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Abstract
Despite the creativity of the scientific community and the funding agencies, the underlying model of
computation behind IoT, WSN, cloud, edge, fog, and mist is fundamentally the same; Computational
nodes which are dynamically interconnected to form a system in where both processing capacity
and connectivity may vary over time. On top of such a system, we consider applications that need
packets to flow along a path and adhere to end-to-end deadlines. This application model is motivated
by both control and automation systems, as well as telecom systems. The challenge is to guarantee
end-to-end deadlines when allowing nodes and applications to join or leave.

The mainstream, and to some extent natural, approach to this is to relax the stringency of
the constraint (e.g. use probabilistic guarantees, soft deadlines). In this paper we take a different
approach and keep the end-to-end deadlines as hard constraints and instead partially limit the
freedom of how nodes and applications are allowed to leave and join. We present a theoretical
framework for modeling such systems along with proofs that deadlines are always honored.
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Keywords and phrases Cloud, real-time, end-to-end latency guarantee, end-to-end response time
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1 Introduction

Cloud computing plays a pivotal role in the ongoing digitalization of both the industry and
the society at large. This transformation borrows many technologies and concepts from
traditional cloud applications (mail services, ride sharing, media streaming, e-commerce etc.).
The focus for these applications is commonly availability, scalability, and price/performance.
While response time is of great concern for such applications, determinism is usually not.
For the next generation of cloud-applications, such as industrial automation, collaborative
traffic, and telecom systems, predictable timing is crucial. In order to secure a successful
transformation and allow such timing-critical systems, the underlying cloud infrastructure
must be able to guarantee predictable end-to-end response-times.

One example of such an application could be a dynamically reconfigurable production
cell in a manufacturing plant, where the elements in the production cell are connected to the
cloud and controlled centrally. The cloud provides large-scale compute and storage capacity.
Cloud back-end systems are typically implemented as a service meshes consisting of networks
of interconnected microservices. The production cell may be dynamically configured to adapt
to changes, such as hardware failures, or respond to external events, etc. Elements may thus
dynamically join or leave a cell. Figure 1 illustrates such a production cell with industrial
robots connected to the cloud, which provide services for automation, analytics, artificial
intelligence and machine learning algorithms. The topology of the service network may
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Figure 1 Illustration of configurable, and mobile, manufacturing cells connected to a set of smart
services in the cloud. It highlights the changes of the network topology which arises when new
robots, and cloud services, join and leave the system. With the upcoming 5G standard it becomes
possible to establish a low-latency wireless connection between the robots and the cloud. However,
in order to guarantee the required low end-to-end response-time for the robots, there still remains a
challenge to ensure a low end-to-end response-time within the cloud, especially during the transitions
of the network topology.

therefore change over time as robots join and leave the network. As mentioned earlier, the
challenge is to still guarantee that the end-to-end deadline required by the robots are always
met, despite dynamic changes of the network topology.

This paper addresses the challenge of allowing network churn and still ensures predictable
end-to-end response times within the cloud. A framework that allows for transitions of the
network topology is presented. Moreover, it is formally proved that the suggested framework
guarantees that it will never violate any timing constraints.

2 The system model

The focus of this paper is to develop a framework where applications are implemented as flows
of packets through a network of nodes. Each node offers a service to the incoming packets.
The goal is to manage the on-line arrival/departure of flows and the on-line arrival/departure
of nodes of the network in a way such that end-to-end deadlines of packets are honored,
while allowing for topology changes.

Section 2.1 presents definitions and assumptions with respect to the services offered
by nodes. Applications are then defined as a set of interconnected services and referred
to as flows. Definitions and assumptions on flows are given in Section 2.2. Finally, in
Section 2.3, we present some assumptions on how these flows and nodes interact with the
resource manager.

2.1 Model of the nodes
A node represents an entity that offers a service to the incoming packets. The time taken by
a node to provide the service to an incoming packet is given in Def. 1 below. The nodes in
the system are denoted by V(t) ⊂ N, which is the set of indices of the nodes present at time
t. The terms “node” and “vertex” are used interchangeably1.

1 We may use the term “node” when we refer to its capacity to process packets, while the term “vertex”
is more often used when referring to the topological structure of the network.
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I Definition 1 (Response time). We define the response time Ri(t), as the time taken by a
packet entering node i at time t to be processed.

From the definition above, we remark the following facts:
The response time Ri(t) accounts for all sources of delay possibly occurring within node
i (queuing, interference, processing, etc.).
All incoming packets are treated in the same way regardless of the flow they belong to.
Differentiantig packets depending on the application they belong to is feasible. This
would require to attach the flow index j to the response time, which would become then
Ri,j(t). However, this choice poses a notational challenge only with no conceptual added
value. For this reason we believe that letting the packet response time depend only on
the node (and time) does not significantly impact the applicability of the results. We
leave the case of per-flow response time to future works.
Moreover, in contrast to a large body of the research on real-time systems, this paper does
not address how the response time may be computed based on the amount of incoming
workload (due to the arrival of packets) and the amount of processing capacity of a
node, etc. The interested readers can refer to a vast relate literature addressing this
aspects [12, 18, 7, 16, 17, 19, 25, 3].
Rather, the focus is on the interactions between nodes aimed at guaranteeing end-to-end
deadlines in the context of a dynamic network.

Naturally, the service provided to packets by a node might include some minimum
requirements, which determines a lower bound to the response time of the service time of a
node. The node is unable to process packets in less time than this value. Hence, to model the
minimum time needed by a node to process a packet, we introduce the following definition.

I Definition 2 (Response time lower bound). We define the response time lower bound Ri,
as the minimum a packet may take to be processed by node i.

In practice, Ri may represent the pure processing time of a packet, without any interference
or delay of any kind.

Finally, we assume that the node is capable of controlling its response-time, as stated
below in Assumption 1. This assumptions is backed by the vast body of research for different
ways of controlling the response-time of cloud services. For instance, in [18] they use the
concept of “brownout control” to ensure that the response-time of a server is within a desired
limit. In [7] control theory is used to modify the processing capacity of the web servers to
control response times. In [17] a combination of scaling the resources of the nodes with an
admission control is used to ensure that the deadlines of the nodes in the network are met.
More interesting work addressing this is found in [19, 25, 3].

I Assumption 1 (Response-time control). We assume that a node i is capable of controlling
its response-time Ri(t) such that it is always below a deadline Di(t) ≥ Ri, i.e., such that

∀t ≥ 0, ∀i ∈ V(t), Ri(t) ≤ Di(t). (1)

2.2 Model of the flows
An application in the system is modeled as a flow indexed by some j ∈ F(t) and characterized
by a path and an end-to-end deadline, properly defined next.
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I Definition 3 (Path). The path of a flow j ∈ F(t) is defined by the sequence pj :
{1, . . . , `j} → V(t), with `j ≥ 1 being the length of the path, such that

∀i = 1, . . . , `j − 1, (pj(i), pj(i+ 1)) ∈ E(t), (2)

where E(t) ∈ V(t)× V(t) are the current edges between the nodes of the network.

By Def. 3, it follows that pj(i) is the i-th node on the path of flow j. It should be noted
that Eq. (2) enforces the existence of an edge of the graph between two consecutive nodes
in a path. It should be noted that this paths may traverse a node more than once, which
allows us to capture typical client-server sessions. With a slight abuse of notation, we may
denote the image of the map pj , which is the set of nodes touched by path j, by pj only,
rather than pj({1, . . . , `j}).

