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——— Abstract
Many embedded control applications have real-time requirements. If the application is safety-relevant,
worst-case execution time bounds have to be determined in order to demonstrate deadline adherence.
For high-performance multi-core architectures with degraded timing predictability, WCET bounds
can be computed by hybrid WCET analysis which combines static analysis with timing measurements.
This article focuses on a novel tool for hybrid WCET analysis based on non-intrusive instruction-level
real-time tracing.
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1 Introduction

In real-time systems the overall correctness depends on the correct timing behaviour: each
real-time task has to finish before its deadline. All current safety standards require reliable
bounds of the worst-case execution time (WCET) of real-time tasks to be determined.

With end-to-end timing measurements timing information is only determined for one
concrete input. Due to caches and pipelines the timing behaviour of an instruction depends
on the program path executed before. Therefore, usually no full test coverage can be achieved
and there is no safe test end criterion. Techniques based on code instrumentation modify
the code which can significantly change the cache and pipeline behaviour (probe effect): the
times measured for the instrumented software do not necessarily correspond to the timing
behaviour of the original software.

One safe method for timing analysis is static analysis by Abstract Interpretation which
provides guaranteed upper bounds for WCET of tasks. Static WCET analyzers are avail-
able for complex processors with caches and complex pipelines, and, in general, support
single-core processors and multi-core processors. A prerequisite is that good models of the
processor/System-on-Chip (SoC) architecture can be determined. However, there are modern
high performance SoCs which contain unpredictable and/or undocumented components that

influence the timing behaviour. Analytical results for such processors are unrealistically
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pessimistic. A hybrid WCET analysis combines static value and path analysis with meas-
urements to capture the timing behaviour of tasks. Compared to end-to-end measurements
the advantage of hybrid approaches is that measurements of short code snippets can be
taken which, in combination, cover the complete program under analysis. Based on these
measurements a worst-case path can be computed.

In this article we will focus on the hybrid WCET analyzer TimeWeaver which avoids
the probe effect by leveraging the embedded trace unit of modern processors. It reads the
executable binary, reconstructs the control-flow graph and computes ranges for the values
of registers and memory cells by static analysis. This information is used to derive loop
bounds and prune infeasible paths. Then the trace files are processed and the path of longest
execution time is computed. The computed time estimate provides valuable feedback for
assessing system safety and for optimizing worst-case performance. TimeWeaver also provides
feedback for optimizing the trace coverage: paths for which infeasibility has been proven
need no measurements; loops for which the analyzed worst-case iteration count has not been
measured are reported. This is especially useful for software functions that employ different
modes. If the static analysis can prove that the function is only executed in one of the modes,
then it is enough to measure those parts of the software that belong to this mode.

2 Related Work

The problem of computing tight bounds of the execution time of a program is an active
field of research, with many methods and tools using both static and dynamic analysis
approaches [15]. Static analysis methods compute safe upper bounds of the execution time
from a mathematical model of the target architecture. Dynamic analysis methods, on the
other hand, derive the execution time from measurements performed on real hardware.
Hybrid methods, like our approach, combine execution time information extracted from
measurements with statically computable information like control flow graphs to improve
safety, precision and/or coverage of the result. Probabilistic methods, finally, try to compute
statistical models from measurements to compute upper bounds of the execution time.

The most basic version of measurement-based execution time analysis, namely end-to-end
measurements, is still in frequent industrial use [12], but its problems are manifold. Not only
it is unable to produce safe estimates, as in general not all possible scenarios can be measured,
but the results are hard to interpret, too, as they are not related to particular parts of the
code but only to the whole program. To overcome this, more structured approaches have
been proposed, e.g. by Betts et al. in [4], which combine the measured execution times of
small code snippets to form an execution time estimate for the whole program under analysis.
Their use of software instrumentation leads to the probe effect, i.e., the timing behaviour of
the program under observation changes due to the used observation technique. Moreover,
their method does not account for typical cache behaviour, because it does not discriminate
between different loop iterations. Hence, their method may be overly conservative. In a
more recent publication [7], they use the non-intrusive tracing mechanisms of state-of-the-art
debugging hardware. The main obstacle of their method is the limited size of trace buffers
and/or the huge amount of trace data. According to their estimates, around half a terabyte
of data would be generated in an hour of testing.

