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Abstract
A thorough understanding of the timing behavior of embedded systems software has become very
important. With the advent of ever more complex embedded software e.g. in autonomous driving,
the size of this software is growing at a fast pace. Execution time profiles (ETP) have proven to be
a useful way to understand the timing behavior of embedded software. Collecting these ETPs was
either limited to small applications or required multiple runs of the same software for calibration
processes. In this contribution, we present a novel method for collecting ETPs in a single shot of
the software at very high quality even for large applications.
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1 Introduction and Background

1.1 Motivation
A thorough understanding of the execution time of embedded systems software is crucial for
the development of reliable systems. Yet, an analytical approach for this understanding has
become almost impossible with modern System-on-Chip (SoC) architectures. The overall exe-
cution time is dominated by unpredictable effects like caches with random replacement policy.

Also, this effect demands more understanding of the timing as just min and max times
for functions or loops. Rather, it requires a full execution time profile (ETP), which shows
the probability for all possible execution times.

Different ways exist to collect such an ETP. Although it is possible to instrument the
code to create a statistics for all parts of the code, this way highly influences the execution
time and thus comes with severe drawbacks. The best alternative is to use the trace data
that is provided by modern SoCs [1]. Unfortunately, commercial tools currently only offer to
record this trace data. Given the data rate and the complexity of typical systems, this is
not feasible, as the amount of data can easily reach TB. The only truly viable alternative is
online processing of trace data.

1.2 Online Processing of Trace Data
To the best of our knowledge, the CONIRAS platform [5] was the first that was able to
entirely process the trace data produced by modern ARM processor cores. This is non trivial,
as the trace information is highly compressed and packetized. Only in the beginning of a
packet an absolute reference is given. The remaining packet uses only relative addressing.
Online processing consists of: (a) Reconstruction of the program addresses from the trace
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Figure 1 Schematic comparison of our previous histogram algorithms. The range of measured
values are shown as red dotted line. The covered value range by a linear histogram is shown as blue
line, by a centered histogram as purple line and by an iterative histogram as green line.

stream (b) Mapping these addresses to individual basic blocks of the application under test
(AuT) and (c) aggregating the information in a suitable form. Timingwise, the CONIRAS
project targeted only worst case execution time (WCET). Support for histograms was added
later. We started with linear and centered histograms. Both were using a bin size that the
user had to choose. Later, we devised an iterative approach, where the optimal bin size is
evaluated by multiple runs of the embedded software.

Essentially, the CONIRAS platform was limited by the amount of memory that was
available on the underlying FPGA. All address lookups and all statistics were using BRAMs
of the FPGA (even if it was not necessary).

1.3 Related Work

Apart from ETPs, hardware-implemented histogram are often used in image and video
processing. Gautam presents a parallel histogram calculation architechture for image pro-
cessing [7]. A hardware efficient, simplified Histogram of Orientation Gradient (HoG) module
in Scale Invariant Feature Transform (SIFT) for describing key-point detected using Gaussian
Scale Space (GSS) is proposed in [11]. Maggiani et al. propose in [10] an optimized design
of a histogram extractor algorithm targeted to low-complexity and low-cost FPGA-based
Smart Cameras. [14] uses them for Adaptive Histogram Equalization. In [8] and [9], they
are part of the Histogram of Oriented Gradients algorithm for object detection. [15] presents
a sliced Integral Histogram algorithm for efficient histogram computation. [13] uses Local
Binary Patterns Histogram for face recognition.

In contrast to these related works, the distribution of function runtimes is highly dynamic.
Therefore, we could not use the known methods for constructing histograms in hardware
and had to develop new histogram algorithms [2, 3].