We remark that the type of application addressed in this paper is borrowed from cloud
microservices, where each service provides a unique value to the travelling packet. Hence, the
route of packets belonging to an application is known and must not be decided at run time.

I Definition 4 (End-to-end deadline). We define the end-to-end deadline Dj of the flow
j ∈ F(t) as the maximum time a packet may take to be processed by all nodes along the path pj .

Finally, a flow j is also characterized by an end-to-end response-time Rj(t), which is the
time taken by a packet entering the first node pj(1) of the flow at time t to be processed by
all nodes of the path pj . However, before properly defining Rj(t), we need to introduce the
mid-path response-time Rj,i(t), that is the time needed by a packet that entered flow j at
time t to pass through the first i nodes of the path pj . Formally, this quantity is defined
recursively by

Rj,i(t) =
{
Rpj(1)(t) if i = 1
Rj,i−1(t) +Rpj(i)

(
t+Rj,i−1(t)

)
otherwise.

(3)

The intuition of (3) is quite straightforward: the time it takes a packet to traverse the first
i nodes is equal to the time required to traverse the first i− 1 nodes plus the response-time
of the i-th node. The end-to-end response-time of a flow j is therefore given by Rj,`j (t),
which we compactly denote by Rj(t).

2.3 Model of the dynamic network
Flows and nodes may join and leave the network at run time. Hence, we define the network
as follows.

I Definition 5 (Network). We define the network G(t) of the system at time t as the set of
nodes, directed edges, and flows present at that time: G(t) = {V(t), E(t), F(t)}.

Since we aim at guaranteeing end-to-end deadlines, the requests to join or leave must
be properly handled by a resource manager, which manages the network (as illustrated in
Figure 2). If not properly handled, the risk is that newly admitted flows may cause overload
or the uncontrolled departure of nodes may disconnect the network.

The interactions between the resource manager and the flows are as follows:
A flow j 6∈ F(t) may request to join the network. Such an instant is denoted by f rq+

j .
When a new flow issues such a request, it also communicates to the resource manager the
following information:
1. its path pj

2. its end-to-end deadline Dj .
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Figure 2 Scheme of interactions between the resource manager (which manages the network),
the flows, and the nodes.

After the request by a flow to join, the resource manager:
1. accepts the flow j to the network at an instant fok+

j (which ≥ f rq+
j ), if feasible, or

2. rejects the flow j immediately, if not feasible.
Details on the admission of new flows based on its characteristics and the current state of
the network are given in Section 4.
A flow j ∈ F(t) may notify and leave the network at any time that we denote by f−j . In
fact, it is only advantageous to let a flow (and its constraint) to leave.
The resource manager may notify a flow j ∈ F(t) that it has to leave the network. This
might, for instance, happen if a node along the path pj requests to leave the network. In
such a case, the resource manager is no longer able to provide the requested services of
the flow j.

The interactions between the resource manager and the nodes (which are the vertices of
the graph) are as follows:

A node i 6∈ V(t) may notify and join the network at any time. We denote such an instant
by v+

i . Since a node is bringing a new service to the network, there is no admission
control to its request to join.
A node i ∈ V(t) may request to leave the network to the resource manager. The instant
of such a request is denoted by vrq−

i .
The resource manager lets a node leave only at time vok−

i (which is ≥ vrq−
i ). The time

between vrq−
i and vok−

i is needed by the resource manager to allow flows going through
node i to properly exit.

Problem formulation

The problem formulation in this paper can now formally be summarized as follows;
control when/how nodes are allowed to leave the network,
control when/how flows are allowed to join the network,
control the node deadlines D(t) = [Di(t)]∀i∈V(t),

such that the end-to-end deadlines of all the flows in the network are met:

∀t ≥ 0, ∀j ∈ F(t), Rj(t) ≤ Dj . (4)

3 Static networks

In this section, we introduce a protocol which allows for dynamic deadlines in static networks.
By a static network we mean one where no nodes or flows join or leave the network, that is
∀t ≥ 0, G(t) = G. The traffic rates and response times of nodes may change dynamically.

ECRTS 2019
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However, the topology is static: the nodes, the flows and their end-to-end deadlines do not
change over time. Hence, we can drop the time dependency of the set E(t) = E of edge, the
set V(t) = V of nodes, and the set F(t) = F of flows. However, node deadlines may change
to accommodate variations in the workload.

To give some intuition of the challenges of guaranteeing end-to-end deadlines in a system
with dynamic node deadlines (even for a static network), we present a simple example in
Section 3.1. In Section 3.2 we propose a solution, which allows for dynamic node deadlines
and still provides guarantees on the end-to-end deadlines. Naturally, this is also proved in
Theorem 6. Finally, in Section 3.3 we adapt the opening example of Section 3.1 such that it
uses the method suggested in Section 3.2 and show that it is then able to guarantee that all
the end-to-end deadlines are met for all times.

3.1 Example – issues with dynamic deadlines
If node deadlines were constant then a static assignment of node deadlines, equal to any
vector of node deadlines D = {Di}∀i∈V satisfying

D ∈ D(G) =
{
Di ∈ R+ : ∀i ∈ V, Di ≥ Ri, ∀j ∈ F ,

`j∑
i=1

Dpj(i) ≤ Dj

}
. (5)

would guarantee no end-to-end deadlines to be missed. The intuition behind Eq. (5) is simple:
the sum of the node deadlines along the path pj of a flow j cannot exceed the end-to-end
deadline Dj of the path j. We remark that the set D(G) is convex, since it is the polytope
built from the intersection among linear half-spaces. This also implies that every line between
any two points in D(G) belongs to D(G).

Let us now consider the issues of performing a transition from some deadline assignment
D(t1) ∈ D(G) to another assignment D(t2) ∈ D(G), hence with both the starting and ending
node deadlines belonging to D(G). Since D(G) is convex then the linear transition of node
deadlines

D(t) = D(t1)× t2 − t
t2 − t1

+ D(t2)× t− t1
t2 − t1

always belongs to D(G) for all t ∈ [t1, t2].

1

1

2 4

3

2

5

31 2 3

Figure 3 Example of network. Nodes are represented by light yellow boxes. Flows are represented
by: a source of packets (a colored circle labelled by the flow index), a path (a sequence of arrows
from the source, through the nodes), and a destination of the packets (a colored circle with dashed
boundary labelled by the flow index). This example of network is used to illustrate an issue with
dynamic deadlines in Section 3.1.
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However, even if ∀t ∈ [t1, t2], the linear combination D(t) always belongs to D(G), the
end-to-end deadline may be missed anyway. Suppose we have the network G, illustrated
in Figure 3 and focus on flow 1 (the blue flow), with path p1 = {1, 2}. The end-to-end
deadline for this flow is D1 = 6 milliseconds (ms). Suppose now that in response to an
increase of the incoming packets rate, node 2 must change its deadline from D2(t1) = 1 to
D2(t2) = 5. The node deadlines of the system are therefore changing from D(t1) = [5, 1, . . .]
to D(t2) = [1, 5, . . .]. Please, note that for the purpose of this example the particular choice
of deadlines for nodes 3, 4, and 5 does not matter.