Bernat et al. [5, 6] obtain execution time profiles from measurements and combine them to
compute a probabilistic timing estimate. Like [4], their tool pWCET! uses instrumentation.

! RapiTime is the commercial successor of pWCET.
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Stattelmann et al. [13] propose the use of context information in order to account for
cache effects. As an experimental platform they used the Infineon TriCore TC1797ED which
allows automata-based trigger events to start/stop trace event recording. Stattelmann et al.
implemented complex trigger specifications to reduce the required amount of trace data. In
principle, their work shows that the inclusion of context information leads to more precise
execution time results. However, the trigger event implementation in the measurement
hardware is not precise enough to ensure valid fine-grained trace recording. This resulted in
underestimated basic block timings.

Dreyer et al. [8] use the real-time tracing capability of modern SoCs like Xilinx Zynq to
perform non-intrusive measurements. The core parts are implemented on a FPGA to directly
process the raw trace data while the program is still running. The FPGA module computes
execution time statistics like the minimal and maximal execution time for each edge in the
waypoint graph. The presented work relies on the availability of a trace processing module
for the underlying hardware architecture to interpret the raw trace data. Additionally, the
timing results are only partially context-sensitive for loops, as only the first iteration is
treated separately. Our approach, in contrast, processes the trace data offline, exploiting full
context-sensitivity and hence, leading to more precise results. Like them, we use non-intrusive
hardware tracing mechanisms of state-of-the-art multi-core processors (like NXP T1042,
Zynq Ultrascale+ or TriCore AURIX) which try to minimize the amount of recorded data
without loosing path information. This makes the offline processing feasible.

3 Hybrid WCET Analysis

Techniques to compute worst-case execution time information from measurements are either
based on end-to-end measurements of tasks, or they construct a worst-case path from timing
information obtained for a set of smaller code snippets in which the executable code of the
task has been partitioned. With end-to-end timing measurements, timing information is only
determined for one concrete input. As described above, due to caches and pipelines the timing
behaviour of an instruction depends on the program path executed before. Therefore, usually
no full test coverage can be achieved and there is no safe test end criterion. Approaches that
instrument the code to obtain timing information about the code snippets of a task modify
the code which can significantly change the cache and pipeline behaviour (probe effect): the
times measured for the instrumented software do not correspond to the timing behaviour of
the original software.

The solution which is implemented in the hybrid WCET analysis tool TimeWeaver [2]
combines static context-sensitive path analysis with non-intrusive instruction-level real-time
tracing to provide worst-case execution time estimates. By its nature, an analysis using
measurements to derive timing information is aware of timing interference due to concurrent
execution and multicore resource conflicts, because the effects of asynchronous events (e.g.
activity of other running cores or DRAM refreshes) are directly visible in the measurements.
The probe effect is completely avoided since no code instrumentation is needed. The computed
estimates are safe upper bounds with respect to the given input traces, i.e., an overall upper
timing bound is derived from the execution time observed in the given traces (for more
details, see Section 3.3). Thus, the coverage of the input traces on the analyzed code is an
important metric that influences the quality of the computed WCET estimates.

The required trace information is provided out-of-the-box by embedded trace units of
modern processors, like NEXUS IEEE-ISTO 5001™ [9], Infineon TriCore™ MCDS, or ARM
CoreSight™ [3]. They allow the fine-grained observation of a program execution on single-core
and multicore systems. Examples for processors supporting the NEXUS trace interface are
the NXP QorIQ P- and T-series processors (using either an e500mc or an €5500/e6500 core).
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Listing 1 A sample NEXUS trace in ASCII format.