The remainder of this paper is structured as follows: Section 2 explains the limitations of
the CONIRAS platform and analyzes the causes. Our novel approach for collecting ETPs is
presented in Section 3. The overall platform and the tool flow are presented in Section 4.
Finally, in Section 5 a conclusion and an outlook are given.
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2 Limitations of Previous Hardware-optimized Histogram Algorithms

In this section we want to recapitulate existing hardware-optimized histogram algorithms and
explain why these algorithms are not adequate for analyzing large embedded applications.
In [2] and [3] we presented a linear, a centered and an iterative histogram algorithm. The
schematic bin distributions of these histograms are shown in Figure 1.

Linear Histogram Algorithm. Linear histograms span a range from 0 to an upper bound
with equally distributed bins over the full range. The size of the last bin is unlimited. In
this way, the histogram uses its last bin to count the amount of values that were outside
of its range. This information is used to judge the quality of the histogram. The linear
algorithm was developed for the runtime measurement of Waypoint Edge Events (WPEs), as
they usually take only a few cycles.

The blue lines of Figure 2 show the coverage of the debie1 task runtimes with linear
histograms. It can be seen that a linear distribution with starting point 0 is only suitable for
the measurement of functions with short runtimes.

Centered Histogram Algorithm. The centered bin distribution has been developed by
assuming that the expected runtimes are clustered around a reference value. To obtain a
more detailed view of the measured values, the bins are distributed around this reference
value [2]. In contrast to the linear histogram, the first and last bin are used to store the
number of values that are outside the distribution. This algorithm requires more memory
than the linear algorithm because the reference value of each histogram must be stored
during the analysis of the AuT.

The purple lines of Figure 2 show the coverage of the debie1 task runtimes with centered
histograms. The histograms have been configured to use the first measured value as reference
value and that the reference value is in the upper quarter of the total distribution. For
functions with longer runtimes, this distribution is better suited than the linear distribution.
Nevertheless, the coverage is not satisfactory to create good ETPs.

Iterative Histogram Algorithm. The iterative algorithm was developed for the runtime
measurement of functions. Unlike the execution time of WPEs, the runtime of functions
can have high dynamics. For example, if sensors supply input data and the runtime of a
function depends on these inputs. The algorithm consists of multiple runs. In each run, a
linear histogram is constructed and the minimum and maximum measured values are stored.
The lower and upper bound of these histograms are derived from the measured minimum
and maximum values of the previous runs. The bounds for the first run are defined by the
user. The algorithm terminates when the amount of entries in the smallest and largest bin
are below a user defined threshold. It is important to know that adjusting the minimum and
maximum boundary of a linear histogram requires to re-synthesize the histogram hardware
and this takes several minutes.

Therefore, this iterative approach is unsuitable for large embedded applications. It may
take a long time before the function to be analyzed is executed. If the function has high
dynamics in its runtime, several iterations are necessary to get good histograms which
increases the time drastically.

WCET 2019
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Figure 2 Measured debie1 task execution cycles (red dotted lines) covered by linear (blue lines)
and centered (purple lines) histograms with 128 bins of size 8. Numbers for linear and centered
distribution are taken from [2]. The iterative algorithm covers the complete range of measured
values after the second run and is therefore not drawn as evaluated in [3].
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Figure 3 Visualization of one compression step of the scalable histogram algorithm. Two adjacent
bins are summed up and the remaining bins are set to zero.

3 Scalable Histogram Algorithm

For the calculation of meaningful ETPs, the underlying histograms must be as detailed as
possible. This means that the histograms should have a small bin size and the histogram
should be able to assign each measured value to a bin. The runtimes of functions, tasks and
loops can differ from execution to execution. This may be caused by data dependencies or
cache effects. It is not uncommon for the runtime of a function to depend on the function’s
parameters. To compute histograms with high event frequency in hardware, we fixed the
number of bins of a histogram during the hardware synthesis, see Section 4.