Figure 4 shows the deadlines node 1 and node 2 over time. At time τ1 = 1 a packet enters
node 1, which has D1(τ1) = 5. In the worst case, node 1 will finish processing that packet
at time τ1 +D1(τ1) = 6ms. Suppose now, that at time t1 = 2ms, while this packet is still
at node 1, the resource manager begins changing the node deadlines from D(t1) = [5, 1, . . .]
towards D(t2) = [1, 5, . . .]. When the packet exits node 1 at time τ1 +D1(τ1) = t2 = 6, then
it enters node 2. Due to the change of node deadlines, now the value of D2(t) at t = 6 is
D2(6) = 5. This means that, in the worst case, the response time of the second node is
also 5ms, since R2(t2) ≤ D2(t2) = 5. The packet that entered flow 1 at time τ1 = 1 would
therefore, in the worst case, may take up to 10ms to traverse its path p1. Hence, the end-to-
end deadline D1 = 6 of the packet is violated, despite the fact the sum of the node deadlines
D1(t) and D2(t) along the path was never greater than D1 (that is ∀t, D1(t) +D2(t) ≤ D1).

This simple example shows that when the network is allowed to change the node deadlines
dynamically, the constraint D(t) ∈ D(G) is not a sufficient condition to guarantee end-to-end
deadlines to be met. In fact, the violation of the end-to-end deadline illustrated by this
example is related to the variation of the node deadlines. The node deadlines D(t) need to
satisfy a stricter constraint, which is discussed next.

0 2 4 6 8 10 12
0

2

4

6

τ1 t1 t2 τ1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)

D2(t)
packet

Figure 4 Example of how dynamic node deadlines may lead to end-to-end deadline violations.
The node deadlines D1(t) (in blue) and D2(t) (in red) are changed from D(t1) = [5, 1, . . .] to
D(t2) = [1, 5, . . .]. This may lead a packet in flow 1 (with path p1 = {1, 2}, as shown in Figure 3) to
miss its end-to-end deadline D1 = 6.

3.2 Guaranteeing end-to-end deadlines
In this section, we provide the conditions that allow the network to dynamically change the
node deadlines without incurring any end-to-end violation, as exemplified in Section 3.1. In
fact, by letting node deadlines change over time, prediction of the end-to-end response time of
packets becomes difficult. In Protocol 1 we present a solution to this problem. The intuition
is that by limiting the rate-of-change of the node deadlines, it is possible to compute the
end-to-end response time of a flow j ∈ F at time t. This allows us to compute the allowed
node deadlines. This is formally proved in Theorem 6.
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Protocol 1 Management of dynamic node deadlines in static networks.

The node deadlines can never change with a rate larger than some fixed α ∈ [0, 1]:

∀t ≥ 0, ∀i ∈ V, |Ḋi(t)| ≤ α.

The node deadlines must always be within the set of feasible node deadlines:

D(t) ∈ D(G) =
{
Di ∈ R+ : Di ≥ Ri, i ∈ V, ∀j ∈ F ,

`j∑
i=1

(1 + α)`j−iDpj(i) ≤ Dj

}
.

I Theorem 6 (Dynamic deadlines in static networks). No end-to-end deadlines of any flow is
violated, that is

∀t ≥ 0, ∀j ∈ F Rj(t) ≤ Dj , (6)

as long as the node deadlines D(t) never change with a rate faster than a given bound α ∈ [0, 1]:

∀t ≥ 0, ∀i ∈ V, |Ḋi(t)| ≤ α, (7)

and as long as the node deadlines remain within the space of feasible node deadlines:

∀t ≥ 0, D(t) ∈ D(G), (8)

with D(G) given by

D(G) =
{
Di ∈ R+ : ∀i ∈ V, Di ≥ Ri, ∀j ∈ F ,

`j∑
i=1

(1 + α)`j−iDpj(i) ≤ Dj

}
. (9)

Proof. We begin by recalling Assumption 1: the nodes in the network have a response-time
controller which ensures that Eq. (1) always holds, that is ∀t ≥ 0, Ri(t) ≤ Di(t). It follows
that for the first node pj(1) of any path j ∈ F , it is always true that:

∀t ≥ 0, ∀j ∈ F , Rj,1(t) = Rpj(1)(t) ≤ Dpj(1)(t). (10)

It then follows that for all subsequent nodes with index i > 1, from Eq. (3), we have that

∀t ≥ 0, ∀j ∈ F , Rj,i(t) = Rj,i−1(t) +Rpj(i)
(
t+Rj,i−1(t)

)
≤ Rj,i−1(t) +Dpj(i)

(
t+Rj,i−1(t)

)
≤ Rj,i−1(t) +Dpj(i)(t) + αRj,i−1(t)
= (1 + α)Rj,i−1(t) +Dpj(i)(t) (11)

where each step follows:
1. from the definition of end-to-end response-time (3),
2. from Eq. (1),
3. from Eq. (7), which implies Lipschitz-continuity of Di(t) with Lipschitz-constant α,
4. from basic math.

In the next step, we show

∀t ≥ 0, ∀j ∈ F , ∀x = 1, . . . , `j , Rj,x(t) ≤
x∑

i=1
(1 + α)x−iDpj(i)(t), (12)
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holds by proving by induction on the index x of nodes over the path j. When x = 1, Eq. (12)
follows directly from (10). For any other x > 1, we have that

Rj,x(t) ≤ (1 + α)Rj,x−1(t) +Dpj(x)(t)

≤ (1 + α)
x−1∑
i=1

(1 + α)x−1−iDpj(i)(t) +Dpj(x)(t)

=
x−1∑
i=1

(1 + α)x−iDpj(i)(t) +Dpj(x)(t)

=
x∑

i=1
(1 + α)x−iDpj(i)(t)

where the different steps follow:
1. because the inequality is the same as Eq. (11)
2. because we exploit the inductive hypothesis of (12) for x− 1,
3. from basic math.
Hence, Eq. (12) is proved for all x = 1, . . . , `j .

Finally, we can conclude the proof by showing that

∀t ≥ 0, ∀j ∈ F Rj(t) = Rj,`j (t) ≤
`j∑

i=1
(1 + α)`j−iDpj(i)(t) ≤ Dj

which implies that as long as the node deadlines are chosen such that D(t) ∈ D(G) no
end-to-end deadlines of any flow j ∈ F is violated, and the theorem is proved. J

3.3 Example – fixed by applying Theorem 6

0 2 4 6 8 10 12
0

2

4

6

t1 t2 τ1 +D1

time (ms)

ti
m
e
(m

s)

D1(t) D2(t)

D1(t) packet

(a) Maximum rate-of-change α = 1.

0 2 4 6 8 10 12
0

2

4

6

t1 t1 +D1 tt

time (ms)

ti
m
e
(m

s)

D1(t) D2(t)

D1(t) packet

(b) Maximum rate-of-change α = 0.5.

