
A Bandwidth Reservation Mechanism for
AXI-Based Hardware Accelerators on FPGAs
Marco Pagani
Scuola Superiore Sant’Anna, Pisa, Italy
Université de Lille, CNRS, Centrale Lille, UMR 9189, CRIStAL, Lille, France
marco.pagani@santannapisa.it

Enrico Rossi
Scuola Superiore Sant’Anna, Pisa, Italy
enrico.rossi@santannapisa.it

Alessandro Biondi
Scuola Superiore Sant’Anna, Pisa, Italy
alessandro.biondi@santannapisa.it

Mauro Marinoni
Scuola Superiore Sant’Anna, Pisa, Italy
mauro.marinoni@santannapisa.it

Giuseppe Lipari
Université de Lille, CNRS, Centrale Lille, UMR 9189, CRIStAL, Lille, France
giuseppe.lipari@univ-lille.fr

Giorgio Buttazzo
Scuola Superiore Sant’Anna, Pisa, Italy
giorgio.buttazzo@santannapisa.it

Abstract
Hardware platforms for real-time embedded systems are evolving towards heterogeneous architectures
comprising different types of processing cores and dedicated hardware accelerators, which can be
implemented on silicon or dynamically deployed on FPGA fabric. Such accelerators typically access
a shared memory to exchange a significant amount of data with other processing elements. Existing
COTS solutions focus on maximizing the overall throughput of the system, rather than guaranteeing
the timing constraints of individual hardware accelerators. This paper presents the AXI budgeting
unit (ABU), a hardware-based solution to implement a bandwidth reservation mechanism on top of
the AMBA AXI standard infrastructure for hardware accelerators deployed on FPGAs. An accurate
and tractable model, as well as the corresponding analysis, are also proposed to bound the response
time of hardware accelerators in the presence of ABUs, in order to verify whether they can complete
before their deadlines. Finally, a set of experiments are reported to evaluate the proposed approach
on a state-of-the-art platform, namely the Zynq-7020 by Xilinx. The resource consumption of the
ABU has been quantified to be less than 1% of the total FPGA resources of the Zynq-7020.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → System on a chip; Hardware → Reconfigurable logic and FPGAs

Keywords and phrases AXI Bus, Bandwidth Reservation, Hardware Acceleration, FPGA

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.24

1 Introduction

Current computer architectures are evolving towards heterogeneous platforms consisting of
different processing elements including general-purpose processing cores, graphics processing
cores with general-purpose capabilities, and dedicated hardware accelerators [13]. Moreover,
some popular modern SoCs platforms, like Altera’s Stratix 10 SX [20] and Xilinx’s Zynq

© Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni, Giuseppe Lipari, and Giorgio
Buttazzo;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 24; pp. 24:1–24:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:marco.pagani@santannapisa.it
mailto:enrico.rossi@santannapisa.it
mailto:alessandro.biondi@santannapisa.it
mailto:mauro.marinoni@santannapisa.it
mailto:giuseppe.lipari@univ-lille.fr
mailto:giorgio.buttazzo@santannapisa.it
https://doi.org/10.4230/LIPIcs.ECRTS.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

HW-Accel1

BUS

Memory

HW-Accel2

HW-Accel3

HW-Accel4

MemCtrl

L1
L2

CPU0

L1 CPU1

Figure 1 Block diagram of a custom system deployed on a SoC-FPGA platform.

UltraScale+ [39], include a reconfigurable FPGA fabric tightly coupled with general purpose
processing elements. This feature vastly extends the capability of these platforms to allow
offloading intensive computational activities from the general-purpose processing elements to
custom hardware accelerators deployed on the FPGA fabric.

With respect to other types of hardware acceleration, like GPU co-processing, FPGA
acceleration allows for precise control of the logic design, resulting in a very predictable
behavior of the accelerators and allowing for an accurate estimation of the worst-case
execution time [14, 28]. Such characteristics have made FPGA-based acceleration attractive
in several safety-critical domains for signal processing and many other computationally-
intensive dataflow applications [19, 21]. To name a relevant application of FPGA-based
acceleration, these features enable the efficient execution of machine learning algorithms and
convolutional neural networks [38] on embedded devices for safety-critical applications, as
robotics and automotive.

Hardware accelerators are typically memory-intensive, high-performance units capable of
autonomously retrieving data from the system memory using direct memory access (DMA)
or bus mastering techniques. Each hardware accelerator is implemented using a subset of
the FPGA’s logic resources that are reserved only to that specific accelerator. Therefore the
execution units of accelerators are completely independent from each other and can operate
in parallel. For this reason, the execution time of a hardware accelerator depends only on the
input data and the available bus and memory bandwidth. Clearly, in the context of a system
comprising multiple hardware accelerators, like the one shown in Figure 1, bus/memory
contention becomes the dominant factor in determining the response time of the accelerators.
If the effects of such a contention are not taken into account, the system execution becomes
unpredictable and hardware accelerators may introduce interferences that can jeopardize the
entire system.

This scenario is worsened by the fact that often it is not possible for a designer to control
the actual bus demand rate of each accelerator deployed on the system. For instance, if
the accelerator is available in the form of a closed IP, it may be impossible to tune the
actual rate at which bus transactions are issued. Another aspect to consider is the increasing
relevance that high-level synthesis (HLS) is gaining in the design of hardware accelerators
for FPGAs [26, 11]. While these tools allow for a significant speedup of the hardware design
process, they lack the precise control over the design that a register-transfer level (RTL)
implementation can achieve. This effectively reduces the possibility for the designer to
precisely tune the rate of bus transactions. Finally, hardware accelerators can be plagued by
design issues and bugs that may lead to execution overruns or illegal memory accesses.

To mitigate these issues, some hardware vendors typically integrate traditional priority-
based arbitration in their interconnect implementations. More recent FPGA platforms also
include (limited) mechanisms for QoS-aware arbitration [40]. However, the closed source
nature of these implementations, often paired with an opaque description of the internals,

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:3

makes it difficult to model such closed IPs and derive formal properties. In fact, the limited
flexibility of those mechanisms and the lack of a proper reservation policy make them unsuited
for safety-critical environments.

These challenges could be tackled by a methodology that enforces a more predictable
environment, allowing for a controlled integration of first and third-party accelerators.
As modern operating systems provide isolation and supervision mechanisms for software
processes, it is worth providing supervision and reservation mechanisms also for the hardware
activities performed by accelerators. This would enhance system predictability and enable
the FPGA acceleration paradigm to be effectively used in safety-critical applications.

1.1 Contributions
This paper makes the following contributions.

First, it proposes the AXI Budgeting Unit (ABU), which is a custom hardware component
realized in programmable logic that provides bus bandwidth reservation for hardware
accelerators deployed on FPGAs. An ABU shields a hardware accelerator from possible
misbehaviors of other accelerators (in terms of exceeding bus data transfers) by predictably
enforcing a given bus bandwidth. The ABU is not a bus arbiter but a traffic shaper
component to be placed between hardware accelerators and a standard AMBA AXI
bus infrastructure. ABUs can seamlessly be integrated into any FPGA design on top
of the proprietary AXI Interconnect provided by vendors. This approach reduces the
development costs and enhances portability and compatibility with any future releases
of AXI-compliant IPs. ABUs have been implemented and tested upon state-of-the-art
FPGA-based system-on-chips. The resource consumption of an ABU has also been
quantified in less than 1% of the total FPGA resources on a Zynq-7020 platform by
Xilinx.
Second, after presenting a model for hardware accelerators based on the characteristics of
realistic implementations (from Xilinx IP libraries and OpenCV), the paper proposes an
analysis to bound the response times of hardware accelerators. The analysis is performed
in the bus bandwidth domain and results to be tractable, as well as accurate to study
FPGA-based hardware accelerators.
Third, the paper reports a set of experimental results conducted on the Zynq-7020 aimed
at demonstrating (i) the effectiveness of the reservation mechanism implemented by
ABUs, even in the presence of misbehaving hardware accelerators, and (ii) the validity
of the proposed analysis.

The rest of the paper is organized as follows. Section 2 presents the system model and
the essential background. Section 3 presents the ABUs. Section 4 illustrates the problem of
analyzing hardware tasks in the bandwidth domain and highlights crucial analysis issues.
Section 5 shows how ABUs can be leveraged to analyze the system. Section 6 reports on the
experimental evaluation. Section 7 reviews the related work and finally Section 8 states our
conclusions.

