the callback graph until convergence. Therefore, there is still some imprecision.
However, callback-sensitivity minimizes the number of those joins, as they are only caused
by the callbacks invoked last.

3.3.2 Context-Sensitivity
Recall from Section 3.2 that a callback graph is defined as P(Node × Node), where n ∈
Node = C × F . It is possible to increase the precision of a callback graph by distinguishing
callbacks based on the context in which they are invoked. Existing flavors of context-
sensitivity are not so useful in differentiating asynchronous functions from each other. For
instance, object-sensitivity [30, 24], which separates invocations based on the value of the
receiver – and has been proven to be particularly effective for the analysis of object-oriented
languages – is not fruitful in the context of asynchronous callbacks because in most cases the
receiver of callbacks corresponds to the global object. Similarly, previous work in the static
analysis of JavaScript [19, 21] creates a context with regards to the arguments of a function.
Such a strategy might not be effective in cases where a callback expects no arguments or the
arguments from two different calls are indistinguishable.

T. Sotiropoulos and B. Livshits 8:17

We introduce one novel context-sensitivity flavor – which we call QR-sensitivity – as an
effort to boost the analysis precision. QR-sensitivity separates callbacks according to: (1)
the queue object that they belong to (Q), and (2) the queue object their return value fulfills
(R). In this case, the domain of contexts is given by:

c ∈ C = Âddr × Âddr

In other words, every context is a pair (lq, lr) ∈ Âddr × Âddr, where lq stands for the
allocation site of callback’s queue object, and lr is the abstract address of the queue object
that the return value of the callback fulfills. Notice that this domain is finite, so the analysis
always terminates.

As a motivating example, consider the program of Figure 10. This program creates
a promise chain where we register different callbacks at every step of the asynchronous
computation. At line 1, we define the function foo(). We asynchronously call foo()
multiple times, i.e., at lines 4, 6, and 8. Recall that chains of promises enable us to enforce
a deterministic execution of the corresponding callbacks. Specifically, based on the actual
execution, the event loop invokes the callbacks in the following order: foo() → ff1() →
foo()→ ff2()→ foo()→ ff3(). Figure 11a presents the callback graph of the program
of our example produced by a QR-insensitive analysis. In this case, the analysis considers the
different invocations of foo() as identical. As a result, the analysis loses the temporal relation
between foo() and ff1(), ff2() – indicated by the fact that the respective nodes are not
connected to each other – because foo() is called both before and after ff1() and ff2().
On the contrary, a QR-sensitive analysis ends up with an entirely precise callback graph
as shown in Figure 11b. The QR-sensitive analysis distinguishes the different invocations
of foo() from each other because it creates three different contexts; one for every call of
foo(). Specifically, we have c1 = (l3, l4), c2 = (l5, l6), c3 = (l7, l8), where li stands for the
promise object allocated at line i. For example, the second invocation of foo() is related to
the promise object created by the call of then() at line 5, and its return value fulfills the
promise object allocated by the invocation of then() at line 6.

3.4 Implementation
Our prototype implementation4 extends TAJS [19, 20, 18]; a state-of-the-art static analyzer
for JavaScript. TAJS analysis is implemented as an instance of the abstract interpretation
framework [3], and it is designed to be sound. It uses a lattice specifically designed for
JavaScript that is capable of handling the vast majority of JavaScript’s complicated features
and semantics. TAJS analysis is both flow- and context-sensitive. The output of the analysis
is the set of all reachable states from an initial state along with a call graph. TAJS can detect
various type-related errors such as the use of a non-function variable in a call expression,
property access of null or undefined variables, inconsistencies caused by implicit type
conversions, and many others [19].

Prior to our extensions, TAJS consisted of approximately 83,500 lines of Java code. The
size of our additions is roughly 6,000 lines of Java code. Our implementation is straightforward
and is guided by the design of our analysis. Specifically, we first incorporate the domains
presented in Figure 9 into the definition of the abstract state of TAJS. Then, we provide
models for promises written in Java by faithfully following the ECMAScript specification.
Recall again that our models exploit the λq calculus presented in Section 2 and they produce

4 https://github.com/theosotr/async-tajs

ECOOP 2019

https://github.com/theosotr/async-tajs

8:18 Static Analysis for Asynchronous JavaScript Programs

1 function open(filename, flags, mode, callback) {
2 TAJS_makeContextSensitive(open, 3);
3 var err = TAJS_join(TAJS_make("Undef"), TAJS_makeGenericError());
4 var fd = TAJS_join(TAJS_make("Undef"), TAJS_make("AnyNum"));
5 TAJS_addAsyncIOCallback(callback, err, fd);
6 }
7
8 var fs = {
9 open: open

10 ...
11 }

Figure 12 A model for fs.open function. All functions starting with TAJS_ are special functions
whose body does not correspond to any node in the CFG. They are just hooks for producing
side-effects to the state or evaluating to some value, and their models are implemented in Java. For
instance, TAJS_make("AnyStr") evaluates to a value that can be any string.

side-effects that over-approximate the behavior of JavaScript promises. Beyond that, we
implement models for the special constructs of λq (i.e., addTimerCallback, addIOCallback) that
are used for adding callbacks to the timer- and asynchronous I/O-related queue objects
respectively. We implement the models for timers in Java; however, we write JavaScript
models for asynchronous I/O operations, when it is necessary.