Figure 5 Modified example from Section 3.1. We illustrate how the system dynamically changes
node deadlines over time, with different rates of change. In 5a and 5b the nodes deadlines are
allowed to change with a rate of α = 1 and α = 0.5, respectively. Given the change of D2(t)
(illustrated in red) from 1 to 5, the resource manager is only allowed to change D1(t) ensuring that
it remains within the shaded blue region (denoted by D1(t) and representing the space of feasible
node deadlines for D1(t)). Finally, as illustrated by the dashed black line, by ensuring that D1(t)
remains within the blue region, the longest time it will take a packet to traverse flow 1 will be less
than its end-to-end deadline.
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This section illustrates that if the node deadlines are changed in accordance to Protocol 1,
then the issue of end-to-end deadline misses shown in Section 3.1 cannot happen. To do so,
we modify the example of Section 3.1. We consider again flow 1 of Figure 3, which has path
p1 = {1, 2} and end-to-end deadline D1 = 6.

In this scenario, we assume that the resource manager must change D2(t) from D2(t1) = 1
to D2(t2) = 5. The reason is to allow node 2 to handle a sudden increase in incoming traffic.
Recalling the example in Section 3.1, we can now verify that if the node deadlines begin in a
state of D1(t1) = 5 and D2(t1) = 1 the resource manager is not able to change them at all. In
fact, by writing explicitly the constraint of Eq. (9) in Protocol 1 for the path j = 1, we have

D1(t1) + (1 + α)D2(t1) ≤ D1

1 + (1 + α)5 ≤ 6 ⇒ α ≤ 0

which means that node deadlines are not allowed to change at all. If some change is needed
(for example, to handle a burst of incoming traffic), then the node deadlines must be more
constrained. In fact, given the change of D2(t), the choice of D1(t) has to satisfy the
following constraint:

∀t ≥ 0, (1 + α)D1(t) +D2(t) ≤ D1 = 6. (13)

Next, we compare two cases of different values of feasible rate of change α for the node
deadlines. The result are illustrated in Figure 5.

Maximum rate-of-change α = 1

To allow the network to transition quickly from D2(t1) = 1 to D2(t2) = 5 we choose α = 1.
This means that the the choices of D1 are constrained by the following condition:

∀t ≥ 0, (1 + 1)D1(t) +D2(t) ≤ D1 = 6.

This condition gives the resource manager the space of possible choices for D1(t) illustrated
by the shaded blue region in Figure 5a. The largest possible choices for D1(t) therefore
involves changing D1 from D1(t1) = 2.5 to D1(t2) = 0.5, with t1 = 1 and t2 = 5.

Maximum rate-of-change α = 0.5

The stringency of the constraint on the node deadlines when α = 1 may be relaxed by
requiring a slower transition between the node deadlines, for example α = 0.5. By doing so,
we get the following conditions on D1(t):

D1(t1) ≤ 10
3 ≈ 3.333, D1(t2) ≤ 2

3 ≈ 0.666,

in order to ensure that Eq. (13) holds, and assuming that D2(t) is again changed from
D2(t1) = 1 to D2(t2) = 5. Not surprisingly, by requiring a smoother transition, the node
deadlines may be larger. Similarly to the previous case, this is illustrated in Figure 5b, where
we illustrate that when D1(t) is chosen to be as large as possible, a packet traversing flow 1
is always guaranteed to meet its end-to-end deadline of 6ms.

Trade-offs with alpha

This example illustrates some fundamental trade-offs that come by adopting Protocol 1.
While it allows the system to change the node deadlines dynamically with a rate of α, it
imposes some constraints on the possible choices of node deadlines. The quicker one wishes
to change the node deadlines, the more restricted the choice of feasible node deadlines
becomes, and vice versa. The design-parameter α should be chosen appropriately for a
given application.
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4 Dynamic networks

In this section, we generalize the method presented Section 3 to the case of a dynamic
network G(t) = {V(t), E(t), F(t)}, where nodes and flows may join and leave the network
at run time. We begin by showing, in Corollary 7, that the result of Theorem 6 transfers
directly to a dynamic network. This means that the end-to-end deadline of any flow in the
network will be met as long as the hypothesis of Theorem 6 hold for all states of the network
G(t) at all times t. Conditions stated in Corollary 7 are fulfilled. By comparing Theorem 6
and Corollary 7 one can see that the only difference is that we now allow for a dynamic
network, i.e., G(t) instead of a static network G.

I Corollary 7 (Dynamic deadlines in dynamic networks). The end-to-end deadline of all flows
are always met, at all times, that is:

∀t ≥ 0, ∀j ∈ F(t) Rj(t) ≤ Dj , (14)

as long as the node deadlines D(t) never change with a rate faster than some α ∈ [0, 1]:

∀t ≥ 0, ∀i ∈ V(t), |Ḋi(t)| ≤ α, (15)

and as long as the node deadlines belong to the space of feasible node deadlines:

∀t ≥ 0, D(t) ∈ D(G(t)), (16)

with D(G(t)) given by

D
(
G(t)

)
=
{
Di ∈ R+ : ∀i ∈ V(t), Di ≥ Ri, ∀j ∈ F(t),

`j∑
i=1

(1+α)`j−iDpj(i) ≤ Dj

}
. (17)

Proof. We begin the proof by observing that from Eq. (15), it follows directly from Theorem 6
that for a fixed time-instance t′ it holds that

∀j ∈ F(t′), Rj(t′) ≤ Dj , (18)

as long as

D(t′) ∈ D
(
G(t′)

)
, (19)

with D
(
G(t′)

)
given by Eq. (17). In fact, this is precisely what was stated and proved in

Theorem 6, but with a fixed network topology G, instead of an instantaneous “snapshot”
G(t′) of a dynamic topology.

Then, the hypothesis of Eq. (16) ensures that Eq. (19) holds ∀t ≥ 0. Therefore, it follows
that Eq. (18) holds ∀t ≥ 0, and in turn that Eq. (14) does always hold, as required. J

As demonstrated by the short proof, Corollary 7 does not poses any deeper conceptual
challenges compared to Theorem 6. However, the two hypothesis of (15) and (16) may be
hard to hold simultaneously, if no special care is taken. This is illustrated in the next example.

Example – issues in acceptance a new flow

The blind admission of new flows as soon as they request to join, may cause the violation of
one of the two hypothesis of the corollary (Equations (15) and (16)) making then Corollary 7
incapable to guarantee end-to-end deadlines. At the time when any new flow j′ is admitted
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to the network, the set of flows F(t) includes the new flow j′ which was not previously in the
set. As a consequence of the acceptance of the new flow j′ into F(t), the set of feasible node
deadlines D

(
G(t)

)
may suddenly shrink due to the newly added constraint. As illustrated in

the next example, this might in turn cause the node deadlines to be in an infeasible state,
such that the end-to-end deadline of the newly accepted flow will be violated. Notice that
node deadlines cannot instantaneously adapt to the new constraint, otherwise the hypothesis
of “bounded rate of change” of Eq. (15) is violated.

In Figure 6, we illustrate a system where a new flow j′ registers to join the network at
time f rq+

j′ = 3. As soon as this flow is accepted into the network, at time fok+
j′ = 4.5, the

set of feasible node deadlines (illustrated by the shaded green area) make a discrete jump.
This means that the node deadlines D(t) (black thick line in Figure 6) will no longer remain
within D

(
G(t)

)
. In other words this means that D(fok+

j′ ) 6∈ D
(
G(fok+

j′ )
)
, which is a clear

violation of the conditions of Corollary 7.
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Figure 6 Illustration of why it might be difficult to ensure that ∀t ≥ 0, D(t) ∈ D
(
G(t)

)
and

|Ḋi(t)| ≤ α. In this scenario, the space of feasible node deadline choices for the first node, D1
(
G(t)

)
(shaded green area), makes a discrete jump as soon as the new flow j′ is accepted into the network.
The reason is that the inclusion of the new flow adds a new end-to-end deadline constraints. This, in
turn, may cause the node deadlines to instantaneouslt become infeasible.“leave” the space of feasible
node deadlines (illustrated by the dashed line).