2 System model and Background

This work focuses on FPGA-based system-on-chips and considers an AXI system composed
of an interconnect, a set Γ = {τ1, . . . , τn} of hardware accelerators, and a shared sink module
(e.g., a memory controller). The hardware accelerators are implemented as AXI memory-
mapped master modules capable of autonomously accessing data in a shared memory, which

ECRTS 2019

24:4 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

is reachable through the sink. Each accelerator performs a specific computational activity,
therefore, from now on, they will be referred to as hardware tasks (HW-tasks). All HW-tasks
are connected to an Interconnect block, which in turn is connected to the sink module.

The next subsections introduce a model for the Interconnect together with some essential
background related to the AXI bus, a model of the HW-tasks, and a model of the sink
module. It is important to note that most of the assumptions reported in this section are
only adopted for the purpose of analyzing the system (Section 4), while the system-level
mechanism proposed in this paper (Section 3) – i.e., the ABU – is independent of most of
the adopted modeling strategies.

2.1 AXI Interconnect
The central element of an AXI-based system is the AXI Interconnect, which acts like a
“switch” connecting one or more AXI master devices to one or more slave devices. The
Interconnect performs crucial activities such as protocol conversions and the arbitration of
memory transactions. In this work, the Interconnect is assumed to be configured in a N -to-1
mode, i.e., it connects N ≥ 1 masters to a single slave device such as a memory controller.
Under this setting, the Interconnect is in charge of arbitrating the transactions issued by the
master modules.

2.1.1 Arbitration policy
The AXI specification [5] does not mandate any specific arbitration protocol for the Intercon-
nect. Some implementations of the Interconnect, such as the Xilinx standard Interconnect
IP [41], provide two arbitration modes: (i) fixed-priority scheduling, in which the user
configures static priorities for the slave ports, and (ii) a fair allocation using round robin. In
recent releases of the Vivado suite, Xilinx provides the new SmartConnect IP [45] (meant to
replace the current Interconnect IP in new designs) in which the fixed-priority arbitration
has been dropped retaining the round-robin arbitration only. Hence, to match realistic
modern designs, this work only focuses on round-robin arbitration. In addition, it is assumed
that the Interconnect (i) implements ideal round-robin scheduling with reclaiming, i.e., the
unused bandwidth is fairly re-distributed by the contenders that demand more than the
fair bandwidth share, and (ii) does not introduce any overhead. Note that the actual
implementation of the round-robin policy is typically not known, e.g., as it is the case of the
Xilinx IPs, which are closed-source and lack of a proper detailed documentation concerning
arbitration policies. As a result, a more accurate modeling of the arbitration may be difficult
to obtain and may introduce inconsistencies among different versions of the IPs. Nevertheless,
the experimental results carried out in this work surprisingly revealed a marginal deviation
of behavior of the Xilinx Interconnects with respect to the ideal case (see Section 6).

2.1.2 AXI Links
An AXI link provides a bidirectional connection between a master and a slave interface. Each
AXI link comprises five independent transaction channels: two channels (read address and
read data) for read transactions, and three channels (write address, write data, and write
response) for write transactions. Each channel implements a two-way handshake mechanism
by using a pair of VALID and READY signals. The producer generates the VALID signal to
indicate when the address or data are available. The consumer generates the READY signal
to indicate that it can accept the information. The actual transfer occurs only when both

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:5

the VALID and READY signals are asserted. In this paper, to distinguish between READY
and VALID signals of read and write transactions, the letters R and W are appended before
their names (e.g., RREADY and WREADY).

Read and write channels of a link can operate independently one from each other, i.e.,
each HW-task may perform read and write transactions concurrently. However, the AXI
specification [5] does not mandate how the Interconnect should manage such a level of
concurrency among channel groups. In this work, it is assumed that the Interconnect
arbitrates read and write channel groups independently, thus permitting concurrent read
and write transactions from master modules. For instance, note that both the standard and
smart Interconnect IPs provided by Xilinx can operate in this mode [41], [45].

Figure 2 Screenshots of bus signals for read and write memory transactions of two HW-tasks
(FIR and SOBEL filters), taken from the Vivado tool by Xilinx. The HW-tasks are implemented
with High Level Synthesis upon a Xilinx Zynq-7020 platform. The figure also reports a zoom of
about 10 clock cycles.

2.2 HW-tasks
All HW-tasks are periodically activated, and thus generate a potentially-infinite sequence of
execution instances (also referred to as jobs). Each HW-task operates like a DMA module,
generating an equal number of read and write transactions. The transactions issued by
each HW-task are assumed to be uniformly distributed during its execution and hence
issued at a fixed rate. Please observe that, despite this modeling strategy may seem coarse,
many real-world hardware accelerators that perform data-parallel operations (e.g., video,
image, and signal processing on raw data) present regular memory access patterns that can
be modeled with a uniform demand. As a representative example, Figure 2 reports the bus
signals for memory transactions of two state-of-the-art HW-tasks, namely a FIR filter (slot0
in the figure) and a Sobel filter from the OpenCV library (slot1 in the figure). The trace at
the top of the figure reports the execution of the 0.76% and the 0.6% of a job of the two
HW-tasks, respectively. The HW-tasks have been implemented with high-level synthesis
(HLS) upon a Xilinx Zynq-7020 platform. As it can be noted from the figure, the FIR filter
exhibits a uniform pattern of transactions (one 32-bit word per clock cycle); the same holds
for the Sobel filter, with the exception of a few clock cycles every about 600 clock cycles
(the stop is attributed to the end of the processing of a row of the input image). Across
all its execution, the amount of clock cycles in which the Sobel filter does not issue bus
transactions corresponds to less than the 10%. Nevertheless, please observe that for the
purpose of analysis the Sobel filter can still be pessimistically modeled by assuming that bus
transactions are issued even in the last 600 clock cycles: further details on this strategy are
discussed in Section 6.3.

ECRTS 2019

24:6 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

Formally, each HW-task τi is characterized by the following three parameters: (i) a
demand rate Di, which represents the rate of memory transactions (both reads and writes),
(ii) the maximum number Ni of memory transactions issued by each job, and (iii) its period
Ti. Due to the presence of separate channels for reads and writes, the demand rate of
each HW-task is bounded by two transactions per clock cycle. Demand rates are typically
expressed as number of transactions per clock cycle; when needed, a word size (such as
32-bit) may also be used in place of the number of transactions. It is very important to
note that HW-tasks have very different characteristics with respect to classical software tasks.
Indeed, HW-tasks have an intrinsic parallel execution and are usually implemented such that
they can perform computations while issuing memory transactions (i.e., computations and
memory accesses are overlapped in time). For instance, this fact can also be observed from
Figure 2, as the hardware accelerators issue memory transactions at (almost) every clock
cycle. For this reason, computations times are not modeled and HW-tasks are assumed to
be completed when they complete all their Ni memory transactions.

2.3 Sink module
The sink module models an endpoint block like a memory controller or a downstream
AXI Interconnect (e.g., in the presence of multiple Interconnects that are connected in a
hierarchical manner). Formally, the sink module is modeled with a supply bandwidth S that
denotes the total rate of transactions it can accept, i.e., the maximum ratio of read and write
transactions served per clock cycle.

It is worth mentioning that the size, in bytes, of a single transaction may vary even on
the same system depending on how the AXI logic has been implemented on each module.
Actually, the AXI standard allows connecting multiple hardware modules with different
transaction word sizes, or even protocol version; the Interconnect is then responsible to
convert the format of transactions. For instance, the High-Performance ports included in
the Zynq platforms by Xilinx to access DDR memories dispose of a supply rate of two
double-word (64-bit) transactions per clock cycle, while the default configuration of AXI
master ports for hardware accelerators uses single-word transactions. In this paper, when it
is necessary to avoid possible inconsistencies, demand and supply rates are always expressed
by using the smallest word in the system.

3 AXI Budgeting Unit

This work proposes an infrastructure that comprises a set A = {A1, . . . , An} of ABU modules
controlled by a central unit named ABU controller. Each ABU module is conceived to be
placed between a hardware accelerator and the remainder of the bus infrastructure. A sample
setup is shown in Figure 3. The purpose of each ABU module is to supervise the bus traffic
generated by the corresponding hardware accelerator providing both temporal and spatial
isolation. Specifically, the objectives of ABUs are:

implementing a memory bandwidth reservation mechanism by (i) keeping track of the
number of bus transactions issued by HW-tasks, and (ii) enforcing a maximum budget of
transaction within periodic time windows; and
as a side feature, implementing a memory protection mechanism that restricts the address
space accessible by HW-tasks to a set of configurable regions.