For example, Figure 12 shows the JavaScript code that models the function open() of
the fs Node.js module. In particular, open() asynchronously opens a given file. When I/O
operation completes, the callback provided by the developer is called with two arguments:
(1) err that is not undefined when there is an error during I/O, (2) fd which is an integer
indicating the file descriptor of the opened file. Note that fd is undefined, when any error
occurs. Our model first makes open() parameter-sensitive on the third argument that
corresponds to the callback provided by the programmer. Then, at lines 3 and 4, it initializes
the arguments of the callback, (i.e., err and fd). Observe that we initialize those arguments
so that they capture all the possible execution scenarios, i.e., err might be undefined or
point to an error object, and fd might be undefined or any integer reflecting all possible file
descriptors. Finally, at line 5, we call the special function TAJS_addAsyncIOCallback() that
registers the given callback on the queue object responsible for I/O operations, implementing
the semantics of the addIOCallback primitive from our λq calculus.

3.5 Limitations
Although our analysis aims to support all the asynchronous features of JavaScript up to the
7th version of ECMAScript, it does not handle the Promise.all() function of the Promise
API. This function expects an iterable of promises, and it creates a new object that is fulfilled
whenever all promises included in that iterable are fulfilled. Statically capturing all program’s
behaviors that stem from Promise.all() is challenging because the analysis imprecision
might cause the number of behaviors to grow exponentially. However, Promise.all()
is less common than other functions of the Promise API such as Promise.resolve() or
Promise.reject().

Some of our design choices about analysis abstractions might lead to imprecision. For
example, we do not track the registration order of a pending promise’s callbacks. Therefore,
when we settle such a promise, the analysis assumes that all its registered callbacks can be
invoked in any order. However, as we mentioned in Section 3.1.1, that programming pattern
(i.e., adding multiple callbacks to the same pending object) is quite rare.

T. Sotiropoulos and B. Livshits 8:19

Table 1 List of the selected macro-benchmarks and their description. Each benchmark is de-
scribed by its lines of code (LOC), its lines of code including its dependencies (ELOC), number of
files, number of dependencies, number of promise-related statements (e.g., Promise.resolve(),
Promise.reject(), then(), etc.), and number of statements associated with timers (e.g.,
setTimeout(), setImmediate(), etc.) or asynchronous I/O (e.g., asynchronous file system or
network operations etc.).

Benchmark LOC ELOC Files Dependencies Promises Timers/Async I/O

controlled-promise 225 225 1 0 4 1
fetch 517 1,118 1 1 12 4
honoka 324 1,643 6 6 4 1
axios 1,733 1,733 26 0 13 2
pixiv-client 1,031 3,469 1 2 64 2
node-glob 1,519 6,131 3 6 0 5

The analysis sensitivity options introduced in Section 3.3.2 might not be so effective
when dealing with timers or asynchronous I/O. Since we follow a conservative approach for
modeling the execution order of timers and asynchronous I/O – regardless of the registration
order of their callbacks – keeping a more precise state does not necessarily lead to a more
precise callback graph.

4 Evaluation

In this section, we evaluate our static analysis on a set of hand-written micro-benchmarks and
a set of real-world JavaScript modules. Then, we experiment with different parameterizations
of the analysis, and report the precision and performance metrics.

4.1 Experimental Setup
To test that our technique behaves as expected we first wrote a number of micro-benchmarks.
Each of those programs consists of approximately 20–50 lines of code and examines certain
parts of the analysis. Beyond micro-benchmarks, we evaluate our analysis on 6 real-world
JavaScript modules. The most common macro-benchmarks for static analyses used in the
literature are those provided by JetStream5, and V8 engine6[19, 21, 22]. However, those
benchmarks are not suitable for our case because they are not asynchronous. To find
interesting benchmarks, we developed an automatic mechanism for collecting and analyzing
Github repositories. First, we collected a large number of Github repositories using two
different options. The first option extracted the Github repositories of the most depended-
upon npm packages7. The second option employed the Github API8 to find JavaScript
repositories that are related to promises. We then investigated the Github repositories that
we collected at the first phase by computing various metrics such as lines of code, number
of promise-, timer- and asynchronous IO-related statements. We manually selected the 6
JavaScript modules presented in Table 1. Most of them are libraries for performing HTTP
requests or file system operations.

5 https://browserbench.org/JetStream/
6 http://www.netchain.com/Tools/v8/
7 https://www.npmjs.com/browse/depended
8 https://developer.github.com/v3/

ECOOP 2019

https://github.com/vitalets/controlled-promise
https://github.com/github/fetch
https://github.com/kokororin/honoka
https://github.com/axios/axios
https://github.com/alphasp/pixiv-api-client
https://github.com/isaacs/node-glob
https://browserbench.org/JetStream/
http://www.netchain.com/Tools/v8/
https://www.npmjs.com/browse/depended
https://developer.github.com/v3/

8:20 Static Analysis for Asynchronous JavaScript Programs

Table 2 Precision on micro-benchmarks.