Therefore, the idea of the scalable histogram algorithm is to increase the size of all
histogram bins dynamically during the analysis of an AuT. This allows the histogram to
process a wider range of measured values if necessary. Each histogram has an initial bin size
of 1. Whenever the histogram is not capable to store a measured value because this value
is too large to be stored in the highest bin the sizes of all bins are doubled. During this
duplication, two adjacent bins are merged, i.e. their values are added and the remaining bins
are set to zero, see Figure 3. This phase is called a compression and is repeated until the
measured value can be stored in a bin. The number of times a histogram has been compressed
is called the histogram’s compression level and is stored together with each histogram. This
level is later used by the timing analysis software to recalculate the border of each bin.

Example. In this section we want to demonstrate the algorithm with an example. This
example uses a scalable histogram with 8 bins to process the event sequence <5,4,11,7,54,10>.
Figure 4 shows how this sequence is processed in steps (a) to (j). These steps are now
explained.

At the beginning of this example the histogram is in its initial state, shown in step (a).
This means that all bins are cleared and the histogram’s compression level is 0. Therefore,
each bin has a size of 1 and the histogram can process values between 0 and 7 without
increasing its compression level, i.e. the need of one or more compressions.
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Figure 4 Scalable histogram algorithm example showing an 8 bin histogram processing the event
sequence <5,4,11,7,54,10> step by step.

The first sequence value is 5 and because it is within the current range of the histogram
the corresponding bin is updated (b). The next sequence value is 4 and is also within
the current range of the histogram so the corresponding bin can be updated too (c). The
following value is 11 and is not within the range of the histogram. Before this value can
be processed, the histogram must be compressed to double its range (d). The compressed
histogram can process values between 0 to 15 and is able to process the value 11. The
updated bin is shown in step (e). The next sequence value is 7 and can be processed without
further compressions (f). Then value 54 is processed, which requires the two consecutive
compressions depicted as steps (g) and (h) before the corresponding bin can be updated in
step (i). The first compression extends the range of the histogram to process values between
0 and 31 and the second compression to process values between 0 and 63. The final value 10
can be processed without any compressing.

Evaluation. In this evaluation we compare ETPs constructed from scalable histograms with
64 and 128 bins with perfect ETPs. Perfect ETPs are the most detailed ETPs, i.e. they are
constructed from histograms with bin sizes of 1 which could not be realized in hardware.
Since the number of histogram bins now depends on the measured values, we constructed
these perfect ETPs through simulation.

Figure 5 overlays these ETPs for all debie1 tasks and Interrupt Service Routines (ISRs).
The debie1 benchmark was chosen to ensure comparability with the evaluation results
of [2] and [3]. It can be seen that we can construct ETPs with a good precision/memory trade-
off for each debie1 task and ISR with our new algorithm. Unlike our previous algorithms, this
construction was done in one analyzing pass and without any previous runtime information
about the tasks to be analyzed.

4 Scalable Histogram Platform

In this section we want to introduce a timing analysis platform that calculates scalable
histograms and simple statistics in hardware. These calculations are done in realtime during
the analysis of an AuT. This platform is an extension of the CONIRAS platform which had
the original purpose to compute the WCET of an AuT.

WCET 2019
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Figure 5 Execution cycles ETPs of all debie1 tasks and ISRs generated from 70,000,000 WPE.
Red lines are simulated perfect ETPs i.e. the underlying histograms have a bin size of 1; green lines
are ETPs from scalable histograms with 128 bins, blue lines are ETPs from scalable histograms
with 64 bins.

4.1 Workflow

Figure 6 shows the workflow to compute timing statistics of embedded applications online in
a non-intrusive way. This workflow only requires the application as binary file.

Preprocessing

The first step to analyse an AuT is to reconstruct its Waypoint Graph (WPG) [4] with tools
like aiT [6] and Angr [12].

After that, the Timing Analysis Module Generator generates the Timing Analysis Module
that measures the function runtimes and loop iterations of the AuT and also calculates and
stores function runtimes and loop iterations statistics in hardware. In order to let the user
specify which functions and loops of an AuT should be analyzed and which statistics should
be generated we developed the Statistics and Logging Language (SALL). SALL is not in
focus of the paper and will therefore not be discussed further.
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Figure 6 Workflow of our timing analysis platform for analyzing large embedded programs. The
Timing Analysis Module has been developed for this purpose. Gray parts could be reused from our
CONIRAS platform and its extensions.