The ABU controller serves as a central control point that allows programming the ABU
modules by means of memory-mapped registers exposed through a single AXI slave interface.
In its typical usage, such memory-mapped registers are controlled by the CPU (e.g., by

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:7

HW-Task1 ABU1

 Sink

Interconnect

M S M S

HW-Task2 ABU2M S M S

HW-TaskN ABUNM S M S

M S

 ABU ControllerSFrom CPU

Figure 3 Illustration of an AXI system with hardware accelerators protected by ABUs. The
boxes labeled with M and S denote master and slave AXI ports, respectively.

a driver at the level of the operating system or a hypervisor). The ABU modules are in
turn connected to the ABU controller through a custom bus, which is used to transfer
configuration parameters and signals. As it is illustrated in Figure 3, each ABU module
also exports one AXI master and one AXI slave interface. The AXI slave interface serves
as the access point for the hardware accelerator, while the AXI master port is meant to be
connected to the remainder of the bus. These components are implemented in VHDL using
a RTL behavioral description and deployed onto the FPGA fabric.

Working principle. According to the AXI standard, the master modules are the ones in
charge of initiating bus transactions. Consequently, the HW-tasks drive the system by
concurrently performing requests for bus transactions to the Interconnect, which in turn
selects which pending transactions need to be propagated to the sink. The main idea behind
the budgeting mechanism of ABUs is to act as a proxy between HW-tasks and the Interconnect
by monitoring and altering the AXI signals. An example of a ABU in action is shown in
Figure 4 for the case of a HW-task that performs a set of write transactions. The figure
reports the state of the AXI signals that are relevant for the considered examples, namely
WVALID in output from the HW-task and the ABU (first and second rows, respectively),
WREADY in output from the Sink and the ABU (third and fourth rows, respectively), and
WDATA to show the data traffic on the bus (last row). The evolution of the ABU budget
over time is also reported at the top of the figure. As it can be observed from the figure,
when the ABU budget ends at time t1, write transactions are blocked despite the HW-task
is ready to transmit data (WVALID in output from the HW-task is up) and the Sink is
ready to receive it (WREADY in output from the Sink is up). This is accomplished by
masking signals WVALID and WREADY forcing their logic state to zero, as it is illustrated
in the second and fourth rows in the figure within time interval [t1, t2]. Note that, when no
budget exhaustion occurs, the ABU has a transparent behavior mirroring all signals (see
time window [t2, t3] in the figure).

Budgeting mechanism. For each ABU Ai, the proposed solution allows configuring (i) a
maximum budget Bi of number of transactions, and (ii) a period Pi with which the budget
is replenished. Each ABU also keeps track of a variable parameter denoted as instantaneous
budget bi. At the system startup, bi = Bi,∀i = 1, . . . , n. Then, as a HW-task performs bus
transactions, the instantaneous budget is decremented until it reaches zero (budget depletion).
As long as its instantaneous budget is zero, an ABU forbids bus transactions by acting on
(R/W)VALID and (R/W)READY data and address signals. The instantaneous budget is
recharged in a periodic and synchronous manner, i.e., if the system startup corresponds to

ECRTS 2019

24:8 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

WVALID
(HW-task)

WREADY
(ABU SI)

WDATA
(ABU MI-SI)

Budget

ABU Period

WVALID
(ABU MI)

WREADY
(Sink)

B i

b(t)
i

t0 t1 t3t2 Time

Figure 4 Example of ABU in action: impact on the AXI bus signals.

time t = 0, the instantaneous budget of Ai is set to bi = Bi at every time t = kTi, k ∈ N.
From the perspective of memory bandwidth, note that each ABU enforces a transaction rate
Bi/Pi for the corresponding HW-task independently of the behavior of the latter.

Memory protection. The ABU controller allows configuring X memory address regions
for each ABU Ai to which the corresponding HW-task is allowed to access. Each of such
regions ri,j (with j = 1, . . . , X) is identified with a base memory address and a size, which
are configurable by means of memory-mapped registers offered by the controller. Whenever
a HW-task τi performs an access outside one of the regions r1,1, . . . , ri,X , the corresponding
ABU Ai blocks all memory transactions of τi, as it would be disconnected from the bus;
consequently, the ABU controller raises an interrupt signal. The HW-task that triggered the
fault can be identified by reading a status register of the controller. The normal operation
of the ABU can be restored by acting on another control register offered by the controller.
This feature is particularly useful in the context of virtualized systems, where a hypervisor
running on the CPU of the system-on-chip can configure the memory regions and react to
illegal memory accesses.

ABU internals. The internal architecture of an ABU module is illustrated in Figure 5.
The communication channels on the AXI link between the master and the slave interfaces
are routed through a decoupler block that can stop the master from issuing transactions.
The decoupler works by acting on the ready and valid signals to temporarily suspend the
handshake procedure. The budgeting mechanism is implemented by means of a transaction
counter that keeps track of each read/write transaction and, when the budget is exhausted,
sends a signal to activate the decoupler block. The ABU controller provides a pair of registers
for configuring the budget and the period of each ABU. Such registers are accessible as
memory-mapped via the AXI slave interface of the controller. The memory protection
function is implemented by comparing the values on the read and write address channels
with the range of addresses specified for each region ri,j .

Note that the core logic of ABUs is implemented with lightweight mechanisms (counters,
comparators, and switches) and hence no extra clock cycles are needed to traverse ABUs.
Therefore, ABUs do not introduce delays: the cost of using them is only attributed to the
additional FPGA resources required to be deployed. The resource utilization of one ABU
and the ABU controller when implemented upon a Xilinx Zynq-7020 platform is reported in
Table 1. The table also reports the percentage of resources occupied by the two modules
with respect to the total amount resources available on the Zynq-7020. As it can be noted
from the table, ABUs have a very marginal impact on resource consumption.

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:9

HW-Accelerator

M

Interconnect /
Sink

S

Budget and
period

registers

Buffers bases
registers

Buffers offsets
registers

Transaction
Counter

Write address channel
Read address channel
Write data channel
Read data channel

Decoupler

Read address
comparator

Write address
comparator

EMEM

Figure 5 Internal functional block diagram of an ABU.

Table 1 Resource utilization for an ABU unit and the ABU controller on a Zynq-7020 platform.

Resource type One ABU ABUs Controller
LUT 436/53200 (0.82%) 279/53200 (0.56%)
FF 379/106400 (0.36%) 529/106400 (0.50%)
DSP 0/140 (0%) 0/140 (0%)
BRAM 0/220 (0%) 0/220 (0%)

4 Bandwidth-driven response-time analysis

This section studies the effect of bandwidth contention on HW-tasks under the considered
modeling strategy, and presents a methodology to guarantee the system predictability using
the ABU. Differently from most proposals in the literature, the analysis proposed in this
paper does not aim at accounting for possible interleaves of bus transactions over time (e.g.,
like the analysis of classical periodic real-time tasks), but aims at studying the contention
incurred by HW-tasks in the bandwidth domain, i.e., considering the actual rates at which the
transactions make progress in the presence of other interfering tasks. Why this approach?
As mentioned in Section 2.2, real-world hardware accelerators typically perform uniformly-
distributed bus transactions at a constant rate, and, in particular, they even issue transactions
at every clock cycle (see Figure 2). These characteristics make possible to treat HW-tasks
as fluid computational activities that make progress at a given rate (e.g., similarly to fair
multiprocessor scheduling [4]), and hence allow studying the system in bandwidth domain.

To better illustrate this peculiarity of the problem studied in this work, a simple example
is firstly reported to show the effect of the contention introduced by round-robin arbitration
(Sec. 4.1) in the bandwidth domain. Then, an observation concerning the critical instant
for a set of HW-tasks is presented together with an illustrative example (Sec. 4.2). Finally,
a strategy to enhance the system predictability by making HW-tasks prone for worst-case
response-time analysis is presented (Sec. 5).

4.1 Illustrative example
To illustrate the effect of bandwidth contention incurred by HW-tasks subject to round-robin
arbitration, consider a system composed of (i) a sink module providing a supply of S = 6,
(ii) an interconnect directly connected to the sink module, and (iii) three HW-tasks, namely
τ1, τ2, and τ3, directly connected to the interconnect. The HW-tasks have the same demand
D1 = D2 = D3 = S/2 = 3 corresponding to half of the supply. The first HW-task (τ1) needs
to perform N1 = 6 transactions and has a period of T1 = 9 time units. The second HW-task
(τ2) performs N2 = 24 transactions within a period of T2 = 11 time units. Finally, the third
HW-task (τ3) performs N3 = 30 transactions within a period of T3 = 15 time units.

ECRTS 2019

24:10 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

To avoid possible misunderstanding, please bear in mind that HW-tasks are statically
allocated onto the FPGA area and hence do not contend the logical resources of the FPGA.
For this reason, HW-tasks operate in a parallel fashion using their own (private) logic
resources and can incur in contention only when issuing bus transactions.