Analyzed Callbacks Callback Graph Precision Type Errors

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
micro01 5 5 4 4 0.8 0.8 1.0 1.0 2 2 0 0
micro02 3 3 3 3 1.0 1.0 1.0 1.0 1 1 0 0
micro03 2 2 2 2 1.0 1.0 1.0 1.0 1 1 0 0
micro04 4 4 4 4 0.5 0.5 0.5 0.5 1 1 1 1
micro05 8 8 7 7 0.96 0.96 1.0 1.0 3 3 0 0
micro06 11 11 11 11 1.0 1.0 1.0 1.0 3 3 1 1
micro07 14 14 13 13 0.86 0.87 1.0 1.0 1 1 0 0
micro08 5 5 5 5 0.8 0.8 0.8 0.8 1 1 0 0
micro09 5 5 4 4 0.9 0.9 1.0 1.0 1 1 0 0
micro10 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro11 4 4 4 4 0.83 0.83 0.83 0.83 5 5 5 5
micro12 5 5 5 5 0.9 0.9 1.0 1.0 2 2 0 0
micro13 4 4 3 3 0.83 0.83 1.0 1.0 1 1 0 0
micro14 6 6 5 5 0.8 0.8 1.0 1.0 2 2 0 0
micro15 6 6 6 6 0.8 0.8 1.0 1.0 0 0 0 0
micro16 6 6 6 6 1.0 1.0 1.0 1.0 1 1 0 0
micro17 3 3 3 3 0.67 0.67 0.67 0.67 2 2 2 2
micro18 4 3 4 3 0.83 1.0 0.83 1.0 1 0 1 0
micro19 14 7 14 7 0.73 0.93 0.74 1.0 0 0 0 0
micro20 6 6 6 6 0.93 0.93 1.0 1.0 0 0 0 0
micro21 5 5 4 4 0.9 0.9 1.0 1.0 1 1 0 0
micro22 6 6 5 5 0.87 0.87 0.9 0.9 1 1 0 0
micro23 6 6 5 5 0.87 0.87 1.0 1.0 3 3 1 1
micro24 3 3 3 3 1.0 1.0 1.0 1.0 2 2 1 1
micro25 8 8 8 8 0.79 0.79 0.79 0.79 1 1 0 0
micro26 9 9 7 7 0.89 0.89 1.0 1.0 3 3 1 1
micro27 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro28 7 7 7 7 0.81 0.81 0.81 0.81 1 1 1 1
micro29 4 4 4 4 0.5 1.0 0.5 1.0 0 0 0 0
Average 5.83 5.55 5.45 5.17 0.85 0.88 0.91 0.94 1.45 1.41 0.55 0.52

Total 169 161 158 150 42 41 16 15

We experiment with 4 different analyses: (1) an analysis that is neither callback- nor
QR-sensitive (NC-No), (2) a callback-insensitive but QR-sensitive analysis (NC-QR), (3)
a callback-sensitive but QR-insensitive analysis (C-No), and (4) a both callback- and QR-
sensitive analysis (C-QR). Note that recency abstraction [2] – which is a technique for
minimizing weak updates and is natively supported by TAJS – is enabled for every analysis.
For every analysis, we use object-sensitivity, while we enable parameter-sensitivity in certain
functions for further boosting the precision of top-level code. Finally, the lists κ and τ are
bounded by n = 30.

We evaluate the precision of each analysis in terms of the number of the analyzed callbacks,
the precision of the computed callback graph, and the number of reported type errors triggered
by the execution of asynchronous callbacks. We define the precision of a callback graph as
the quotient between the number of callback pairs whose execution order is determined and
the total number of callback pairs. Also, we embrace a client-based precision metric, i.e., the
number of reported type errors as in the work of Kashyap et. al. [21]. The fewer type errors
an analysis reports, the more precise it is. The same applies to the number of callbacks
inspected by the analysis. To compute the performance characteristics of every analysis, we
run every experiment ten times to get reliable measurements. All the experiments were run
on a machine with an Intel i7 2.4GHz quad-core processor and 8GB of RAM.

T. Sotiropoulos and B. Livshits 8:21

Table 3 Precision on macro-benchmarks.

Analyzed Callbacks Callback Graph Precision Type Errors

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
controlled-promise 6 6 6 6 0.866 0.905 0.866 0.905 3 3 2 2
fetch 22 22 19 19 0.829 0.956 0.822 0.972 8 8 7 7
honoka 8 8 6 6 0.929 0.929 1.0 1.0 1 1 0 0
axios 15 15 14 14 0.678 0.83 0.686 0.871 2 2 1 1
pixiv-client 18 18 17 15 0.771 0.803 0.794 0.863 3 3 3 2
node-glob 3 3 3 3 0.667 0.667 0.667 0.667 19 19 19 19
Average 12 12 10.8 10.5 0.79 0.848 0.805 0.88 6 6 5.1 5

Total 72 72 65 63 36 36 32 31

4.2 Results
Micro-benchmarks. Table 2 shows how precise every analysis is on every micro-benchmark.
Starting with callback-insensitive analyses (see the NC-No and NC-QR columns), we observe
that in general QR-sensitivity improves the precision of the callback graph by 3.6%, on
average. That small boost of QR-sensitivity is explained by the fact that only 3 out of 29
micro-benchmarks invoke the same callback multiple times.

Recall from Section 3.3.2 that QR-sensitivity is used to distinguish different calls of
the same callback. Therefore, if one program does not use a specific callback multiple
times, QR-sensitivity does not make any difference. However, if we focus on the results of
the micro-benchmarks where we come across such behaviors, i.e. micro18, micro19, and
micro29, we get a significant divergence of the precision of callback graph. Specifically, QR-
sensitivity improves the precision by 20.5%, 27.4% and 100% in micro18, micro19 and micro29
respectively. Besides that, in micro19, there is a striking decrease in the number of the
analyzed callbacks: the QR-insensitive analyses inspect 14 callbacks, while the QR-sensitive
analyses examine only 7.

The results regarding the number of type errors are almost identical for every analysis: a
QR-insensitive analysis reports 42 type errors in total, whereas all the other QR-sensitive
analyses produce warnings for 41 cases.

Moving to callback-sensitive analyses, the results indicate clear differences. First, a
callback-sensitive but QR-insensitive analysis reports only 16 type errors in total (i.e., 61.9%
fewer type errors than callback-insensitive analyses), and amplifies the average precision of the
callback graph from 0.85 to 0.91. As before, the QR-sensitive analyses boost the precision of
the callback graph by 20.4%, 35.1%, and 100% in micro18, micro19, and micro29 respectively.
Finally, a callback-sensitive and QR-insensitive analysis decreases the total number of the
analyzed callbacks from 169 to 158. Notice that when callback- and QR-sensitivity are
combined, the total number of callbacks is reduced by 11.2%.