The illustrated issue suggests that a special care must be taken when the network G(t)
is modified, since the discrete variation of the network may not be compatible with the
need of smooth node deadlines. Therefore, in Section 4.1, we present two protocols which
address this issue:

Protocol 2 explains how the requests of flows are managed, while
Protocol 3 illustrates the management of nodes of the network.

4.1 Protocol allowing dynamic networks
In this section, we present a protocol for managing how flows may join and leave the network.
We show that by following this protocol, the hypothesis of Corollary 7 do always hold, making
then the corollary applicable. We then present a second protocol for how to manage nodes
joining and leaving the network.

Management of flows

The intuition behind Protocol 2, which manages the flows, comes from the fact that as
soon as a new flow j′ is accepted into the network, at time fok+

j′ , the network changes from
G = {V(t), E(t),F(t)} to G+ =

{
V(t), E(t),F(t) ∪ {j′}

}
. The constraint corresponding to

the new flow j′ is thus added to D(G) leading to the new set of feasible node deadlines
D(G+) ⊆ D(G). Therefore, in order to ensure that the node deadlines remain within the set
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of feasible node deadlines once j′ is accepted, i.e., that D(fok+
j′ ) ∈ D

(
G(fok+

j′ )
)
, Protocol 2

will only accept j′ if D(t) ∈ D(G+). If this is the case when j′ requests to join, i.e., that
D(f rq+

j′ ) ∈ D(G+), then the new flow will be accepted immediately, and fok+
j′ = f rq+

j′ .
If on the other hand, D(f rq+

j′ ) 6∈ D(G+), it is not possible to accept j′ immediately.
Therefore, in order to accept it, the resource manager changes the node deadlines towards
a goal point D∗ ∈ D(G+). It will then accept the new flow j′, once D(t) = D∗, which will
occur at time fok+

j′ , given by Eq. (20).

Protocol 2 Management of flows.

At time f rq+
j′ , the new flow j′ requests to join

If D(f rq+
j′ ) ∈ D(G+), then the flow j′ is admitted immediately, that is fok+

j′ = f rq+
j′ .

If D(f rq+
j′ ) /∈ D(G+), then the admission of flow j′ is delayed until the node deadlines

have completed a linear transition to a goal point D∗ ∈ D(G+), that is

fok+
j′ = f rq+

j′ +
maxi∈V(t)

∣∣∣D∗i −Di(f rq+
j′ )

∣∣∣
α

. (20)

with α being the maximum feasible rate of change of node deadlines.
If D

(
G+)

)
= ∅, then the request of flow j′ to join the network is rejected.

A flow j ∈ F(t) may notify the resource manager and leave the network at any time. The
time when it leaves is denoted by f−j .

Let us comment on the choice of the “goal point” D∗. In general, any choice of D∗ ∈ D(G+)
is valid. However, if the target is to minimize the transition-time fron the time f rq+

j′ flow j′

request to join to the time fok+
j′ it is admitted to the network (given by Eq. (20)), then it

should be chosen as

D∗ = arg min
D∈G+

max
i

∣∣∣Di −Di(f rq+
j′ )

∣∣∣ .
We would like to point out three observations from Protocol 2. The first one is that

during the transition to accept the new flow j′ the node deadlines are changed according to
the following linear function:

∀i ∈ V(f rq+
j′ ), ∀t ∈ [f rq+

j′ , f
ok+
j′ ], Di(t) =

Di(f rq+
j′ )× (t− f rq+

j′ )
fok+

j′ − f
rq+
j′

+
D∗i × (fok+

j′ − t)
fok+

j′ − f
rq+
j′

. (21)

This means that the node deadlines are changed along a line from D(f rq+
j′ ) to D(fok+

j′ ). Since
D(G) is a convex space, it follows that D(t) ∈ D(G) during the transition. Hence, it also
follows that the hypothesis of Eq. (16) in Corollary 7 holds during the transition.

The second observation is that by changing the node deadlines according to Eq. (21) we
acquire the property that Di(fok+

j′ ) = D∗i . This means that at the end of the transition, at
time t = fok+

j′ , we have D(t) ∈ D(G+). This implies that once the new flow j′ is accepted
condition (16) of Corollary 7 continues to hold.

The final observation is that by exploiting the value of fok+
j′ of Eq. (20), we have

|Ḋi(t)| =
|Di(f rq+

j′ )−D∗i |
fok+

j′ − f
rq+
j′

= α
|Di(f rq+

j′ )−D∗i |

maxi∈V(t)

∣∣∣D∗i −Di(f rq+
j′ )

∣∣∣ ≤ α (22)

This implies that Protocol 2 fulfills condition (15) of Corollary 7, since the maximum
rate-of-change of any node is α during the transition.
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By combining all three observations, we can conclude that by following Protocol 2, the
hypotheses of Corollary 7 are always met when accepting new flows, and then no end-to-end
deadline is violated.

Finally, we remark that if there is no possible choice of a goal point, i.e., if D(G+) = ∅,
then the request of j′ to join is clearly rejected because the admission of the new flow j′ may
cause the violation of end-to-end deadline of some flow already admitted to the network.

Management of nodes

The basic idea behind Protocol 3 is that when a node i ∈ V(t) leaves the network, it does affect
the flows with a path going through i. Therefore, at time vrq−

i , that is when node i requests to
leave the network, the resource manager notifies any affected flow j ∈ {j : ∀j ∈ F(t), i ∈ pj}
that it will be pushed out from the network after a time T leave

i . The rationale for this is
simply that the resource manager will no longer be able to provide any guarantees for the
end-to-end deadlines of the affected flows once node i has left the network.

However, should the affected flows still wish to use some of the services in the network,
they may request to re-join the network as a new flow. In order to allow the affected flows
adequate time to do this, and to also ensure that there is enough time for the packets in the
affected flows, we require T leave

i to be greater than the largest end-to-end deadline of the
affected flows.

Moreover, it can be noticed that there is no condition on the nodes willing to join
the network.

Protocol 3 Management of nodes.

A node i 6∈ V(t) may notify the resource manager and join the network at any time v+
i .

When a node i ∈ V(t) requests to leave the network (we denote such an instant by vrq−
i ),

it is allowed to do so at:

vok−
i ≥ vrq−

i + T leave
i

with T leave
i ≥ max{Dj : ∀j ∈ F(t), i ∈ pj}

The resource manager will notify all the affected flows j ∈ {j : ∀j ∈ F(t), i ∈ pj} that
they will be kicked out at time t = vok−

i if they have not left the network by then.

Comments on handling multiple flows

It should be noted that while Protocol 2 only treats the case where a single flow j′ request to
join, it is possible to allow multiple flows to request. The management of this scenario can be
achieved by introducing a request queue, and then applying Protocol 2 for the request at the
head of the queue. Once the request is served, the resource manager can then repeat for the
new head-of-the-queue request until there are no more pending requests. This methodology
would only incur in a heavier notation which we prefer not to add to lighten the presentation.