0 time

τ1

τ2

τ3

τ1

τ2

τ3

3 9 11 13

0-2 3 7 9 12

 S
 =

 6

 S
 =

 6

time

(a)

(b)

Figure 6 Examples of HW-task scheduling in the bandwidth domain with (a) synchronous release
and (b) without synchronous release. In (b), HW-task τ3 experiences a longer response time with
respect to the schedule in (a).

Consider the case in which all HW-tasks are synchronously released at the same instant
t = 0. Figure 6(a) illustrates the resulting schedule of the three HW-tasks by showing the
intervals of time in which they are operating (on the top of the figure) and the repartition of
the bandwidth over time (on the bottom of the figure). Each square unit of the bandwidth
supply in the figure represents a transaction unit. At time t = 0, since the total bandwidth
demanded by all HW-tasks D1 +D2 +D3 = 9 exceeds the available bandwidth supply S = 6,
the Interconnect limits the bandwidth of the three HW-tasks to a fair share of S/3 = 2.
This bandwidth allocation continues up to t = N1/(S/3) = 3, when τ1 finishes its execution.
Once τ1 completes, τ2 and τ3 can proceed at their full rate of S/2 = 3 without suffering any
contention. At time t = 9, τ2 completes but a new periodic instance of τ1 is also released.
Again, both τ1 and τ3 can progress at their full rate without contention. At time t = 11,
τ1 and τ3 complete at the same time and a new instance of τ2 is activated. The latter can
then proceed to operate while no other HW-task is active. Since τ2 demands a bandwidth of
D2 = 3, half of the supply is left unused up to the next activation of τ3 (which will occur
at time t = 15).

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:11

4.2 Analysis issues

As it can be noted from Figure 6(a), HW-tasks are “slowed down” only when the total
bandwidth demanded by active HW-tasks exceeds the supply (as it happens in [0, 3) in the
figure), i.e., when they make progress at a rate that is lower than their demand. Clearly, this
phenomenon affects the worst-case response times of the HW-tasks.

Unfortunately, a bandwidth-driven response-time analysis cannot be accomplished by
leveraging classical techniques for periodic real-time tasks. In particular, when studying the
problem, we identified a set of issues (in some way similar to those identified in the analysis
of multiprocessor real-time systems under global scheduling [16]) that prevent to analyze the
system by looking at a single scheduling scenario.

To provide a taste of the identified issues, this section demonstrates that the classical
critical instant theorem for periodic real-time tasks under uniprocessor scheduling does not
hold for the problem studied in this work. Indeed, the longest response time of a HW-task
may not occur when it is synchronously released together with all other HW-tasks.

To this end, consider the same system setup used for the previous example (Sec. 4.1).
This time, assume that τ2 is released before τ1 and τ3 at time t = −2, as shown in Figure 6(b).
In this way, the first job of τ2 can issue six transactions without suffering contention before τ1
and τ3 are activated at time t = 0. Hence the first job of τ2 completes early (time t = 7) with
respect to the case of synchronous release, leaving half of the bandwidth supply unused in
time interval [7, 9). Since τ2 has been released earlier, also its next instance will be released
earlier at time t = 9. The second job of τ2 interferes with both τ1 and τ3 causing τ3 to finish
at time t = 12, i.e., one unit of time later than in the case of synchronous release. Hence τ3
misses its deadline at time t = 11.

Proving a correct critical instant for the general case resulted a challenging problem that
is still open for the authors. Nevertheless, as it is shown in the following section, ABUs
can be extremely useful to make the system far more prone to analysis, hence increasing
its predictability.

5 Response-time analysis with ABUs

Besides ABUs implement resource reservation, hence protecting the system from misbehaving
HW-tasks, they can also be leveraged at the stage of analysis to help bounding the response
times of the HW-tasks. Indeed, under the assumption that the ABU periods are orders of
magnitude smaller then the periods of the HW-tasks, i.e., Pi � mini=1,...,n {Ti}, ABUs can
act as bandwidth regulators limiting the maximum demand rate of HW-tasks.

Differently to software-based reservation techniques, for which a short reservation period
determines a high overhead, the assumption on ABUs’ periods is practical because ABUs
are realized in hardware and hence do not introduce relevant issues when adopted with short
reservation periods. Specifically, as mentioned in Section 3, ABUs are built with counters
and signal switches that do not introduce delays and do not represent bottlenecks for the
logic circuits deployed onto the FPGA such that the operating frequency of the latter has to
be limited.

Under this setting, each ABU offers to the corresponding HW-task a virtual, dedicated
supply of bus bandwidth Bi/Pi, which is independent of the behavior of the other HW-tasks
as long as the ABU budgets are guaranteed. Therefore, the problem of analyzing a set of
HW-tasks protected by ABUs can be decomposed into two independent steps:

ECRTS 2019

24:12 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

1. guaranteeing that a set of ABUs can provide the corresponding bandwidths in the worst
case, i.e., their entire budgets can be safely provided in every period; and

2. guaranteeing that the bandwidth provided by each ABU is sufficient for the corresponding
HW-task to meet its deadline.

These steps are addressed in the following two sub-sections, respectively.

5.1 Analyzing ABUs

As long as the sum of the bandwidths provided by a set of ABUs does not exceed the total
supply S, i.e.,

∑n
i=1 Bi/Pi ≤ S, no contention can occur; therefore, it is guaranteed that

their budgets can be provided within every periodic instance. However, in the general case,
this condition may not hold, and hence the analysis of ABUs must account for contention
exactly as discussed in the example of Section 4.1.

Nevertheless, differently from a direct analysis of HW-tasks, two observations can be
leveraged to make the analysis of ABUs tractable. First, as mentioned in Section 3, ABUs are
synchronously activated at the system startup. Second, due to the assumption on the ABUs’
periods (Pi � mini=1,...,n {Ti}), there is no particular advantage in assigning heterogeneous
periods to ABUs, and hence to act as fluid bandwidth regulators they can be all configured
with the same period P . How to configure a suitable value for the period P is discussed in
the experimental evaluation reported in Section 6.

Under this setting, it is then sufficient to study the case of synchronously released ABUs
by analyzing a single problem window of length P that contains a single periodic instance of
each ABU. In other words, it is enough to verify that all ABUs can provide their budget
before time t = P assuming that they are all released at time t = 0.

When contention occurs, it is not straightforward to compute how the available bandwidth
supply is distributed between a set of active HW-tasks. In fact, considering n arbitrary
HW-tasks and a supply S, they can be classified in (i) those that demand less (or the same)
bandwidth than the fair share S/n, and (ii) those that demand more bandwidth than S/n,
with the result that the spare bandwidth left by HW-tasks of type (i) is fairly re-distributed
between the HW-tasks of type (ii). Algorithm 1 is presented to account for this phenomenon
and computes the actual share of bandwidth of a supply S for each HW-task in a set CHW

of contending HW-tasks.

Algorithm 1: Computing bandwidth shares.
Input: A set of HW-tasks: CHW = {τ1, . . . , τm}
Input: Sink supply: S
Output: A set of bandwidth shares: D = {D1, . . . , Dm}

1 begin
2 Srem ← S

3 M ← |CHW |
4 for τhwi ∈ CHW by increasing Di do
5 Di ← min (Di, Srem/M)
6 Srem ← Srem −Di

7 M ←M − 1
8 end
9 return D

10 end

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:13

The correctness of the algorithm is stated by the following lemma.

I Lemma 1. Given a sink with supply S and a set of HW-tasks CHW that contend for the
supply, Algorithm 1 computes the correct share of bandwidth Di assigned to each HW-task
τi ∈ CHW under a fair arbitration.

Proof. The proof is by induction on the iterative steps of the algorithm. Base case (first
iteration, M = |CHW |): Let τi be the HW-task considered at the first iteration. If Di ≥ S/M ,
then by line 5 τi is assigned a bandwidth share Di = S/M , which is correct, as it corresponds
to the fair share. Since the set of HW-tasks is explored in order of increasing Di (see line 4),
then all the following iterations will consider HW-tasks with Di ≥ S/M and, for the same
reason, will be assigned a bandwidth equal to the fair share. Otherwise, if Di < S/M , then
the HW-task will be assigned a bandwidth share equal to the required demand Di = Di.
Note that this cannot affect the bandwidth assignment of the other HW-tasks as Di is lower
than the fair share S/M . Inductive case (M < |CHW |): Suppose that the algorithm assigned
a correct bandwidth to the first |CHW | −M + 1 HW-tasks and that it remains to distribute a
supply bandwidth Srem to M < |CHW | HW-tasks. Let τi be the HW-task considered at the
current iteration. Similarly to the base case, if Di ≥ Srem/M , then by line 5 τi is assigned a
bandwidth share Di = Srem/M , which is correct, as it corresponds to the fair share with
respect to the remaining M − 1 HW-tasks. Again, since the set of HW-tasks is explored
in order of increasing Di, the same will hold for all the following iterations. Otherwise, if
Di < Srem/M , then the HW-task will be assigned a bandwidth share equal to the required
demand Di = Di, which again cannot affect a fair distribution for the following M − 1
HW-tasks. Hence the lemma follows. J

Leveraging Algorithm 1, it is finally possible to build a schedulability test that verifies
whether a set of ABUs can provide their budget within their period P . This is accomplished
by Algorithm 2, which unrolls the execution of a set of HW-tasks protected by ABUs within
an analysis window [0, P].