Macro-benchmarks. Table 3 reports the precision metrics of every analysis on the macro-
benchmarks. First, we make similar observations as those of micro-benchmarks. In general,
QR-sensitivity leads to a more precise callback graph for 4 out of 6 benchmarks. The
improvement ranges from 4.6% to 26.9%. On the other hand, callback-sensitive analyses
contribute to fewer type errors for 5 out of 6 benchmarks reporting 13.9% fewer type errors
in total. Additionally, when we combine QR- and callback-sensitivity, we can boost the
analysis precision for 5 out of 6 benchmarks. Specifically, the QR- and callback-sensitive
analysis improves the callback graph precision by up to 28.5% (see the axios benchmark),
and achieves a 88% callback graph precision, on average. On the other hand, the naive
analysis (neither QR- nor callback-sensitive) reports only a 79% precision for callback graph,
on average.

ECOOP 2019

8:22 Static Analysis for Asynchronous JavaScript Programs

Table 4 Times of different analyses in seconds.

Average Time Median

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
controlled-promise 2.3 2.22 2.27 2.28 2.29 2.26 2.25 2.31
fetch 8.53 7.97 7.07 6.98 8.52 8.26 7.46 7.22
honoka 4.14 4.05 3.86 3.94 4.12 4.0 3.61 3.81
axios 6.99 7.86 6.74 8.32 7.02 8.0 6.94 8.37
pixiv-client 22.11 24.92 24.77 28.89 22.19 25.16 24.65 29.2
node-glob 15.55 16.71 15.46 14.47 16.62 16.71 16.17 15.74

By examining the results for the node-glob benchmark, we see that every analysis
produces identical results. node-glob uses only timers and asynchronous I/O operations. As
we mentioned in Section 3.5, in such cases, neither callback- nor QR-sensitivity is effective as
we follow a conservative approach for modelling timers and asynchronous I/O. For example,
we assume that two callbacks x and y are executed in any order, even if x is scheduled before
y (and vice versa).

Table 4 gives the running times of every analysis on macro-benchmarks. We notice that in
some benchmarks (see fetch) a more precise analysis decreases the running times by 3%–18%.
This is justified by the fact that a more precise analysis might compress the state faster than
an imprecise analysis. For instance, in fetch, an imprecise analysis led to the analysis of 3
spurious callbacks, yielding to a higher analysis time. The results appear to be consistent
with those of the recent literature that suggest that precision might lead to a faster analysis in
some cases [33]. On the other hand, we observe a non-trivial fall in the analysis performance
in only one benchmark. Specifically, the analysis sensitivity increased the running times of
pixiv-client by 12%–30.6%. However, such an increase seems to be acceptable.

4.3 Case Studies
In this section, we describe some case studies coming from the macro-benchmarks.

fetch. Figure 13 shows a code fragment taken from fetch9. Note that we omit irrelevant
code for brevity. The function Body() defines a couple of methods (e.g., text(), formData())
for manipulating the body of a response. Observe that those methods are registered on the
prototype of Response using the function Function.prototype.call() at line 45. Note
that Body also contains a method (i.e., _initBody()) for initializing the body of a response
according to the type of the input. To this end, the Response constructor takes a body as
a parameter and initializes it through the invocation of _initBody() (lines 41, 43). The
function text() reads the body of a response in a text format (lines 20–34). When the body
of the response has been already read, text() returns a rejected promise (lines 3, 22–23).
Otherwise, it marks the property bodyUsed of the response object as true (line 5), and then
it returns a promise object depending on the type of the body of the given response (lines
25–33). The function formData() (lines 36–38) asynchronously reads the body of a response
in a text format, and then it parses it into a FormData object10 through the call of the
function decode(). The function fetch() (lines 47–56) makes a new asynchronous request.

9 https://github.com/github/fetch
10 https://developer.mozilla.org/en-US/docs/Web/API/FormData

https://github.com/github/fetch
https://developer.mozilla.org/en-US/docs/Web/API/FormData

T. Sotiropoulos and B. Livshits 8:23

1 function consumed(body) {
2 if (body.bodyUsed) {
3 return Promise.reject(new TypeError("

Already read"));
4 }
5 body.bodyUsed = true;
6 }
7 ...
8 function Body() {
9 ...

10 this.bodyUsed = false;
11 this._bodyInit = function() {
12 ...
13 if (typeof body === "string") {
14 this._bodyText = body;
15 } else if (Blob.prototype.isPrototypeOf(

body)) {
16 this._bodyBlob = body;
17 }
18 ...
19 }
20 this.text = function text() {
21 var rejected = consumed(this);
22 if (rejected) {
23 return rejected;
24 }
25 if (this._bodyBlob) {
26 return readBlobAsText(

this._bodyBlob);
27 } else if (this._bodyArrayBuffer) {
28 return Promise.resolve(

readArrayBufferAsText(
this._bodyArrayBuffer));

29 } else if (this._bodyFormData) {
30 throw new Error("could not read

FormData body as text");
31 } else {
32 return Promise.resolve(

this._bodyText);
33 }
34 };
35 ...
36 this.formData = function formData() {
37 return this.text().then(decode);
38 }
39 }
40 ...
41 function Response(body) {
42 ...
43 this._bodyInit(body);
44 }
45 Body.call(Response.prototype);
46 ...
47 function fetch(input, init) {
48 return new Promise(function (resolve, reject

) {
49 ...
50 var xhr = new XMLHttpRequest();
51 xhr.onload = function onLoad() {
52 ...
53 resolve(new Response(xhr.response));
54 }
55 });
56 }

Figure 13 Code fragment taken from fetch.