Moreover, as we show in the experiments of Section 5.2 a new flow can be accepted
in matter of milliseconds, or even micro seconds. Therefore, given the application of
cloud robotics, it is fair to assume that there will not be multiple flows requesting to join
simultaneously. And should there be, introducing a request queue will not incur any significant
delay for accepting new flow.
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4.2 Example – dynamic network topology

1

1

2

4
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timet1<latexit sha1_base64="R2xcdzs3LWI33/bYgj+lD0CgK1U=">AAAB/nicbVDLSgNBEOyNrxhfUY+CDAbBU9j1ot4CXvQW0TWBZAmzs7PJkNmZZWZWCEsOfoBX/QRP4tVf8Qs8+BE6eRxMYkFDUdVNd1eYcqaN6346haXlldW14nppY3Nre6e8u3evZaYI9YnkUjVDrClngvqGGU6bqaI4CTlthP3Lkd94oEozKe7MIKVBgruCxYxgY6Vb0/E65YpbdcdAi8Sbkkrt8OcbLOqd8lc7kiRLqDCEY61bnpuaIMfKMMLpsNTONE0x6eMubVkqcEJ1kI9PHaJjq0QolsqWMGis/p3IcaL1IAltZ4JNT897I/E/r5WZ+DzImUgzQwWZLIozjoxEo79RxBQlhg8swUQxeysiPawwMTadmS08kRFVYliyyXjzOSwS/7R6UfVubELXMEERDuAITsCDM6jBFdTBBwJdeIJneHEenVfnzXmftBac6cw+zMD5+AWTSpih</latexit>

t1<latexit sha1_base64="R2xcdzs3LWI33/bYgj+lD0CgK1U=">AAAB/nicbVDLSgNBEOyNrxhfUY+CDAbBU9j1ot4CXvQW0TWBZAmzs7PJkNmZZWZWCEsOfoBX/QRP4tVf8Qs8+BE6eRxMYkFDUdVNd1eYcqaN6346haXlldW14nppY3Nre6e8u3evZaYI9YnkUjVDrClngvqGGU6bqaI4CTlthP3Lkd94oEozKe7MIKVBgruCxYxgY6Vb0/E65YpbdcdAi8Sbkkrt8OcbLOqd8lc7kiRLqDCEY61bnpuaIMfKMMLpsNTONE0x6eMubVkqcEJ1kI9PHaJjq0QolsqWMGis/p3IcaL1IAltZ4JNT897I/E/r5WZ+DzImUgzQwWZLIozjoxEo79RxBQlhg8swUQxeysiPawwMTadmS08kRFVYliyyXjzOSwS/7R6UfVubELXMEERDuAITsCDM6jBFdTBBwJdeIJneHEenVfnzXmftBac6cw+zMD5+AWTSpih</latexit>

t2<latexit sha1_base64="OYkpcrAx2AODfo3Gx4zZFduwPY8=">AAAB/nicbVDLSgNBEOyNrxhfUY+CLAbBU9jNRb0FvOgtomuEZAmzs7PJkHksM7NCWHLwA7zqJ3gSr/6KX+DBj9DJ42ASCxqKqm66u6KUUW0879MpLC2vrK4V10sbm1vbO+XdvTstM4VJgCWT6j5CmjAqSGCoYeQ+VQTxiJFm1L8Y+c0HojSV4tYMUhJy1BU0oRgZK92YTq1TrnhVbwx3kfhTUqkf/nyDRaNT/mrHEmecCIMZ0rrle6kJc6QMxYwMS+1MkxThPuqSlqUCcaLDfHzq0D22SuwmUtkSxh2rfydyxLUe8Mh2cmR6et4bif95rcwkZ2FORZoZIvBkUZIx10h39LcbU0WwYQNLEFbU3uriHlIIG5vOzBbGZUyUGJZsMv58DoskqFXPq/61TegKJijCARzBCfhwCnW4hAYEgKELT/AML86j8+q8Oe+T1oIzndmHGTgfv5TimKI=</latexit>

t2<latexit sha1_base64="OYkpcrAx2AODfo3Gx4zZFduwPY8=">AAAB/nicbVDLSgNBEOyNrxhfUY+CLAbBU9jNRb0FvOgtomuEZAmzs7PJkHksM7NCWHLwA7zqJ3gSr/6KX+DBj9DJ42ASCxqKqm66u6KUUW0879MpLC2vrK4V10sbm1vbO+XdvTstM4VJgCWT6j5CmjAqSGCoYeQ+VQTxiJFm1L8Y+c0HojSV4tYMUhJy1BU0oRgZK92YTq1TrnhVbwx3kfhTUqkf/nyDRaNT/mrHEmecCIMZ0rrle6kJc6QMxYwMS+1MkxThPuqSlqUCcaLDfHzq0D22SuwmUtkSxh2rfydyxLUe8Mh2cmR6et4bif95rcwkZ2FORZoZIvBkUZIx10h39LcbU0WwYQNLEFbU3uriHlIIG5vOzBbGZUyUGJZsMv58DoskqFXPq/61TegKJijCARzBCfhwCnW4hAYEgKELT/AML86j8+q8Oe+T1oIzndmHGTgfv5TimKI=</latexit>

t3
<latexit sha1_base64="ocP42doId11jwas/XnTo5laR+5I=">AAAB/nicbVDLSgNBEOz1GeMr6lGQwSB4Crt6UG8BL3qL6JpAsoTZ2dlkyOzMMjMrhCUHP8CrfoIn8eqv+AUe/AidPA4msaChqOqmuytMOdPGdT+dhcWl5ZXVwlpxfWNza7u0s3uvZaYI9YnkUjVCrClngvqGGU4bqaI4CTmth73LoV9/oEozKe5MP6VBgjuCxYxgY6Vb0z5tl8puxR0BzRNvQsrVg59vsKi1S1+tSJIsocIQjrVuem5qghwrwwing2Ir0zTFpIc7tGmpwAnVQT46dYCOrBKhWCpbwqCR+ncix4nW/SS0nQk2XT3rDcX/vGZm4vMgZyLNDBVkvCjOODISDf9GEVOUGN63BBPF7K2IdLHCxNh0prbwREZUiUHRJuPN5jBP/JPKRcW7sQldwxgF2IdDOAYPzqAKV1ADHwh04Ame4cV5dF6dN+d93LrgTGb2YArOxy+Wepij</latexit>

t3
<latexit sha1_base64="ocP42doId11jwas/XnTo5laR+5I=">AAAB/nicbVDLSgNBEOz1GeMr6lGQwSB4Crt6UG8BL3qL6JpAsoTZ2dlkyOzMMjMrhCUHP8CrfoIn8eqv+AUe/AidPA4msaChqOqmuytMOdPGdT+dhcWl5ZXVwlpxfWNza7u0s3uvZaYI9YnkUjVCrClngvqGGU4bqaI4CTmth73LoV9/oEozKe5MP6VBgjuCxYxgY6Vb0z5tl8puxR0BzRNvQsrVg59vsKi1S1+tSJIsocIQjrVuem5qghwrwwing2Ir0zTFpIc7tGmpwAnVQT46dYCOrBKhWCpbwqCR+ncix4nW/SS0nQk2XT3rDcX/vGZm4vMgZyLNDBVkvCjOODISDf9GEVOUGN63BBPF7K2IdLHCxNh0prbwREZUiUHRJuPN5jBP/JPKRcW7sQldwxgF2IdDOAYPzqAKV1ADHwh04Ame4cV5dF6dN+d93LrgTGb2YArOxy+Wepij</latexit>
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Figure 7 Illustration of how the network changes in the example of Section 4.2. In the first
transition, from time t1 to t2, flow, 4 (green), joins the network, which already has flows 1, 2, and 3.
Then in the second transition, from time t2 to t3, node 6 leaves the network. When node 6 leaves the
network, it affects flow 3 (yellow), which then leaves, and re-join the network as a new flow 5 (gray).