The algorithm inputs the set of HW-tasks THW and the corresponding set of ABUs A (the
i-th ABU is connected to the i-th HW-task), and returns a boolean predicate that indicates
whether the ABUs are schedulable or not. The algorithm keeps track of the analysis time
t (initialized to t = 0) and the instantaneous budget bi available for each ABU Ai, which
is initialized to Bi (full budget). At the system startup (t = 0), all ABUs have available
budget and hence all HW-tasks are considered active, i.e., they can generate transactions.
Consequently, at line 4, the set of active HW-tasks, denoted with CHW , is initialized to
THW . Then, the procedure enters a loop at line 5. At each iteration, the algorithm computes
the distribution of the supply S among the active HW-tasks by means of Algorithm 1, so
obtaining the share of bandwidth Di for each HW-task τi ∈ CHW . Subsequently, it computes
the amount of time ∆ needed by at least one ABU Ai to provide all the available budget
bi, which is given by ∆ = min(bi /Di). If a HW-task is not able to complete within the
period P , then the system is deemed unschedulable and the algorithm terminates (lines 8-9).
Otherwise, the algorithm proceeds by updating the budget of each ABU accounting for a
lower-bound on the transactions performed in an interval of length ∆ (line 12). Also, if the
budget of an ABU is depleted (bi = 0), then the corresponding HW-task is prevented to issue
transactions and hence is removed from the set of active HW-tasks CHW (line 14). Finally,
the algorithm advances the time t by ∆ and continues to iterate until the set CHW is empty.
If the algorithm completes without never detecting a deadline miss at lines 8-9, then the
system is deemed schedulable.

ECRTS 2019

24:14 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

Algorithm 2: Analysis of ABUs.
Input: A set of HW-tasks: THW = {τ0, . . . , τn}
Input: A set of ABUs: A = {A0, . . . , An}
Output: Result of the schedulability test (true/false)

1 begin
2 t← 0
3 bi ← Bi ∀i = 1, . . . , n
4 CHW ← THW
5 while CHW 6= ∅ do
6 D← Algorithm 1(CHW , S)
7 ∆← minτi∈CHW (bi /Di)
8 if ∆ + t ≥ P then
9 return false

10 end
11 for τi ∈ CHW do
12 bi ← bi − bDi ·∆c
13 if bi = 0 then
14 CHW ← CHW \ {τi}
15 end
16 end
17 t← t+ ∆
18 end
19 return true
20 end

Finally, the following lemma states that the analysis of Algorithm 2 is sustainable, i.e.,
increasing the ABU budgets can only worsen the schedulability of a set of ABUs (and, vice
versa, a set of schedulable ABUs remains schedulable if the budgets are decreased).

I Lemma 2. The schedulabiliy test provided by Algorithm 2 is sustainable with respect to
budgets Bi.

Proof. Suppose that a set of ABUs is not schedulable according to Algorithm 2. Hence,
there exists a certain time t at which the condition at line 8 holds. Consider an arbitrary
ABU Ai (associated to task τi) and let [0, t′) be the interval of time in which τi is in set
CHW during [0, t), i.e., t′ ≤ t. There are two cases: (i) τi is still in set CHW at time t (i.e.,
t′ = t), (ii) τi left set CHW before time t (i.e., at time t′ < t).

Case (i): In [0, t), τi always contributed to the bandwidth distribution by means of
Algorithm 1. Hence, if the budget Bi is increased, the bandwidth shares Di assigned during
[0, t) are the same and therefore the schedulability result cannot change. If ∆ = bi/Di (i.e.,
at time t, τi is the task detected to miss its deadline), then, by increasing the budget Bi, ∆
can only increase and hence the condition at line 8 would hold too.

Case (ii): Similarly to the previous case, τi always contributed to the bandwidth distri-
bution in [0, t′) and hence, if Bi is increased, the execution of Algorithm 2 cannot change
up to time t′. If the budget Bi is increased to Bi + ε, at time t′ it can be either that the
value of ∆ remains the same, or that it increases too by ε. Consequently, τi will remain for
more time into set CHW , contributing to the bandwidth distribution also after time t′, or
still leaves set CHW at time t′. In both these cases the schedulability result cannot change.

Hence the lemma follows. J

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:15

5.2 Assigning ABU budgets
As ABUs act as bandwidth regulators for HW-tasks, they enforce a specific rate at which
transactions are issued. Specifically, a HW-task τi protected by ABU Ai issues transactions
at rate Bi/P as long as the ABU is guaranteed to be schedulable according to the analysis
presented in the previous section. Therefore, to guarantee that τi is capable of performing
Ni transactions within its implicit deadline Ti, it is sufficient that the following inequality is
satisfied: Ni

Bi/P ≤ Ti. By rewriting the latter equation, it is possible to derive a constraint on
the ABU budgets to ensure the schedulability of a set THW of HW-tasks, i.e.,

∀τi ∈ THW , Bi ≥
Ni · P
Ti

. (1)

Note that the same constraint can be generalized to the case of constrained deadlines by
simply replacing Ti with the relative deadline of the HW-task.

I Lemma 3. If a set of HW-tasks THW = {τ0, . . . , τn} respectively protected by a set of
ABUs A = {A0, . . . , An} is not schedulable (according to Algorithm 2) by setting the ABU
budgets as Bi = Ni·P

Ti
, then it is not schedulable with any other budget assignment.

Proof. Given the constraint of Equation (1), Bi = Ni·P
Ti

is the minimum budget for each ABU
Ai such that the schedulability of τi can be guaranteed. Hence, feasible budget configurations
can include only budget values larger than Ni·P

Ti
. By Lemma 2, if a set of ABUs is not

schedulable by assigning such minimum budgets, then it is also not schedulable by assigning
larger budgets. Hence the lemma follows. J

6 Experimental evaluation

To assess the effectiveness of the ABUs on a real hardware system, an experimental evaluation
has been conducted on the Zynq-7020 SoC platform by Xilinx. The Zynq-7020 belongs to the
Zynq-7000 SoCs family, which comprises a collection of SoCs mainly differing for the size and
class of the FPGA fabric. Almost all SoCs of the Zynq-7000 family include a dual-core ARM
Cortex-A9 processor with a set of integrated peripherals (PS subsystem) tightly coupled
with a 7-series FPGA fabric (PL subsystem) that can be used to extend the system with
custom hardware modules. The experimental evaluation is structured in two parts: the first
part aims at evaluating the effectiveness of the reservation mechanism enforced by the ABUs
using DMA-like HW-tasks; the second part evaluates the ABUs with a case study application
that comprises a finite impulse response (FIR) HW-task for signal processing and a Sobel
HW-task for image processing from OpenCV.

All HW-tasks used in this evaluation have been designed with the Vivado high-level
synthesis (HLS) tool by Xilinx. The choice of utilizing HLS comes from the steadily increasing
relevance that high-level synthesis is assuming in the design of hardware accelerators. For
instance, a HLS tool can also be used to synthesize a HW-task implementing a custom
compute unit for executing an OpenCL kernel. The hardware-level interface of the HW-tasks
used in this evaluation consists of (i) two AXI4 master interfaces for accessing the system
memory; (ii) an AXI4-lite slave control interface, to expose a set of memory-mapped registers
through which the software can control the HW-task; and (iii) an interrupt signal to notify
the processor when the computation of the HW-task is completed.

Each HW-task is controlled by a periodic software task running on top of the FreeRTOS
kernel, which in turn runs upon one the Cortex-A processors of the Zynq-7020. The software
task relies on a device driver for managing the HW-task, feeding the addresses of the source

ECRTS 2019

24:16 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

and destination memory buffers as arguments. The driver controls the HW-tasks through the
set of control registers exported via the AXI4-lite slave interface. Each job of each software
task starts the corresponding HW-task and then self-suspends waiting for the HW-task to
complete the execution. When the HW-task has completed, it sends an interrupt signal,
which is caught by the interrupt service routine included in the driver. The service routine,
in turn, wakes up the software task, which can then complete its job. This evaluation is
focused on the timing properties of HW-tasks only.