Listing 1 Case 1.
1 fetch("/helloWorld").then(function foo(

value) {
2 var formData = value.formData();
3 // Do something with form data.
4 })

Listing 2 Case 2.
1 var response = new Response("foo=bar");
2 var formData = response.formData();
3 var response2 = new Response(new Blob("foo=

bar"));
4 var formData2 = response2.formData();

Figure 14 Code fragments which use the fetch API.

When the request completes successfully, the callback onLoad() is executed asynchronously
(line 51). This callback finally fulfills the promise returned by fetch() with a response object
that contains the response of the server (line 53).

In Listing 1, we make an asynchronous request to the endpoint “/helloWorld” using the
fetch API. Upon success, we schedule the callback foo(). Recall that the parameter value
of foo() corresponds to the response object coming from line 53 (Figure 13). In foo(), we
convert the response of the server into a FormData object (line 2). A callback-insensitive
analysis, which considers that the event loop executes all callbacks in any order, merges all
the data flow stemming from those callbacks into a single point. As a result, the side effects
of onLoad() and foo() are directly propagated to the event loop. In turn, the event loop
propagates the resulting state again to those callbacks. This is repeated until convergence.
Specifically, the callback foo() calls value.formData() that updates the property bodyUsed
of the response object to true (Figure 13, line 5). The resulting state is propagated to the
event loop where is joined with the state that stems from the callback onLoad(). Notice
that the state of onLoad() indicates that bodyUsed is false because the callback onLoad()
creates a fresh response object (Figure 13, lines 10, 53). The join of those states changes the
abstract value of bodyUsed to >. That change is propagated again to foo().

ECOOP 2019

8:24 Static Analysis for Asynchronous JavaScript Programs

This imprecision makes the analysis to consider both the if and else branches at lines
2–5. Thus, the analysis allocates a rejected promise at line 3, as it mistakenly considers that
the body has been already consumed. This makes consumed() return a value that is either
undefined or a rejected promise at line 23. The value returned by consumed() is finally
propagated to formData() at line 37, where the analysis reports a false positive; a property
access of an undefined variable (access of the property “then”), because text() might
return an undefined variable due to the return statement at line 26. A callback-sensitive
analysis neither reports a type error at line 43 nor creates a rejected promise at line 4. It
respects the execution order of callbacks, that is, the callback foo() is executed after the
callback onLoad(). Therefore, the analysis propagates a more precise state to the entry of
foo(): the state resulted by the execution of onLoad(), where a new response object is
initialized with the field bodyUsed set to false.

In Listing 2, we initialize a response object with a body that has a string type (line
1). In turn, by calling the formData() method, we first read the body of the response in a
text format, and then we decode it into a FormData object by asynchronously calling the
decode() function (Figure 13, line 37). Since the body of the response is already in a text
format, text() returns a fulfilled promise (Figure 13, line 32). At the same time, at line 4 of
Listing 2, we allocate a fresh response object whose body is an instance of Blob11. Therefore,
calling formData() schedules function decode() again. However this time, the callback
decode() is registered on a different promise because the second call of text() returns a
promise created by the function readBlobAsText() (Figure 13, line 26). A QR-sensitive
analysis – which creates a context according to the queue object a callback belongs to – is
capable of separating the two invocations of decode() because the first call of decode() is
registered on the promise object that comes from line 32, whereas the second call of decode()
is added to the promise created by readBlobAsText() at line 26.

honoka. We return back to Figure 1. Recall that a callback-insensitive analysis reports a
spurious type error at line 17 when we try to access the property headers of honoka.response
because it considers the case where the callback defined at lines 15–23 is executed before
that defined at lines 2–14. Thus, honoka.response might be uninitialized (recall that
honoka.response is initialized during the execution of the first callback at line 3). On
the other hand, a callback-sensitive analysis consults the callback graph when it is time to
propagate the state from the exit point of a callback to the entry point of the next one. In
particular, when we analyze the exit node of the first callback, we propagate the current
state to the second callback. Therefore, the entry point of the second function has a state
that contains a precise value for honoka.response, that is, the object coming from the
assignment at line 3.

4.4 Threats to Validity

Below we pinpoint the main threats to the validity of our results:
Our analysis is an extension of TAJS. Therefore, the precision and performance of TAJS
play an important role on the results of our work.
Even though our analysis is designed to be sound, it models some native functions of the
JavaScript language unsoundly. For instance, we unsoundly model the native function

11 https://developer.mozilla.org/en-US/docs/Web/API/Blob

https://developer.mozilla.org/en-US/docs/Web/API/Blob

T. Sotiropoulos and B. Livshits 8:25

Object.freeze(), which is used to prevent an object from being updated. Specifically,
the model of Object.freeze() simply returns the object given as argument.
We provide manual models for some built-in Node.js modules like fs, http, etc. or
other APIs used in client-side applications such as XMLHttpRequest, Blob, etc. However,
manual modeling might neglect some of the side-effects that stem from the interaction
with those APIs, leading to unsoundness [15, 33].
Our macro-benchmarks consist of JavaScript libraries. Therefore, we need to write
some test cases that invoke the API functions of those benchmarks. We provided both
hand-written test cases and test cases or examples taken from their documentation, trying
to test the main APIs that exercise asynchrony in JavaScript.

5 Related Work

In this section, we briefly present previous work related to formalization and program analysis
for (asynchronous) JavaScript.