Online Analysis

The Timing Analysis Module uses Waypoint Edge Events (WPE) emitted by the trace-based
WPG Path Execution Module to calculate and store scalable histograms for function runtimes
and loop iterations. A WPE consists of the executed edge of the WPG, i.e. an edge ID and
the amount of cycles since the previous WPE was emitted.

Instead of histograms the module can also calculate and store simple statistics. Simple
statistics means to compute and store the minimum, maximum and total runtime of a
function and the minimum, maximum and total iterations of a loop. It also stores how
often a function and loop was executed. Furthermore, it can also calculate and store simple
statistics of low-level context-sensitive WPE. Context-sensitive WPE statistics means to
compute and store the minimum, maximum and total runtime of an event that were executed
during the first iteration of its innermost surrounding loop separated from the measured
executions of that event during further iterations of its innermost surrounding loop. It also
context-sensitively stores how often that WPE was executed.

Postprocessing

After the analysis is done the Timing Analysis Module transfers the generated statistics to
the host computer. This computer can than be used to perform high level analysis like ETP
or WCET calculation.

4.2 Timing Analysis Module

This module consists of a loop and function automata cluster, forwarding trees, storage
controllers and statistics storages. Each automaton generates context-sensitive WPE runtimes,
loop and function runtimes, and loop iterations amount data. The forwarding and poll
trees are used to serialize these data. The poll tree uses a round robin mechanism to poll
information out of the automata’s output buffer, depicted in Figure 7. This buffer mechanism
is necessary because multiple automata can emit loop and function events at the same time.
Whereas a simple forwarding is sufficient to forward the context-sensitive WPE runtimes,
because this information is only emitted by the innermost function or loop. The Storage
Controller uses the statistics layout information of the automata cluster together with their
emitted values to generate control signals for the Statistics Storage Module to calculate simple
statistics and histograms.

WCET 2019
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Loop and Function Automaton Module

This module is able to analyze one loop or one function of an AuT and its structure is shown
in Figure 8. It processes WPEs which are generated by the WPG Path Execution Module by
interpreting low level trace packets like atom packets, timestamp packets, branch address
packets and waypoint update packets for an ARM CoreSight [1] trace.

The green part of Figure 8 calculates the runtime of a function or loop. The blue part
counts the iterations of a loop. The yellow part determines if this automaton represents
the currently innermost executed loop or function. It also determines the current context
of the executed WPEs. All these parts use Finite-State Machines (FSMs) to manage their
computations. The transition events of these FSMs are generated by the purple part. It
uses a rewritable lookup to map WPEs to transition events. These lookups are realized
with distributed RAM for small functions and BRAM for large functions. By altering the
lookup content through meta-configuration at runtime the automaton can be used to analyze
another loop or function.

Each automaton also stores information about which statistics should be generated
from its measurements and where they should be stored in Statistics Storage Module. This
information was defined during the preprocessing phase by the Timing Analysis Module
Generator and is used by the Storage Controller Module to calculate the memory addresses
for updating the correct statistics.
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Figure 9 Timing critical part of one Statistics Module. It computes and stores histograms with
four bins or simple aggregation function, i.e. min, max, sum and count. Forwarding paths to update
the same memory location several times in a row are not shown for clarity.

Statistics Storage

Figure 9 gives a detailed insight of the timing critical datapath core of a Statistics Storage
Module with four statistics cells. Each cell is colored differently for a better overview. The
four cells can be used to calculate histograms with up to four bins or simple statistics.
Each cell contains a dual ported RAM to store its statistics values and is connected to a
Storage Controller that drives the individual address, mode and value signals. The mode
signal determines the statistics operation which the cell applies to the value signal and the
corresponding stored value. The address signal determines which stored value is updated.