Evaluation of the reservation mechanism. The first part of the experimental evaluation
aims at validating the effectiveness of the reservation mechanism when one or more HW-tasks
deviate from the nominal behavior by demanding a higher transaction rate and issuing more
transactions than expected. Note that, from the perspective of bus contention, the bus
transactions issued by HW-tasks are the only relevant aspect. Therefore, this evaluation
employs a set of DMA-like HW-tasks, which allows for an almost-arbitrary control of the bus
transactions that are generated. Nevertheless, also note that several hardware accelerators
for FPGAs, including those of the Xilinx’s IPs library such as FFT [43], FIR filter [44], and
Convolution Encoder [42], require the support of a DMA for accessing the system memory.

Variants of HW-tasks. To simulate the effect of a misbehaving HW-task, three variants of
the same DMA-like HW-task have been designed. Each variant differs by the amount of data
Ni and the demand rate Di. The parameters of these variants, referred to as modes, are
summarized in Table 2. The demand value in MB/s is calculated by considering that each
bus transaction involves a 32-bit word and that the clock rate of the FPGA is set to 100
MHz. All the HW-tasks issue 16-word burst transactions. On the Zynq-7020, the maximum
supply bandwidth S available to access the memory from the PS through a high performance
(HP) port is four transactions per clock for each port, as they operate in 64-bit mode (the
DRAM clock is set to 525 MHz).

Table 2 Configuration of HW-tasks. The demand Di is expressed in both transactions per clock
cycle and in megabytes per second.

HW-task mode Di Ni

[tr/clk] [MB/s] [tr] [MB]
1 2 763 524288 2
2 1 381 262144 1
3 2/3 254 131072 0.5

Description of the experimental setting. The system setup used for this evaluation com-
prises four DMA-like HW-tasks allocated on the Zynq’s PL and connected to a single HP
port through an AXI Interconnect. The Interconnect is set in performance mode to maximize
the bandwidth available to the HP port. An ABU module is placed between each HW-task
and the Interconnect. The baseline configuration includes two HW-tasks, τ1 and τ2, set
in mode 1, a HW-task, τ3, operating in mode 2, and the last HW-task τ4 set in mode 3.
This configuration represents the system operating in nominal conditions, i.e., when all the
HW-tasks respect their nominal demand Di and data length Ni values, and is referred to as
nom. To study the effect of misbehaving HW-tasks, two additional variants of the baseline
configuration have been defined. In the first misbehaving configuration, referred to as misb-3,
τ3 operates in mode 1 instead of mode 2. This configuration, represents the case in which a

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:17

single HW-task exceeds its nominal values, demanding a higher transaction rate and length.
In the second misbehaving configuration, named misb-3-4, τ3 and τ4, normally operating
in mode 2 and mode 3 respectively, now operate in mode 1. This configuration aims at
reproducing the scenario in which two HW-tasks exceed their nominal values.

6.1 Profiling HW-tasks

The first set of experiments has been carried out to characterize the system configurations
without ABUs. To this end, a separate profiling experiment has been conducted for each
configuration of the system: the base configuration nom, and two misbehaving configurations
misb-3 and misb-3-4. These experiments allow evaluating the impact of one or more
misbehaving HW-tasks on the response times of the other HW-tasks when using the default
round-robin arbitration policy of the Interconnect. For this set of experiments, τ1 is activated
every 10 ms, τ2 every 15 ms, τ3 every 25 ms, and τ4 every 50 ms. Measurements on the
hardware have been conducted with multiple runs by testing random activation offsets of
the HW-tasks, for a total of about 30 minutes of execution (collecting data for hundreds of
thousands of jobs). Figure 7 presents the results of these experiments by reporting the longest-
observed response times on the real hardware as solid color bars. The results corresponding to
the misbehaving HW-tasks are highlighted with different colors and patterns. Comparing the
response times observed under nominal conditions (nom) with the response times obtained
under misbehaving configurations, it is evident that even a single misbehaving HW-task
(misb-3) could have a significant impact on the response time of the other HW-tasks. This
effect becomes even more tangible when taking into account the configuration misb-3-4 in
which two HW-tasks misbehave. For instance, the response time of τ1 in misb-3-4 increases
by more than 50% with respect to nominal conditions.

0 2 4 6

nom

misb-3

misb-3-4

2.98

2.98

2.98

3.63

4.27

5.53

τ1’s response times [ms]
0 2 4 6

nom

misb-3

misb-3-4

5.89

5.89

5.89

3.66

4.27

5.53

τ2’s response times [ms]

0 5 10 15 20

misb-3

misb-3-4

nom

19.75

19.75

9.88
4.32

5.53

2.67

τ3’s response times [ms]
0 10 20 30 40

misb-3-4

nom

misb-3

37.3

9.33

9.33
5.53

1.97

1.97

τ4’s response times [ms]

With reservation Without reservation

Misbehaving with reservation Misbehaving without reservation

Figure 7 Response times of four HW-tasks without and with ABUs under multiple configurations.

ECRTS 2019

24:18 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

6.2 Evaluating the reservation mechanism
The following set of experiments analyzes what happens when the ABUs are present. These
experiments serve two purposes: first, to test the effectiveness of temporal isolation between
HW-tasks; second, to confirm that the assumptions made in Sections 2 and 4 to model and
analyze the system are realistic. To this end, the longest-observed response times on the
hardware have been compared with the response-time bounds computed by the analysis of
Section 4. The ABUs have been configured according to the minimum budgets provided
by Lemma 3 under nominal conditions. The period of ABUs has been selected according
to the following rationale. Since the ABUs count integer transactions, the period must be
chosen as the smallest value that can can ensure that all the minimum budgets provided
by Lemma 3 are integers. Furthermore, to avoid splitting transaction bursts, it is worth
choosing a period such that the budget is a multiple of the burst size. Such a period can be
easily obtained with a binary search. The resulting ABU configuration for this experimental
setting is reported in Table 3. The table also reports the response times, both observed on
the hardware and obtained by the analysis proposed in this work, under configuration nom.

As it can be noted from Figure 7, ABUs allow controlling the longest-observed response
times (e.g., fixed to 2.98 for τ1) independently of the behavior of the other HW-tasks; indeed,
the response times are the same even in the misbehaving configurations misb-3 and misb-3-4.
Clearly, this improvement is achieved at the expenses of the misbehaving tasks (τ3 and τ4):
in fact, their response times in misbehaving configurations is penalized.

Table 3 Configuration parameters for the ABUs and response times for the corresponding
HW-tasks under the nominal configuration.

HW-Task ABU Response times [ms]
Bi [tr] P [clk] Longest observed By analysis

τ1 224

128

2.982 2.995
τ2 112 5.893 5.991
τ3 32 9.876 10.485
τ4 16 9.328 10.485

6.3 A case study
The second part of the experimental evaluation considers a case-study application that
comprises a FIR filter HW-task for signal processing, a Sobel HW-task for image processing,
and two DMA-like HW-tasks operating in mode 1. The FIR filter implements a 12th
order low-pass filter designed to process 16kHz audio samples with a cutoff frequency of
4 kHz. Internally, the FIR filter uses fixed-point representations to take advantage of the
FPGA’s DSP blocks. Each instance of the FIR filter processes 1 MB of samples. The
Sobel filter processes 640x480 RGB images with 24-bit color depth, resulting in a size of
1200 KB. Table 4 summarizes the characteristics of these accelerators, which both issue
16-word burst transactions.

As visible from the trace shown in Figure 2, the access pattern generated by the Sobel
filter HW-task is not strictly uniform due to a short pause occurring between two image lines.
Such a signal analysis has been performed on the real hardware by instrumenting the design
with an integrated logic analyzer (ILA) module. Clearly, the access pattern of the Sobel
HW-task violates the uniform transaction hypothesis made in Section 2 to model the system.
However, by performing the pessimistic assumption that the Sobel HW-task continues issuing

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:19

Table 4 Parameters of the Sobel and FIR hardware accelerators.

HW-task Di Ni

[tr/clk] [MB/s] [tr] [KB]
Sobel 1.9 725 614400 2400
FIR 2 763 524288 2048

transactions even during the brief pause between a line and the next, it is still possible to
safely model it as a uniform access accelerator. Such a model can be used to assign the ABU
budget and compute safe upper bounds on the response time of the Sobel HW-task. The case
study application has been tested with a set of four experiments considering different HW-task
periods and ABU budgets. Table 5 summarizes the parameters used for the experiments.
The ABU period P is set to 128 clock cycles in all of the experiments. The results are
reported in Figure 8, which compares the response times calculated using the response-time
analysis presented in this paper, plotted as solid bars, with the longest-observed response
times obtained on the real hardware, illustrated with striped bars. Measurements on the
hardware have been performed as described in the previous section.