+056 TCODE=1D PT-IBHSM F-ADDR=F1F4 HIST=2 TS=8847
+064 TCODE=21 PT-PTCM EVCODE=A TS=88F1

+072 TCODE=1C PT-IBHM U-ADDR=03DC HIST=1 TS=8D62
+080 TCODE=21 PT-PTCM EVCODE=A TS=8E2F

+088 TCODE=21 PT-PTCM EVCODE=A TS=8FBA

+096 TCODE=21 PT-PTCM EVCODE=A TS=9105

+104 TCODE=1C PT-IBHM U-ADDR=02CC HIST=1 TS=9275
+112 TCODE=1C PT-IBHM U-ADDR=01F0 HIST=1 TS=93BF
+120 TCODE=21 PT-PTCM EVCODE=A TS=997B

+128 TCODE=1C PT-IBHM U-ADDR=0044 HIST=1 TS=9B02
+136 TCODE=21 PT-PTCM EVCODE=A TS=9F21

3.1 Example: NEXUS Traces

On the PowerPC architecture TimeWeaver relies on NEXUS program flow trace messages.
Such traces consist of trace segments separated by trace events. The events are mapped to
points in the control-flow graph (trace points) and the segments to program paths between
these points. This is done for those parts of the trace that reach from the call of the routine
used as analysis entry till the end of that routine or any other feasible end of execution. Such
parts are called trace snippets. A single trace may contain several trace snippets. TimeWeaver
can operate on one or more traces given as trace files, each containing one or more trace
snippets.

A NEXUS trace event encodes its type, a time stamp containing the elapsed CPU cycles
since the last trace event and the contents of the branch history buffer, which can be used to
reconstruct execution path decisions and allows to map trace segments to the control-flow
graph of the corresponding executable.

Microprocessor debugging solutions like the Lauterbach PowerDebug Pro [10] allow to
record NEXUS trace events as they are emitted during program execution and to export
them in various formats. For example, the following command in the Lauterbach Trace32
tool produces NEXUS traces in ASCII format:

Trace.export.ascii <file> nexus /showRecord

A sample exercpt is shown in Listing 1, with some information removed to improve readability.
Those exports can be processed for timing analysis as described below.

Each line corresponds to a trace event. The number at the beginning of the line is the
trace record number. The second and third column represent the particular trace event type
followed by type-specific information like branch history and program address information
associated with the event. The TS number at the end is a time stamp.

Debugging solutions differ in the format in which they export trace data. Some debuggers
allow the user to configure the output. TimeWeaver can currently import traces which
have been exported by Lauterbach, PLS or iSYSTEM debuggers. Whenever the format is
configurable, we have identified a minimal set of information needed to perform the analysis.
Additionally, the tool chain can be easily extended to support other trace formats.

3.2 TimeWeaver Toolchain

The main inputs for TimeWeaver are the fully linked executable(s), timed traces and the
location of the analyzed code in the memory (entry point, which usually is the name of
a task or function). Optionally, users can specify further semantical information to the
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analysis, like targets of computed calls, loop bounds, values of registers and memory cells.
This information is used to fine-tune the analysis. The analysis proceeds in several stages:
decoding, loop/value analysis, trace analysis, and path analysis. Most steps in this tool chain
are shared with aiT [1], leveraging its powerful static analysis framework.

Annotated

Path Analysis Phase

Decoding Phase

ILP Generation

|

CFG
-»> Reconstruction

Transformation

ILP Solving

Microarchitectural Analysis Phase

Visualization/Reporting Phase

Loop/Value Analysis ResultsWriter

Trace Analysis

Figure 1 The structure of the TimeWeaver tool chain.

The decoding phase of TimeWeaver is mostly identical to the decoding phase of aiT.
One important difference is that when encountering call targets which cannot be statically
resolved, TimeWeaver can be instructed to extract the targets of unresolved branches or calls
from the input traces. To this end there is a feedback loop between the CFG reconstruction
and the trace analysis step (cf. Figure 1). As an alternative, the same user annotations can
be used as in the aiT tool chain.