Semantics. Maffeis et al. [29] presented one of the first formalizations of JavaScript by
designing small-step operational semantics for a subset of the 3rd version of ECMAScript. In
subsequent work, Guha et al.[16] expressed the semantics of the 3rd edition of ECMAScript
through a different approach; they developed a lambda calculus called λJS, and provided a
desugaring mechanism for converting JavaScript code into λJS. We used λJS as a base for
modeling asynchronous JavaScript. Later, Gardner et al. [13] introduced a program logic
for reasoning about client-side JavaScript programs that support ECMAScript 3. They
presented big-step operational semantics on the basis of that proposed by Maffeis et. al. [29],
and they introduced inference rules for program reasoning which are highly inspired from
separation logic [35]. More recently, Madsen et al. [26] and Loring et al. [25] extended λJS

for modeling promises and asynchronous JavaScript respectively. Our model is a variation of
their work; our modifications enable us to model different asynchronous features. Some of
them are not handled by their models.

Static Analysis for JavaScript. Guarnieri et al. [15] proposed a pointer analysis for a subset
of JavaScript. They precluded the use of eval-family functions from their analysis as their
work focused on widgets where the use of eval is not common. It was one of the first
attempts that managed to model some of the most peculiar features of JavaScript, such
as prototype-based inheritance. TAJS [19, 20, 18] is a typer analyzer for JavaScript which
is implemented as a classical dataflow analysis. Our work is implemented as an extension
of TAJS. SAFE [23] is a static analysis framework that provides three different formal
representations of JavaScript programs: an abstract syntax tree (AST), an intermediate
language (IR) and a control-flow graph (CFG). SAFE implements a default analysis phase that
is plugged after the construction of CFG. This analysis adopts a similar approach with that
of TAJS, i.e., a flow- and context-sensitive analysis that operates on top of CFG. JSAI [21]
implements an analysis through the abstract interpretation framework [3]. Specifically, it
employs a different approach compared to other existing tools. Unlike TAJS and SAFE, JSAI
operates on top of AST rather than CFG; it is flow-sensitive though. To achieve this, the
abstract semantics is specified on a CESK abstract machine [10], which provides small-step
reduction rules and an explicit data structure (i.e., continuation) which describes the rest of
computation, unwinding the flow of the program in this way. The analysis is configurable
with different flavors of context-sensitivity which are plugged into the analysis through the
widening operator used in the fix-point calculation [17].

ECOOP 2019

8:26 Static Analysis for Asynchronous JavaScript Programs

Existing static analyses provide sufficient support for precisely modeling browser envir-
onment. Jensen et al. [18] modeled HTML DOM by creating a hierarchy of abstract states
that reflect the actual HTML object hierarchy. Before the analysis begins, an initial heap is
constructed that contains the set of the abstract objects corresponding to the HTML code
of the page. Park et al. [33] followed a similar approach for modeling HTML DOM. They
also provided a more precise model that respects the actual tree hierarchy of the DOM. For
example, their model distinguishes whether one DOM node is nested to another or not.

Program Analysis for Asynchronous JavaScript Programs. The majority of static analyses
for JavaScript treat asynchronous programs conservatively [19, 23, 21] – they assume that
the event loop processes all the asynchronous callbacks in any order – leading to the analysis
imprecision. Also, they focus on the client-side applications, where asynchrony mainly
appears in DOM events and AJAX calls.

Madsen et al. [27] proposed one of the first static analysis for server-side event-driven
programs. Although their approach is able to handle asynchronous I/O operations – unlike
our work – they do not provide support for ES6 promises. Additionally, their work introduced
a context-sensitivity strategy that tries to imitate the different iterations of the event loop.
However, it imposes a large overhead on the analysis; it is able to handle only small
programs (less than 400 lines of code). In our work, we propose callback-sensitivity that
improves precision without highly sacrificing performance. More recently, Alimadadi et
al. [1] presented a dynamic analysis technique for detecting promise-related errors and anti-
patterns in JavaScript programs. Specifically, their approach exploits the promise graph; a
representation designed for debugging promise-based programs. Beyond promises, our work
also handles a broad spectrum of asynchronous features.

Race detection. Zheng et al. [40] presented one of the first race detectors by employing a
static analysis for identifying concurrency issues in asynchronous AJAX calls. The aim of
their analysis was to detect data races between the code that pre-processes an AJAX request
and the callback invoked when the response of the server is received. A subsequent work [34]
adopted a dynamic analysis to detect data races in web applications. They first proposed a
happens-before relation model to capture the execution order between different operations
that are present in a client-side application, such as the loading of HTML elements, execution
of scripts, etc. Using this model, their analyses reports data races, by detecting memory
conflicts between unordered functions, However, their approach introduced a lot of false
positives because most data races did not lead to severe concurrency bugs. Mutlu et al. [31]
combined both dynamic and static analysis and primarily focused on detecting data races
that have pernicious consequences on the correctness of applications, such as those that
affect the browser storage. Initially, they collected the execution traces of an application, and
then, they applied a dataflow analysis on those traces to identify data races. Their approach
effectively managed to report a very small number of false positives.

6 Conclusions & Future Work

Building upon previous works, we presented the λq calculus for modeling asynchrony in
JavaScript. Our calculus λq is flexible enough so that we can express almost every asynchron-
ous primitive in the JavaScript language up to the 7th edition of the ECMAScript. We then
presented an abstract version of λq that over-approximates the semantics of our calculus.

T. Sotiropoulos and B. Livshits 8:27

By exploiting the abstract version of λq, we designed and implemented what is, to the best
of our knowledge, the first static analysis for dealing with a wide range of asynchrony-related
features. At the same time, we introduced the concept of callback graph; a directed acyclic
graph that represents the temporal relations between the execution of asynchronous callbacks,
and we proposed a more precise analysis, i.e., callback-sensitive analysis that respects the
execution order of callbacks. We parameterized our analysis with a new context-sensitivity
option that is specifically used for asynchronous callbacks.