The experimental results show that the ABU is indeed effective even considering a
case-study application comprising a realistic hardware workload suited for signal and image
processing. The response times bounds obtained with the analysis are close to the longest-
observed values with a maximum relative error of 3% in the case of HW-tasks with uniform
demand. As expected, the maximum difference between the bound and the measurements
(13%) occurs for the Sobel HW-task, since it has been pessimistically modeled by assuming
a continuous bus access at its maximum rate.

Table 5 Configuration parameters for the case study (HW-task periods and ABU budgets).

Task
Experiment

1 2 3 4
Ti [ms] Bi [tr] Ti [ms] Bi [tr] Ti [ms] Bi [tr] Ti [ms] Bi [tr]

FIR 6 176 6 160 8 96 6 160
Sobel 7 160 8 144 9 112 12 96
DMA-2 10 80 12 64 6 144 7 128
DMA-1 12 64 7 112 7 128 10 80

7 Related work

Resource reservation techniques have been introduced in the context of real-time systems
for CPUs scheduling [31, 1, 8] and applied to share other computational resources like
programmable GPUs [23, 22]. Essentially, the idea is assigning to each entity (e.g., task) a
fraction of a shared resource under contention (e.g., processor) in order to provide temporal
isolation. Similarly, this work adjusts the same approach to the contention of the AMBA
AXI bus in the context of hardware-programmable SoC FPGA platforms.

Many research efforts have been dedicated to the problem of bus contention in real-time
systems. Schliecker et al. [33] use an event-based model to estimate delays for communications
and computation activities on a multicore SoC platform. Pellizzoni and Caccamo [29] analyzed
the interaction between CPU and peripherals while contending a shared main memory within
a theoretical framework and proposed a conceptual solution based on a hardware server
to control the unpredictable behavior of COTS peripherals. Betti et al. [6] presented a

ECRTS 2019

24:20 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

0 5 10

FIR

Sobel

DMA-2

DMA-1

3.81

5.46

8.39

10.49

3.81

4.96

8.19

10.17

response times [ms]

Experiment 1

0 5 10

FIR

Sobel

DMA-2

DMA-1

4.19

6.07

10.49

5.99

4.19

5.53

10.18

5.9

response times [ms]

Experiment 2

0 2 4 6 8

FIR

Sobel

DMA-2

DMA-1

6.99

7.8

4.66

5.24

6.85

6.97

4.65

5.19

response times [ms]

Experiment 3

0 2 4 6 8 10

FIR

Sobel

DMA-2

DMA-1

4.19

9.1

5.24

8.39

4.19

8.07

5.18

8.19

response times [ms]

Experiment 4

By analysis Longest observed

Figure 8 Response times for the case study.

framework for providing real-time guarantees in a COTS platform. Each peripheral within
the platform is supervised by a “real-time bridge” controlled by a system-wide peripheral
scheduler. Their framework has been developed and evaluated on PC platforms with PCI
Express bus while our approach considers on-chip buses for integrated SoC-FPGA platforms.

In the context of memory contention on multicore platforms, Agrawal et al. [2] presented a
technique to perform the analysis both WCETs and schedulability of real-time activities under
dynamic memory scheduling. Yum et al. [47] proposed a memory bandwidth reservation
mechanism named MemGuard. The system provides memory performance isolation employ-
ing a bandwidth regulator for each core. The bandwidth regulators enforce a budgeting
mechanism and are implemented using performance counters. Our approach is somehow
related to this work since both consider bandwidth regulation of bus master agents. However,
while MemGuard considers inter-core interference on an Intel chip multiprocessor, our work
considers bus interference generated by hardware accelerators on the AMBA AXI bus.

In the domain of packet switching networks, many efforts have been dedicated to the
modeling and the analysis of traffic scheduling algorithms to provide quality of service (QoS)
guarantees [15, 37]. Such methodologies have also been employed on SoCs platforms to develop
and analyze arbiters for heavily-contented resources like the system memory [3, 17]. The ABU
can be improved by leveraging the results of these works. Concerning the development of
on-chip communication infrastructures for SoC platforms, transaction-based buses and packet-
based networks on chip (NoC) remain the dominant approaches [32]. Typically, arbitration
for on-chip interconnects is performed using Fixed Priority, Round Robin, and Time-Division
Multiple Access (TDMA). Poletti et al. presented a performance analysis comparing different
arbitration policies for SoCs platforms in [30]. A TDMA-based arbitration scheme with
dynamic timeslot allocation is employed in [32, 10] to improve system predictability while

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:21

providing good average-case performance. Lahiri et al. [24] proposed a statistical approach
to arbitration using a ticket-based random selection which was further extended by other
works [12, 25] to improve predictability. Steine et al. [36] proposed a TDMA budget based
scheduler for data flow applications, which has been used by Staschulat et al. [35] for memory
arbitration. However, while the latter work is explicitly targeted at embedded systems, it
is still limited to dataflow applications. Bourgade [9] proposed a bus arbitration scheme
for multicore platforms designed to ease the estimation of the tasks’ worst-case execution
times. Reconfigurable bus arbiters [46, 34] can be dynamically configured to change the
arbitration policy depending on the application requirements. Likewise, several papers
in the literature addressed the problem of designing predictable memory controllers for
multi-core architectures. Guo et al. [18] presented a comparative analysis of predictable
DRAM controllers.

8 Conclusions

This paper presented the ABU, a hardware-based reservation mechanism for the AMBA
AXI bus aimed at isolating hardware accelerators implemented on FPGAs. After describing
the internal architecture of the ABU, a response-time in the bandwidth domain has been
presented to verify the schedulability of a set of hardware accelerators under real-time
constraints. The proposed mechanism has been implemented and validated on the Xilinx
Zynq-7020 platform to demonstrate its practical applicability. An substantial experimental
evaluation confirmed the effectiveness of the proposed solution, showing that it can efficiently
be implemented by consuming less than 1% of the total FPGA resources. As a future work,
we plan to evaluate the possibility of including a reclaiming mechanism for the unused supply
and extend the analysis to support for dynamic workloads by taking advantage of partial
reconfiguration [7, 27].

References
1 Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time

systems. In Real-Time Systems Symposium, 1998. Proceedings. The 19th IEEE, pages 4–13.
IEEE, 1998.

2 Ankit Agrawal, Renato Mancuso, Rodolfo Pellizzoni, and Gerhard Fohler. Analysis of Dynamic
Memory Bandwidth Regulation in Multi-core Real-Time Systems. In 2018 IEEE Real-Time
Systems Symposium (RTSS). IEEE, December 2018.

3 Benny Akesson, Liesbeth Steffens, and Kees Goossens. Efficient service allocation in hardware
using credit-controlled static-priority arbitration. In 2009 15th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pages 59–68. IEEE, 2009.

4 James H. Anderson, Philip Holman, and Anand Srinivasan. Fair Scheduling of Real-Time
Tasks on Multiprocessors. In Handbook of Scheduling - Algorithms, Models, and Performance
Analysis. Chapman and Hall/CRC, 2004.

5 ARM. AMBA AXI and ACE Protocol Specification, 2011.
6 E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha. Real-Time I/O Management

System with COTS Peripherals. IEEE Transactions on Computers, 62(1):45–58, January 2013.
doi:10.1109/TC.2011.202.

7 Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro Marinoni, and Giorgio
Buttazzo. A Framework for Supporting Real-Time Applications on Dynamic Reconfigurable
FPGAs. In Real-Time Systems Symposium (RTSS), pages 1–12, 2016.

8 Alessandro Biondi, Alessandra Melani, and Marko Bertogna. Hard constant bandwidth server:
Comprehensive formulation and critical scenarios. In Proceedings of the 9th IEEE International
Symposium on Industrial Embedded Systems (SIES 2014), pages 29–37. IEEE, 2014.

ECRTS 2019

http://dx.doi.org/10.1109/TC.2011.202

24:22 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

9 Roman Bourgade, Christine Rochange, and Pascal Sainrat. Predictable bus arbitration schemes
for heterogeneous time-critical workloads running on multicore processors. In Emerging
Technologies & Factory Automation (ETFA), 2011 IEEE 16th Conference on, pages 1–4. IEEE,
2011.

10 Paolo Burgio, Martino Ruggiero, Francesco Esposito, Mauro Marinoni, Giorgio Buttazzo, and
Luca Benini. Adaptive TDMA bus allocation and elastic scheduling: A unified approach for
enhancing robustness in multi-core RT systems. In Computer Design (ICCD), 2010 IEEE
International Conference on, pages 187–194. IEEE, 2010.