In the next phase, several microarchitectural analyses are performed on the reconstructed
CFG starting with the combined loop and value analysis, again equal to the aiT tool chain.
It determines possible values of registers and memory cells, addresses of memory accesses, as
well as loop and recursion bounds. Based on this, statically infeasible paths are computed, i.e.,
parts of the program that cannot be reached by any execution under the given configuration.
This is important because each detected infeasible path increases the trace coverage. Such
paths are pruned from further analysis. If the value analysis cannot compute a loop bound
or if the computed bound is not precise enough, users can specify custom bounds by means
of annotations which are used by the analysis. The loop transformation allows loops in the
CFG to be handled as self-recursive routines to improves analysis precision [13].

After value analysis, the analyzer has annotated each instruction in the control-flow
graph with context-sensitive analysis results. Context-sensitivity in our analysis framework
means to differentiate between different call stacks and between different loop iterations. The

1:5

WCET 2019



1:6

TimeWeaver: A Tool for Hybrid Worst-Case Execution Time Analysis

length of the call string and the number of distinguished loop iterations can be configured
by the user. This context-sensitivity is important because the precision of an analysis can
be improved significantly if the execution environment is considered [13]. For example, if a
routine is called with different register values from two different program points, the execution
time in both situations might be different. Depending on the context settings, this is taken
into account leading to higher precision in the analysis result.

In the trace analysis step the given traces are analyzed such that each trace event is
mapped to a program point in the control-flow graph. This mapping defines the trace points
and segments mentioned above and is not only necessary for the whole analysis but also
ensures that the input trace matches the analyzed binary. In case a preemptive system has
been traced, interrupts are detected and reported. The extracted timing information, i.e.,
the clock cycles which have been elapsed between two consecutive trace points are annotated
to the CFG in a context-sensitive manner.

After the trace conversion, a CFG which combines the results of value analysis and traced
execution timings (both context-sensitive) is available. This graph is the input for the next
step, the path analysis phase. Here, the trace segment times alongside the control-flow graph
are used to generate an integer linear program (ILP) formulation to compute the worst-case
execution path with respect to the traced timings. At this point, the recorded times for each
pair of trace segment and analysis context get maximized. The ILP formulation is structurally
the same as in the path analysis of aiT [14] with the exception that the involved execution
times are not computed by a micro-architectural pipeline analysis but are extracted from the
input traces. The generated ILP is fed to a solver whose solution is the worst-case execution
path alongside its costs, i.e., the WCET estimate of the analyzed task. This solution is
annotated to the CFG for the final step, namely reporting and visualization. Here, not only
the global WCET estimate and the execution path triggering it are reported, but also detailed
results per routine including the effective as well as the analyzed and trace loop bounds.
Moreover, TimeWeaver reports the trace coverage as well as statistical information regarding
the trace segments (minimal and maximal observed execution times, variance, distribution
graphs, ...). This enables the user to reason about the quality of the measurements.

3.3 WCET Estimate Extrapolation

As mentioned above, a global WCET estimate is computed based on the observed execution
times of trace segments. The times are maximized per trace segment and the maximized
times are composed to identify the worst-case path with respect to those figures.

Where in general, one would need to measure all possible execution paths (which is imprac-
tical on real-world applications) of the analyzed program for coverage reasons, TimeWeaver
allows to compute an upper bound on the global execution time of the analyzed program
based on the trace segment times extracted from the input traces. The underlying assumption
is based on the observation that it is quite hard to stimulate both the worst-case path for
a whole program as well as the worst-case hardware state in which the execution starts
[15]. However, it is much easier to observe the possible maximal execution times for short
program snippets, in particular, if those snippets are measured many times. Additionally,
the static path analysis allows to construct worst-case paths from the trace segments. In
contrast to static timing analysis, where timing anomalies are possible due to the stateful
analysis, the path analysis in our hybrid approach maximizes the execution time independent
of the hardware state (which is not directly visible in the traces). Hence, timing anomalies
are avoided, as local maximization cannot lead to a globally smaller estimate.
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This way, it is only necessary to trace all possible execution paths between two consecutive
trace points. By inserting custom trace points, the user can further decrease the required
number of measurements. Figure 2 illustrates this by showing three consecutive trace points
(TP1, TP2, and TP3) and the possible execution paths between each of them. The WCET
estimate for the time between TP1 and TP3 is computed as the sum over the maximized trace

segment time between TP1—TP2 and the maximized trace segment time between TP2—TP3.