In this section, by using some examples, we illustrate how the protocols between the
flows, nodes, and the resource manager work.

The scenario is illustrated in Figure 7 and consists of the two transitions. In the first
transition, from t1 to t2, flow 4 (green) requests to join the network. The second transition,
from t2 to t3 illustrates how node 6 requests to leave the network. By doing so, it will affect
flow 3, which has a path passing through node i = 6. The affected flow must therefore leave
the network, and re-join as a new flow j = 6, illustrated by the gray arrows in Figure 7.

Next, we describe the first transition (of the new flow joining), followed by the second
transition (node 6 leaving). The schedule for both transitions are depicted in Figure 8.

0 2 4 6 8 10 12 14 16 18
0

5

10

∗
f rq+
4 fok+

4 fok+
5vrq−6 vok−6

time

n
o
d
e
d
ea
d
li
n
e D1(G)

D1(G+)
D1(t)

Figure 8 Illustration of how the space of feasible node deadlines changes when new flows are
accepted into the network, as well as when nodes leave. It show a request from flow j′ = 4 to join
the network at time f rq+

4 = 3 as well as a request from node i = 6 to leave the network at time
vrq−

6 = 9. It also illustrates how the resource manager changes the node deadlines towards D∗ (given
by ∗) before accepting the new flow j′ = 4.

Request of a flow to join

When the new flow 4 requests to join the network, at time f rq+
4 = 3, the node deadlines of

the system are in a state such that it cannot be accepted immediately, i.e., D(f rq+
4 ) 6∈ D(G+).

According to Protocol 2, this requires the resource manager to change the node deadlines
to a goal point D∗ ∈ D(G+). The node deadlines will therefore be changed linearly from
D(f rq+

4 ) to D∗. At time fok+
4 , we have that D(t) = D∗, and then flow 4 is admitted into the

network. This is illustrated in Figure 7 with D(G) shown as the shaded green region, D(G+)
as the shaded blue region, and the goal point D∗ as the ∗ symbol.
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Request of a node to leave

At time vrq−
6 = 9, node 6 requests to leave the network. This is illustrated in Figure 8 by

the downward arrow. Since node 6 belongs to the path p3 of flow 3 (see Figure 7), the
departure of node 6 would affect flow 3 (yellow), with end-to-end deadline D3 = 5. By
following Protocol 3, the resource manager will therefore notify flow 3 that it will no longer
provide any end-to-end deadline guarantees after a time

vok−
6 = vrq−

6 + T leave
6 = 9 + 5 = 14.

The node will then be allowed to leave the network at this time vok−
6 , as illustrated in

Figure 8. In the figure, it can also be noticed that the space of feasible node deadlines
increases when node 6 leaves. The reason is that constraint of the end-to-end deadline D3 of
flow 3 is removed.

In this example, we assume that flow 3 still wants to remain in the network. Therefore,
it will request to re-join the network as a new flow 5 at time f rq+

5 . At this time, the node
deadlines already allow the requesting flow 5 to join (that is D(f rq+

5 ) ∈ D(G+)) and then flow
5 is admitted immediately (fok+

5 = f rq+
5 ), as shown in Figure 8.

5 Evaluation: trade-offs with alpha

In this section we evaluate some of the effects introducing Protocols 1, 2, and 3 might have
on a system. We are particularly concerned with the trade-offs of choosing different values
of the design-parameter α. The intuition is that by choosing a value for α we choose how
quickly the resource manager is able to change the node deadlines in the network. A higher
value of α will therefore allow for quicker changes. This will in allow the resource manager to
accept new flows faster. However, as illustrated in Section 3, a higher value of α will require
lower node deadlines. This means that the response-times of the nodes in the network have
to be lower. In order to satisfy this, some response-time controllers might have to sacrifice
the quality of service (QoS) provided by the nodes. For instance, in [17] the sacrifice is to
sometimes discard packets, and in [18] the sacrifice is to decrease the amount of content
provided by the nodes.

5.1 System used for evaluation
The system used to evaluate the trade-offs of α is presented in a previous work [17] by the
authors. In short, it allows nodes in a network, such as the one illustrated in Figure 9, to
ensure that the response-time is less than a specific node deadline. The way it does this is
by combining admission control and service control in every node.

The goal of the service controller is to ensure there is adequate processing capacity in the
nodes. It does so by dynamically scaling the processing capacity according to a control-law.
However, since the system is targeting a cloud-environment, the incoming traffic may be very
dynamic. Moreover, the amount of processing capacity provided to the nodes may vary over
time (i.e., servers might crash, etc.).

The goal of the admission controller is to always ensure that the response-time of the
node is less than the node deadline. If there is sufficient processing capacity to serve the
incoming traffic, it will not have to discard any packets. However, should a node find itself in
a situation where there is not sufficient processing capacity to meet the incoming traffic, then
the admission controller will have discard packets in order to guarantee that the response-time
of the node will be less than the node deadline.
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Figure 9 Illustration of the network used to evaluate the trade-offs with α and the time taken
to reach the goal point D∗ (in Section 5.2) as well as between α and the system performance
(in Section 5.3).

5.2 Trade-off: alpha and time to accept a new flow
To evaluate the impact of α on the time required to accept a new flow, we will use the system
presented in Section 5.1 and evaluate how long it takes the system to reach different goal
points D∗ ∈ D(G+). Using a network with 5 nodes and 3 flows, we used the following set-up:
1. Choose the order-of-magnitude for the end-to-end deadlinesD ∈ {0.1, 1, 10} (milliseconds)

as well as a value for α ∈ [10−3, 100].
2. Assign a randomly generated end-to-end deadline to each flow, Dj ∈ U(0.7 · D, 1.3 · D).

Note that Dj is drawn from a uniform distribution.
3. Chose the goal point D∗ as the solution to the optimal node-deadline problem, presented

in [17], but adapted with the constraints of Eq. (16):

minimize
∑

i∈V(t)
1/Di

subject to
`j∑

i=1
(1 + α)`j−iDpj(i) ≤ Dj ∀j ∈ F(t)

Di ≥ 0 ∀i ∈ V(t)

(23)

4. Simulate how long it takes the network to reach the desired goal point D∗.
5. Repeated steps 2 thru 4 for 100 simulations.
6. From the 100 simulations, compute the average time to reach a goal point D∗.
7. Repeat steps 1 thru 6 for a different choices of D and α.