11 Andrew Canis, Jongsok Choi, Blair Fort, Ruolong Lian, Qijing Huang, Nazanin Calagar, Marcel
Gort, Jia Jun Qin, Mark Aldham, Tomasz Czajkowski, et al. From software to accelerators with
legup high-level synthesis. In Proceedings of the 2013 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, page 18. IEEE Press, 2013.

12 Chien-Hua Chen, Geeng-Wei Lee, Juinn-Dar Huang, and Jing-Yang Jou. A real-time and band-
width guaranteed arbitration algorithm for SoC bus communication. In Design Automation,
2006. Asia and South Pacific Conference on, pages 6–pp. IEEE, 2006.

13 Eric S Chung, Peter A Milder, James C Hoe, and Ken Mai. Single-chip heterogeneous
computing: Does the future include custom logic, FPGAs, and GPGPUs? In Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, pages
225–236. IEEE Computer Society, 2010.

14 Ben Cope, Peter YK Cheung, Wayne Luk, and Lee Howes. Performance comparison of
graphics processors to reconfigurable logic: A case study. IEEE Transactions on computers,
59(4):433–448, 2010.

15 Rene L Cruz et al. A calculus for network delay, part I: Network elements in isolation. IEEE
Transactions on information theory, 37(1):114–131, 1991.

16 Robert I. Davis and Alan Burns. A Survey of Hard Real-time Scheduling for Multiprocessor
Systems. ACM Comput. Surv., 43(4), 2011.

17 Manil Dev Gomony, Jamie Garside, Benny Akesson, Neil Audsley, and Kees Goossens. A
globally arbitrated memory tree for mixed-time-criticality systems. IEEE Transactions on
Computers, 66(2):212–225, 2017.

18 Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative study of
predictable dram controllers. ACM Transactions on Embedded Computing Systems (TECS),
17(2):53, 2018.

19 Dominik Honegger, Helen Oleynikova, and Marc Pollefeys. Real-time and low latency embedded
computer vision hardware based on a combination of fpga and mobile cpu. In Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages 4930–4935.
IEEE, 2014.

20 Intel. Stratix 10 GX/SX Device Overview, October 2017.
21 Jan Moritz Joseph, Morten Mey, Kristian Ehlers, Christopher Blochwitz, Tobias Winker, and

Thilo Pionteck. Design space exploration for a hardware-accelerated embedded real-time pose
estimation using vivado HLS. In ReConFigurable Computing and FPGAs (ReConFig), 2017
International Conference on, pages 1–8. IEEE, 2017.

22 Shinpei Kato, Karthik Lakshmanan, Yutaka Ishikawa, and Ragunathan Rajkumar. Resource
sharing in GPU-accelerated windowing systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2011 17th IEEE, pages 191–200. IEEE, 2011.

23 Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. TimeGraph: GPU
scheduling for real-time multi-tasking environments. In Proc. USENIX ATC, pages 17–30,
2011.

24 Kanishka Lahiri, Anand Raghunathan, and Ganesh Lakshminarayana. The LOTTERYBUS
on-chip communication architecture. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 14(6):596–608, 2006.

25 Bu-Ching Lin, Geeng-Wei Lee, Juinn-Dar Huang, and Jing-Yang Jou. A precise bandwidth
control arbitration algorithm for hard real-time SoC buses. In Proceedings of the 2007 Asia

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:23

and South Pacific Design Automation Conference, pages 165–170. IEEE Computer Society,
2007.

26 Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis,
Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, et al. A survey and evaluation
of fpga high-level synthesis tools. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(10):1591–1604, 2016.

27 Marco Pagani, Alessio Balsini, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo. A
linux-based support for developing real-time applications on heterogeneous platforms with
dynamic fpga reconfiguration. In 2017 30th IEEE International System-on-Chip Conference
(SOCC), pages 96–101. IEEE, 2017.

28 Karl Pauwels, Matteo Tomasi, Javier Diaz Alonso, Eduardo Ros, and Marc M Van Hulle. A
comparison of FPGA and GPU for real-time phase-based optical flow, stereo, and local image
features. IEEE Transactions on Computers, 61(7):999–1012, 2012.

29 R. Pellizzoni and M. Caccamo. Impact of Peripheral-Processor Interference on WCET Analysis
of Real-Time Embedded Systems. IEEE Transactions on Computers, 59(3):400–415, March
2010. doi:10.1109/TC.2009.156.

30 Francesco Poletti, Davide Bertozzi, Luca Benini, and Alessandro Bogliolo. Performance
analysis of arbitration policies for SoC communication architectures. Design Automation for
Embedded Systems, 8(2-3):189–210, 2003.

31 Ragunathan Rajkumar, Kanaka Juvva, Anastasio Molano, and Shuichi Oikawa. Resource
kernels: A resource-centric approach to real-time and multimedia systems. In Multimedia
Computing and Networking 1998, volume 3310, pages 150–165. International Society for Optics
and Photonics, 1997.

32 Thomas D Richardson, Chrysostomos Nicopoulos, Dongkook Park, Vijaykrishnan Narayanan,
Yuan Xie, Chita Das, and Vijay Degalahal. A hybrid SoC interconnect with dynamic TDMA-
based transaction-less buses and on-chip networks. In VLSI Design, 2006. Held jointly with 5th
International Conference on Embedded Systems and Design., 19th International Conference
on, pages 8–pp. IEEE, 2006.

33 Simon Schliecker, Mircea Negrean, Gabriela Nicolescu, Pierre Paulin, and Rolf Ernst. Reliable
performance analysis of a multicore multithreaded system-on-chip. In Proceedings of the
6th IEEE/ACM/IFIP international conference on Hardware/Software codesign and system
synthesis, pages 161–166. ACM, 2008.

34 Éricles Sousa, Deepak Gangadharan, Frank Hannig, and Juergen Teich. Runtime reconfigurable
bus arbitration for concurrent applications on heterogeneous MPSoC architectures. In Digital
System Design (DSD), 2014 17th Euromicro Conference on, pages 74–81. IEEE, 2014.

35 Jan Staschulat and Marco Bekooij. Dataflow models for shared memory access latency analysis.
In Proceedings of the seventh ACM international conference on Embedded software, pages
275–284. ACM, 2009.

36 Marcel Steine, Marco Bekooij, and Maarten Wiggers. A priority-based budget scheduler with
conservative dataflow model. In Digital System Design, Architectures, Methods and Tools,
2009. DSD’09. 12th Euromicro Conference on, pages 37–44. IEEE, 2009.

37 Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: a general model for analysis of
traffic scheduling algorithms. IEEE/ACM Transactions on networking, 6(5):611–624, 1998.

38 Stylianos I Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. Toolflows for Mapping
Convolutional Neural Networks on FPGAs: A Survey and Future Directions. ACM Computing
Surveys (CSUR), 51(3):56, 2018.

39 Xilinx. Zynq UltraScale+ Device - Technical Reference Manual, December 2017. UG1085.
40 Xilinx Inc. Using Quality of Service (QoS) Capabilities in Zynq-7000 AP SoC Devices, July

2015. XAPP1266.
41 Xilinx Inc. AXI Interconnect, LogiCORE IP Product Guide, 2018. PG059.
42 Xilinx Inc. Convolutional Encoder, LogiCORE IP Product Guide, 2018. PG026.
43 Xilinx Inc. Fast Fourier Transform, LogiCORE IP Product Guide, 2018. PG109.

ECRTS 2019

http://dx.doi.org/10.1109/TC.2009.156

24:24 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

44 Xilinx Inc. FIR Compiler, LogiCORE IP Product Guide, 2018. PG149.
45 Xilinx Inc. SmartConnect, LogiCORE IP Product Guide, 2018. PG247.
46 Ching-Chien Yuan, Yu-Jung Huang, Shih-Jhe Lin, and Kai-hsiang Huang. A reconfigurable

arbiter for SOC applications. In Circuits and Systems, 2008. APCCAS 2008. IEEE Asia
Pacific Conference on, pages 713–716. IEEE, 2008.

47 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 55–64,
April 2013.

	Introduction
	Contributions

	System model and Background
	AXI Interconnect
	Arbitration policy
	AXI Links

	HW-tasks
	Sink module

	AXI Budgeting Unit
	Bandwidth-driven response-time analysis
	Illustrative example
	Analysis issues

	Response-time analysis with ABUs
	Analyzing ABUs
	Assigning ABU budgets

	Experimental evaluation
	Profiling HW-tasks
	Evaluating the reservation mechanism
	A case study

	Related work
	Conclusions