Thus, the measurements need to cover the four execution paths between TP1—TP2 as well
as between three execution paths between TP2—TP3. Without that time composition, all
12 execution paths between TP1—TP3 need to be measured.

max segment time

max segment time

Figure 2 Execution paths between trace points.

3.4 Loop Scaling

For loops, there might be a gap between the maximum of the observed iteration counts
in the input traces (traced bound) and the statically possible maximum iteration count
(analyzed bound) which is computed by the value analysis. A typical example is the memcpy
function. This function could contain a loop that iterates five times in one call context, four
times for a different one, and seven times in yet another calling context. The value analysis
might compute a loop bound of [0..7] iterations, while the traces only contain occurrences
of the loop with 4 or 5 iterations. The bound actually used for the ILP generation — the
so-called effective bound — is the analyzed bound if it is finite and applicable (cf. scaling
conflicts below) and otherwise the traced bound. Per user request, the (interval) intersection
of analyzed and traced bound is used. In the example above, the intersection result would
be [4..5] iterations.

If the effective bound is higher than the traced bound, the maximum observed execution
time (context-sensitively) for one loop iteration is scaled up to the effective bound. This
overcomes the necessity to trace each loop in the analyzed task with its worst-case iteration
count, which might be hard to achieve because loop conditions often are data-dependent and
thus, can be complex to trigger.

However, loop scaling as described above is not always directly applicable. It requires
each trace to pass a trace point inside the loop body. If there is at least one traced execution
path through the loop body without a trace point, scaling cannot be done and only the
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traced bounds are used for this loop. Such a situation is called an event loop scaling conflict.
Event loop scaling conflicts usually happen for very short loops, both in the size of the loop
body as well as in the number of iterations. Then, it may happen that the trace segments
covering the loop start before the loop is entered and end after the loop has been left, because
the embedded trace units often do not emit a trace event for every branch but only if the
branch history buffer is full. Hence, no trace point lies inside the loop body, and no timing
information can be extracted for one iteration of the loop alone. The solution is to either
trace the worst-case loop iteration count or to ensure that each traced path through the loop
body passes a trace point (by inserting custom trace points).

There is another situation which triggers a loop scaling conflict: if due to the context
settings of the analysis a loop is virtually unrolled more times than the corresponding loop
body has been executed in the trace, scaling cannot be applied, too. The reason is that
the scaling is applied in the last loop context, i.e., in that context which represents the last
loop iteration(s). In that case, there is no traced loop body time in the trace mapped to
this context which prevents scaling. Such a conflict is called an unroll loop scaling conflict.
Consider again the memcpy example from the beginning of this section. Assume now that
the user decided to let the analysis differentiate between each of the first six loop iterations
and all other loop iterations. The traces only cover executions where the loop iterates four
or five times. Hence, no timing information can be extracted for the accumulative loop
context that covers the seventh and all later iterations of the loop, and loop scaling fails. To
solve this conflict, one can either trace the worst-case iteration count of the corresponding
loop or the (virtual) loop unroll during analysis of this particular loop can be decreased to
the traced bound.

3.5 Observing Interference

TimeWeaver can also be used to observe interference from tasks running on other cores or
other asynchronous events. If enough measurements have been taken, all interferences that
influence the timing behaviour will be visible. However, this also means that if one wants
to exclude interferences from the results, one needs to use only traces as input that are
representative for such a scenario. Some of these events can be excluded quite easily. For
example, task switches and interrupts can be detected because they leave the precomputed
control-flow graph. This is not the case for resource conflicts, e.g., on the shared bus. Here,
it is unfortunately quite hard to identify whether the increased waiting time is caused by
the intrinsic behaviour of the processor or by external interferences. The identification of
different kinds of interferences in trace data is a topic for future research.