We then experimented with different parameterizations of our analysis on a set of hand-
written and real-world programs. The results revealed that we can analyze medium-sized
JavaScript programs. The analysis sensitivity (i.e., both callback- and context-sensitivity) was
able to ameliorate the analysis precision without highly sacrificing performance. Specifically,
as observed in the real-world modules, our analysis achieved a 79% precision for the callback
graph, on average. When we combined callback- and QR-sensitivity, we could further
improve the callback graph precision by up to 28.5%, and reduce the total number of type
errors by 13.9%.

Our work constitutes a general technique that can be used as a base for further research.
Specifically, recent studies showed that concurrency bugs found in JavaScript programs may
sometimes be caused by asynchrony [39, 5]. We could leverage our work to design a client
analysis on top of it so that it statically detects data races in JavaScript programs. Our
callback graph might be an essential element for such an analysis because we could inspect it
to identify callbacks whose execution might be non-deterministic, i.e., unconnected nodes in
the callback graph.

References
1 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding Broken Promises in

Asynchronous JavaScript Programs. Proc. ACM Program. Lang., 2(OOPSLA):162:1–162:26,
2018. doi:10.1145/3276532.

2 Gogul Balakrishnan and Thomas Reps. Recency-Abstraction for Heap-allocated Storage. In
Proceedings of the 13th International Conference on Static Analysis, SAS’06, pages 221–239,
2006. doi:10.1007/11823230_15.

3 Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’77, pages 238–252, 1977. doi:10.1145/512950.512973.

4 Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazières, and Robert Morris. Event-
driven programming for robust software. In Proceedings of the 10th workshop on ACM SIGOPS
European workshop, pages 186–189. ACM, 2002.

5 James Davis, Arun Thekumparampil, and Dongyoon Lee. Node.Fz: Fuzzing the server-side
event-driven architecture. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, pages 145–160, 2017. doi:10.1145/3064176.3064188.

6 Asger Feldthaus, Todd Millstein, Anders Møller, Max Schäfer, and Frank Tip. Tool-supported
Refactoring for JavaScript. In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’11, pages 119–138,
2011. doi:10.1145/2048066.2048078.

7 Asger Feldthaus and Anders Møller. Semi-automatic Rename Refactoring for JavaScript.
In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’13, pages 323–338, 2013.
doi:10.1145/2509136.2509520.

8 Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient
Construction of Approximate Call Graphs for JavaScript IDE Services. In Proceedings of

ECOOP 2019

http://dx.doi.org/10.1145/3276532
http://dx.doi.org/10.1007/11823230_15
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/3064176.3064188
http://dx.doi.org/10.1145/2048066.2048078
http://dx.doi.org/10.1145/2509136.2509520

8:28 Static Analysis for Asynchronous JavaScript Programs

the 2013 International Conference on Software Engineering, ICSE ’13, pages 752–761, 2013.
doi:10.1109/ICSE.2013.6606621.

9 Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics engineering with
PLT Redex. Mit Press, 2009.

10 Mattias Felleisen and D. P. Friedman. A Calculus for Assignments in Higher-order Languages.
In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’87, pages 314–, 1987. doi:10.1145/41625.41654.

11 K. Gallaba, Q. Hanam, A. Mesbah, and I. Beschastnikh. Refactoring Asynchrony in JavaScript.
In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 353–363, 2017. doi:10.1109/ICSME.2017.83.

12 K. Gallaba, A. Mesbah, and I. Beschastnikh. Don’t Call Us, We’ll Call You: Characterizing
Callbacks in Javascript. In 2015 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–10, 2015. doi:10.1109/ESEM.2015.7321196.

13 Philippa Anne Gardner, Sergio Maffeis, and Gareth David Smith. Towards a Program Logic
for JavaScript. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 31–44, 2012. doi:10.1145/2103656.
2103663.

14 Github. GitHub Octoverse 2017 | Highlights from the last twelve months. https://octoverse.
github.com/, 2017. [Online; accessed 08-January-2019].

15 Salvatore Guarnieri and Benjamin Livshits. GATEKEEPER: Mostly static enforcement of
security and reliability policies for Javascript code. In Proceedings of the 18th Conference on
USENIX Security Symposium, SSYM’09, pages 151–168, 2009.

16 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence of Javascript. In
Proceedings of the 24th European Conference on Object-oriented Programming, ECOOP’10,
pages 126–150, 2010.

17 Ben Hardekopf, Ben Wiedermann, Berkeley Churchill, and Vineeth Kashyap. Widening
for Control-Flow. In Kenneth L. McMillan and Xavier Rival, editors, Verification, Model
Checking, and Abstract Interpretation, pages 472–491. Springer Berlin Heidelberg, 2014. doi:
10.1007/978-3-642-54013-4_26.

18 Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the HTML DOM and
Browser API in Static Analysis of JavaScript Web Applications. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 59–69, 2011. doi:10.1145/2025113.2025125.

19 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type Analysis for JavaScript. In
Proceedings of the 16th International Symposium on Static Analysis, SAS ’09, pages 238–255,
2009. doi:10.1007/978-3-642-03237-0_17.

20 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural Analysis with Lazy
Propagation. In Radhia Cousot and Matthieu Martel, editors, Static Analysis, pages 320–339.
Springer Berlin Heidelberg, 2010.

21 Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sarra-
cino, Ben Wiedermann, and Ben Hardekopf. JSAI: A static analysis platform for JavaScript. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 121–132, 2014. doi:10.1145/2635868.2635904.

22 Y. Ko, H. Lee, J. Dolby, and S. Ryu. Practically Tunable Static Analysis Framework for
Large-Scale JavaScript Applications (T). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 541–551, 2015. doi:10.1109/ASE.2015.28.