The result of the evaluation is shown in Figure 10. As expected, it shows a clear
relationship between α and the time needed to reach D∗. It is interesting to note that even
when having end-to-end deadlines in the order of 10ms, and a very small α the resource
manager is still able to reach D∗ in less than a second. By allowing a higher α, it is possible
to reach D∗ in less than a microsecond.

5.3 Trade-off: alpha and quality of service
To evaluate how different choices of α affect the QoS provided by the nodes in the network
we will again use the system briefly presented in Section 5.1. As mentioned there, the system
used an admission controller and a service controller to ensure that the response-time of the
nodes always remained less than their node deadlines.
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Figure 10 Simulation result of how long takes a system (with the network depicted in Figure 9)
to reach a goal-point D∗. It shows how this time depend on both the choice of α as well as how
large the end-to-end deadlines of the systems are.

Due to the uncertainties of the available processing capacities, and since the amount of
traffic going through the flows is highly varying, the admission controller sometimes have to
discard packets. This is what we define as the QoS, in other words

QoS = 1− ρ,

where ρ is the fraction of packets which are dropped.
The evaluation was performed using a network with 5 nodes and 3 flows, together with

the following set-up:
1. Choose a processing uncertainty ξ̄ ∈ {0.05, 0.1, 0.2, 0.4} and a value of α ∈ [10−3, 100]..
2. Generate traffic based on data from the Swedish University Network (SUNET) and

simulate the system for 20 seconds. A typical traffic pattern is illustrated in Figure 11a.
3. Compute the QoS for the simulation.
4. Repeat steps 2 and 3 for another 100 simulations.
5. Compute the average QoS for this choice of ξ̄ and α.
6. Repeat steps 1 thru 5 for a new choice of ξ̄ and α.

Some comments on the processing uncertainty above is that if ξ̄ = 0.2 a node in the
network might believe it has a processing capacity of 1000 packets per second (pps), but in
reality it could only handle 800 pps. Therefore, the higher ξ̄, the higher the probability is
that the node has a lack of available processing capacity.

The result of the evaluation, presented in Figure 11b, where the y-axis show the quality
of service and the x-axis show the values of α. The different colors highlight the different
bounds on the uncertainty for the processing capacity. An interesting observation is that
the QoS does not depend so much on the uncertainty ξ̄ as it does on the choice of α. As
expected, when α increases, the QoS goes down. However, even for large values of α, the
QoS remains fairly high, i.e., above 0.9980. This means that 99.8% of all the packets make it
through the system on time.

6 Related work

Despite the fact that the addressed problem in this paper comes from very recent technology
advancements (e.g. cloud computing and 5G), it is possible to abstract it in a way where related
results can be found over quite vast a spectrum of older contributions. In an abstract way,
the problem presented in this paper can be decomposed into the following sub-components:

providing end-to-end deadline guarantees for flows in a network,
splitting end-to-end deadlines into local deadlines.



V. Millnert, J. Eker, and E. Bini 10:19

0 5 10 15 20
0

5 000 000

10 000 000

time (hours)

tr
a
ffi

c
(p

a
ck

et
s/

s)
flow 1 flow 2 flow 3

(a) Traffic for one of the simulations.
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(b) Evaluation of α and the quality-of-service.

Figure 11 Simulation to evaluate how α affect QoS of the system. It highlights that despite a
highly varying traffic going through the flows (as depicted in Figure 11a) the QoS remains high,
even for a value of α close to 1. In fact, it shows that for α = 0.1 about 99.8% of all the packets
made it through the system and met their end-to-end deadlines.

However, to the best of our knowledge, no work has considered all of these sub-components
together in the context of a dynamic network topology.

A considerable amount of previous works addresses the deadline guarantee of a sequence
of jobs that needs to be processed at a given node of a network [24, 20, 21]. Within each
node, jobs are scheduled by any single processor scheduling policy (FP, EDF, or else). The
communication between nodes is modelled by propagating the jitter [24, 20] or the offset [21]
of the task execution within a node. Gerber et al. [5] proposed an alternate method to
translate end-to-end deadlines over a directed graph of nodes into constraints on the activation
periods of the tasks running at the intermediate nodes.

In the context of compositional analysis, previous works have addressed the problem of
isolating and composing a single flow over a network of nodes. Lorente et al. [14] extended
the holistic analysis to the case with nodes running at a fraction of computing capacity
(abstracted by a bounded-delay time partition with bandwidth and delay). Jayachandran and
Abdelzaher [10] developed several transformations (“delay composition algebra”) to reduce
the analysis of a distributed system to the single processor case. Serreli et al. [22] proposed a
component interface for chains of tasks activated sporadically and an intermediate deadline
assignment, which minimises the requested computing capacity. Similarly, Ashjaei et al. [1]
proposed resource reservation over each node along the path.

In the context of computation happening at “small” scale, it is worth mentioning the
modular analysis by Hamann, Jersak, Richter, Ernst [6]. Such a modular analysis, which
found an application in the automotive domain, may well be a source of inspiration to
analyze the schedulability within each node and the interaction between nodes. It is, however,
orthogonal to our method which focuses on the policies to allow new flows of packets (“event
streams” in the terminology of [6]) to be admitted at run time. Also, network calculus [13]
and real-time calculus [23] are excellent orthogonal methods to analyze the schedulability
within nodes as well as theier interactions.

The idea of breaking end-to-end deadlines in local deadlines was also exploited by several
authors. Di Natale and Stankovic [2] proposed to split the end-to-end deadline proportionally
to the local computation time or to divide equally the slack time. Marinca et al. [15]
proposed two methods to assign local deadlines (“Fair Laxity Distribution” and “Unfair
Laxity Distribution”) to balance the distribution of the slack among the flows. Later,
Jiang [11] used time slices to decouple the schedulability analysis of each node, reducing
the complexity of the analysis. More recently, Hong et al. [8] formulated the local deadline
assignment problem as a Mixed-Integer Linear Program (MILP) with the goal of maximising
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the slack time. The number of local deadlines, however, is very high and makes the resulting
optimisation problem hard to solve. Jabob et al. [9] proposed to split among local deadlines
by using a deadline ratio ρ ∈ (0, 1) configuration parameter chosen at design-time.

Related, but orthogonal to the presented research is the problem of mapping the flows
of packets onto the available processing nodes. In the automotive context, Zhu et al. [26]
formulated a MILP problem to find a task mapping that minimises the sum of a set of
sensitive latencies. Garibay-Martínez et al. [4] used heuristics to partition tasks and assigned
priorities to tasks sharing the same resource.

7 Conclusion and future works

In this work, we presented a framework, which allows applications and cloud-services to
dynamically join and leave a system over time. The intuition is that by assigning and
controlling how quickly local deadlines of cloud-services may change, it is possible to guarantee
the end-to-end deadlines of the applications in presence of flows and nodes dynamically
leaving and joining the network. Finally, with extensive simulations we are able to show
that with the suggested protocols it is possible to accept new applications in matter of
milliseconds. Moreover, we show that the constraints of the protocols does not affect the
quality-of-service in a significant way.

This preliminary work opens for many research directions. Among them we mention:
impact of node policies How can the end-to-end response time benefit from per-flow packet

scheduling policies within the nodes? For example, fixed priorities, EDF, etc.
decentralized protocol Can the framework be implemented in a decentralized way by ex-

ploiting per-node information rather than using the full knowledge, as in this paper?
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