Each cell is able to calculate simple min, max, sum and count statistics. The cells can
also work together to calculate scalable histograms with four or two bins. If the first two
cells work together to calculate histograms with two bins, the remaining cells can be used
for simple statistics. This generic cell concept can be scaled to compute histograms with
way more bin.

Statistics Controller

The Simple Statistics and Scalable Histogram Statistics Controller Module generates the
control signals for the Statistics Storage Module to update histograms and simple statistics. To
this end, the module implements the scalable histogram algorithm and stores the compression
level of each histogram.

From the automata cluster it receives the measured function runtimes and loop iterations
and the statistics type to use. The statistics type defines whether simple statistics or a
histogram should be created and where in the memory of the Statistics Storage Module these
statistics should be stored.

4.3 Measurement FIFO Buffer Evaluation
As long as no histogram compression is necessary, the Statistics Controller Module can
process one event every clock cycle. One histogram compression requires one additional cycle.
Because the cluster can generate an event every cycle, a first-in-first-out (FIFO) buffer was
placed between the cluster and the Statistics Controller.

WCET 2019



2:10 Timing Analysis of Large Embedded Applications

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1x10 7
 2x10 7

 3x10 7
 4x10 7

 5x10 7
 6x10 7

 7x10

WPE

#FIFO entries

Figure 10 Measurement FIFO buffer utiliza-
tion during the complete debie1 benchmark ana-
lysis.

 0

 2

 4

 6

 8

 10

 12

 35  40  45  50  55  60  65  70  75  80  85

WPE

#FIFO entries
Triggered histogram compressions

Figure 11 Measurement FIFO buffer utiliz-
ation between processing WPE 59,529,035 and
59,529,085.

It is important that this buffer does not overflow during the analysis of an AuT, as this
falsifies the analysis results. It is also important that this buffer can be implemented in
hardware, i.e. it does not require unrealistic amounts of RAM. Therefore, we simulated the
utilization of this buffer during the analysis of the debie1 benchmarks with prerecorded
WPEs from [3]. This means that our target SoC to record the WPEs was a Xilinx Zynq
XC7Z020 featuring a dual-core ARM Cortex-A9 running at 667 MHz. We compiled the
benchmark with the C++ compiler GNU C/C++ 4.9.2 20140904 (prerelease) to ensure
comparability with the evaluation results of [2] and [3]. The benchmark was executed on one
core, while the other core executed a program that was used to generate interferences on the
shared L2 cache and the shared interconnects.

Figure 10 shows the FIFO utilization during the analysis of the complete benchmark. To
this end, almost 70,000,000 prerecorded WPEs were processed and 240 scalable histograms
with 64 bins were constructed to be able to analyze all 68 loops and 172 functions of the
benchmark. It can be seen that the FIFO is almost always empty and only buffers a maximum
of 9 events at the same time.

This is shown in detail in Figure 11. The blue line shows the amount of buffered events
for each processed event. The green lines show whenever a processed event triggers one or
more compression steps of a histogram. The height of these green lines show the amount of
compression steps that are necessary to process this event.

This evaluation has shown that the buffer can be implemented in hardware and requires
only a few resources for the debie1 benchmark.

5 Conclusion and Future Work

In this contribution, we have presented a novel approach to collect histograms of execution
times for large embedded applications. No instrumentation of the software is needed and
thus, the timing behavior of the embedded system is not influenced. The histograms are
gathered in a single shot of the AuT, yet they are so precise that we can compute very good
ETPs from them. We have presented a measurement platform that can be tailored to the
needs of the user. Also, we have analyzed the critical elements of the platform with respect
to their HW implementation.

In the future, we want to use our domain specific language to automatize the customization
of the measurement platform. This will enable us to automatically realize lookup functions
in the best suitable type of memory. Since we will need less BRAMs for the lookup, more
histograms can be gathered at the same time then.
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