23 Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE: Formal
specification and implementation of a scalable analysis framework for ECMAscript. In FOOL
2012: 19th International Workshop on Foundations of Object-Oriented Languages, page 96,
2012.

http://dx.doi.org/10.1109/ICSE.2013.6606621
http://dx.doi.org/10.1145/41625.41654
http://dx.doi.org/10.1109/ICSME.2017.83
http://dx.doi.org/10.1109/ESEM.2015.7321196
http://dx.doi.org/10.1145/2103656.2103663
http://dx.doi.org/10.1145/2103656.2103663
https://octoverse.github.com/
https://octoverse.github.com/
http://dx.doi.org/10.1007/978-3-642-54013-4_26
http://dx.doi.org/10.1007/978-3-642-54013-4_26
http://dx.doi.org/10.1145/2025113.2025125
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1145/2635868.2635904
http://dx.doi.org/10.1109/ASE.2015.28

T. Sotiropoulos and B. Livshits 8:29

24 Ondřej Lhoták and Laurie Hendren. Evaluating the Benefits of Context-sensitive Points-to
Analysis Using a BDD-based Implementation. ACM Trans. Softw. Eng. Methodol., 18(1):3:1–
3:53, 2008. doi:10.1145/1391984.1391987.

25 Matthew C. Loring, Mark Marron, and Daan Leijen. Semantics of Asynchronous JavaScript. In
Proceedings of the 13th ACM SIGPLAN International Symposium on on Dynamic Languages,
DLS 2017, pages 51–62, 2017. doi:10.1145/3133841.3133846.

26 Magnus Madsen, Ondřej Lhoták, and Frank Tip. A Model for Reasoning About JavaScript
Promises. Proc. ACM Program. Lang., 1(OOPSLA):86:1–86:24, 2017. doi:10.1145/3133910.

27 Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static Analysis of Event-driven Node.Js
JavaScript Applications. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, pages
505–519, 2015. doi:10.1145/2814270.2814272.

28 S. Maffeis and A. Taly. Language-Based Isolation of Untrusted JavaScript. In 2009 22nd IEEE
Computer Security Foundations Symposium, pages 77–91, 2009. doi:10.1109/CSF.2009.11.

29 Sergio Maffeis, John C. Mitchell, and Ankur Taly. An Operational Semantics for JavaScript.
In Proceedings of the 6th Asian Symposium on Programming Languages and Systems, APLAS
’08, pages 307–325, 2008. doi:10.1007/978-3-540-89330-1_22.

30 Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized Object Sensitivity
for Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, 2005. doi:
10.1145/1044834.1044835.

31 Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. Detecting JavaScript Races That
Matter. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 381–392, 2015. doi:10.1145/2786805.2786820.

32 Node.js. The Node.js Event Loop, Timers, and process.nextTick(). https://nodejs.org/en/
docs/guides/event-loop-timers-and-nexttick/, 2018. [Online; accessed 04-June-2018].

33 C. Park, S. Won, J. Jin, and S. Ryu. Static Analysis of JavaScript Web Applications in the
Wild via Practical DOM Modeling (T). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 552–562, 2015. doi:10.1109/ASE.2015.27.

34 Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race Detection for Web
Applications. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 251–262, 2012. doi:10.1145/2254064.2254095.

35 J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74, 2002. doi:
10.1109/LICS.2002.1029817.

36 Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An Analysis of the Dynamic
Behavior of JavaScript Programs. In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’10, pages 1–12, 2010. doi:
10.1145/1806596.1806598.

37 Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. SYNODE: understanding
and automatically preventing injection attacks on Node.Js. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018, 2018.

38 Kwangwon Sun and Sukyoung Ryu. Analysis of JavaScript Programs: Challenges and Research
Trends. ACM Comput. Surv., 50(4):59:1–59:34, 2017. doi:10.1145/3106741.

39 J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei. A comprehensive study on
real world concurrency bugs in Node.js. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 520–531, 2017. doi:10.1109/ASE.2017.
8115663.

40 Yunhui Zheng, Tao Bao, and Xiangyu Zhang. Statically Locating Web Application Bugs
Caused by Asynchronous Calls. In Proceedings of the 20th International Conference on World
Wide Web, WWW ’11, pages 805–814, 2011. doi:10.1145/1963405.1963517.

ECOOP 2019

http://dx.doi.org/10.1145/1391984.1391987
http://dx.doi.org/10.1145/3133841.3133846
http://dx.doi.org/10.1145/3133910
http://dx.doi.org/10.1145/2814270.2814272
http://dx.doi.org/10.1109/CSF.2009.11
http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1145/2786805.2786820
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
http://dx.doi.org/10.1109/ASE.2015.27
http://dx.doi.org/10.1145/2254064.2254095
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1145/1806596.1806598
http://dx.doi.org/10.1145/1806596.1806598
http://dx.doi.org/10.1145/3106741
http://dx.doi.org/10.1109/ASE.2017.8115663
http://dx.doi.org/10.1109/ASE.2017.8115663
http://dx.doi.org/10.1145/1963405.1963517

	Introduction
	Modeling Asynchrony
	The lambda_q calculus
	Syntax and Domains
	Semantics
	Modeling the Event Loop
	Modeling Timers & Asynchronous I/O

	Expressing Promises in Terms of lambda_q

	The Core Analysis
	The Analysis Domains
	Tracking the Execution Order

	Callback Graph
	Analysis Sensitivity
	Callback Sensitivity
	Context-Sensitivity

	Implementation
	Limitations

	Evaluation
	Experimental Setup
	Results
	Case Studies
	Threats to Validity

	Related Work
	Conclusions & Future Work