For some (rather regular) types of interference, a possibility is to filter out some trace
segment times. For example, the input traces might contain asynchronous events like DRAM
refreshes which can lead to exceptionally high trace segment times. TimeWeaver allows to
address these with a filter for trace segment times based on their cumulative frequency, i.e.,
their occurrence percentage. The threshold refers to a percentage of occurrences ordered by
execution times. A threshold of 0% is passed by all occurrences. A threshold of 5% is passed
by all but the 4 most expensive ones (in terms of execution time) if there are 100 occurrences,
by all but the 9 most expensive ones if there are 200 occurrences, etc. Trace segment times
that do not pass the specified threshold are ignored in the ILP generation. The filter function
is applied for each trace segment separately. TimeWeaver allows to simulate the effect of the
cumulative frequency filter in a dedicated statistics view. This enables the user to experiment
with different filter values.
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4 Experimental Results on TimeWeaver

To evaluate TimeWeaver for PowerPC, we recorded program executions on an NXP T1040 [11]
evaluation board using a Lauterbach PowerDebug Pro JTAG debugger. For each application,
the maximum observed end-to-end time has been extracted from the traces and compared
with the WCET estimate computed by TimeWeaver. In order to enable comparable results,
the loop bounds in the analysis have been chosen equal to the traced loop bounds. This way,
the increase in the estimate is due to the static path analysis (see Section 3.3). Otherwise,
the results of TimeWeaver could easily exceed the measured end-to-end times solely by using
loop bounds larger than the observed ones. Table 1 shows the results of this comparison.
The difference represents the overestimation resulting from the composition of trace segment
times to a global estimate. Some programs consist only of a single path (e.g., edn and
nestedDepLoops) while other contain quite complex control flow (e.g., the avionics and
automotive tasks). For the former, the difference between TimeWeaver result and maximally
observed execution time is mostly due to the ability of the hybrid analysis to combine
measurements of different hardware states, while for the latter, the static path analysis is
able to construct scenarios for which no single trace has been recorded.

It would have been interesting to compare the results of TimeWeaver to those of aiT,
but unfortunately, no abstract timing model of the NXP T1040 exist, which is also one
of the main reasons for TimeWeaver to exist: to enable some kind of meaningful timing
analysis for processors for which static WCET analysis is impossible due to unpredictable
or undocumented hardware features. However, since the value and path analysis parts are
shared between TimeWeaver and aiT, the only difference would stem from the fact whether
(a) the abstract timing model is tight enough and (b) all possible hardware states have
been observed during measurements. Hence, the results show the importance of the path
analysis, as the hybrid analysis lifts the burden of stimulating the overall worst-case path
from the user.

Table 1 Comparison of TimeWeaver results with maximum observed end-to-end times.

Application | Trace [cycles] | Estimate [cycles] | Diff [%]

cre 809068 829039 2.47

edn 4788025 4791420 0.07

eratosthenes sieve 368345 369803 0.40
dhrystone 168093 177314 5.49

md5 127857 131718 3.02
nestedDepLoops 2747357 2747359 0.00
sha 23426161 23815350 1.66

Avionics Task 420677 498028 18.38
Automotive Task 1 65058 71964 10.62
Automotive Task 2 27215 28967 6.44
Automotive Task 3 17386 18595 6.95
Automotive Task 4 101749 109302 7.42

5 Conclusion

Hybrid worst-case execution time analysis allows to obtain worst-case execution time bounds
even for systems where the timing behaviour of the processor is not well-specified, or where
asynchronous interferences can be neither be controlled nor bounded. We have given an
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overview of the hybrid WCET analyzer TimeWeaver which combines static value and path
analysis with timing measurements based on non-intrusive instruction-level real-time traces.
The trace information covers interference effects, e.g., by accesses to shared resources from
different cores, without being distorted by probe effects since no instrumentation code is

needed. The analysis results include the computed WCET bound with the time-critical

path, and information about the trace coverage obtained. They provide valuable feedback

for optimizing trace coverage, for assessing system safety, and for optimizing worst-case

performance. Experimental results show that with good trace coverage safe and precise
WCET bounds can be efficiently computed.
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