
Control-Flow Integrity for Real-Time Embedded
Systems
Robert J. Walls
Worcester Polytechnic Institute, Worcester, Massachusetts, USA
rjwalls@wpi.edu

Nicholas F. Brown
Worcester Polytechnic Institute, Worcester, Massachusetts, USA
nfbrown@wpi.edu

Thomas Le Baron
Worcester Polytechnic Institute, Worcester, Massachusetts, USA
tlebaron@wpi.edu

Craig A. Shue
Worcester Polytechnic Institute, Worcester, Massachusetts, USA
cshue@cs.wpi.edu

Hamed Okhravi
MIT Lincoln Laboratory, Lexington, Massachusetts, USA
hamed.okhravi@ll.mit.edu

Bryan C. Ward
MIT Lincoln Laboratory, Lexington, Massachusetts, USA
bryan.ward@ll.mit.edu

Abstract
Attacks on real-time embedded systems can endanger lives and critical infrastructure. Despite
this, techniques for securing embedded systems software have not been widely studied. Many
existing security techniques for general-purpose computers rely on assumptions that do not hold in
the embedded case. This paper focuses on one such technique, control-flow integrity (CFI), that
has been vetted as an effective countermeasure against control-flow hijacking attacks on general-
purpose computing systems. Without the process isolation and fine-grained memory protections
provided by a general-purpose computer with a rich operating system, CFI cannot provide any
security guarantees. This work proposes RECFISH, a system for providing CFI guarantees on
ARM Cortex-R devices running minimal real-time operating systems. We provide techniques for
protecting runtime structures, isolating processes, and instrumenting compiled ARM binaries with
CFI protection. We empirically evaluate RECFISH and its performance implications for real-time
systems. Our results suggest RECFISH can be directly applied to binaries without compromising
real-time performance; in a test of over six million realistic task systems running FreeRTOS, 85%
were still schedulable after adding RECFISH.

2012 ACM Subject Classification Security and privacy → Embedded systems security

Keywords and phrases Control-flow integrity

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.2

1 Introduction

Real-time and embedded systems (RTES) are predominantly developed in C because it offers
high performance, low-level hardware control, and is often the only language supported by
the manufacturer-provided toolchain for the target device. However, C also brings a host of
potential memory errors, or vulnerabilities, that are both easy for developers to make, and
easy for attackers to exploit. For example, memory-corruption vulnerabilities (e.g., buffer

© Robert J. Walls, Nicholas F. Brown, Thomas Le Baron, Craig A. Shue, Hamed Okhravi, and
Bryan C. Ward;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 2; pp. 2:1–2:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rjwalls@wpi.edu
mailto:nfbrown@wpi.edu
mailto:tlebaron@wpi.edu
mailto:cshue@cs.wpi.edu
mailto:hamed.okhravi@ll.mit.edu
mailto:bryan.ward@ll.mit.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Control-Flow Integrity for Real-Time Embedded Systems

overflows) allow an attacker to overwrite portions of memory with attacker-provided values.
Such vulnerabilities can be leveraged to hijack the control flow of a program by overwriting
code pointers (e.g., function pointers or return addresses). Such attacks, commonly called
control-flow hijacking, manipulate the execution of a program by redirecting control-flow
transfers to either attacker-supplied code [33] or useful code sequences already in the program
(e.g., return-oriented programming [ROP] [37]).

Several classes of defenses have been proposed for general-purpose systems to address
control-flow hijacking. These include control-flow integrity (CFI) [5], which prevents such
attacks by enforcing a precomputed control-flow graph (CFG) to runtime (indirect) control
transfers in an application. Various other randomization-based [23, 26, 7, 24] and enforcement-
based defenses [30, 31, 25, 32] have also been proposed in the literature.

However, there are a number of unique challenges that make existing implementations of
these defenses ill-suited to RTES. First, embedded hardware is less capable and often lacks
important hardware features that existing software defenses leverage. For example, the ARM
Cortex-R architecture that we target in this work does not have a memory management
unit (MMU) and, consequently, it does not support the abstraction of virtual memory nor
does it provide isolation between kernel and application code. Second, in order to ensure
the temporal correctness of the system, overheads associated with security defenses must
be analyzed and factored into schedulability analyses. Third, embedded systems rely on
toolchains tailored to each board and architecture, including custom versions of compilers
(e.g., GCC) and proprietary IDEs (e.g., CodeComposerStudio). It is time-consuming (or
impossible) to modify each of these toolchains to support new defenses.

Given these challenges, the security posture of many RTES lags behind that of general-
purpose systems, despite being deployed in safety- or mission-critical applications. Given the
proliferation of cyber-physical systems and Internet-of-things (IoT) devices, such systems
are becoming ubiquitous in our society. Furthermore, such devices are increasingly Internet-
connected, and therefore easily targeted by remote attackers. We must therefore develop
security defenses for RTES that address the aforementioned challenges.

Towards that end, in this paper, we propose, implement, and evaluate a new defense
for protecting RTES from control-flow hijacking attacks. Our defense, called Real-Time
Embedded CFI for Secure Hardware (RECFISH), is inspired by past work on control-flow
integrity but distinguishes itself from existing efforts in three key ways. First, RECFISH
addresses the problem of custom toolchains by retrofitting binaries. This allows the developer
to use existing toolchains without modification and even apply RECFISH protections to
binaries without access to their source code. Second, we develop a new memory-isolation
approach for ARM systems that does not rely on virtual memory. RECFISH provides
the isolation between application and OS code needed to support secure context switching
and enforce control-flow integrity. In particular, we modify a popular real-time operating
system, FreeRTOS, to include RECFISH protections. Third, we provide a rigorous analysis
of RECFISH’s impact on real-time schedulablility and show that RECFISH can be applied
to most systems without violating real-time requirements.

We evaluate the security and performance overhead of RECFISH using four broad classes
of experiments. First, we perform the Basic Exploitation Test (BET) proposed by Carlini et
al. [10] and demonstrate how RECFISH prevents various types of corruption used for control-
hijacking, and how it secures the necessary CFI state from malicious modifications. Second,
to evaluate the performance overhead, we run the CoreMark and BEEBS embedded-system
benchmarks. Third, in order to better understand the sources of overhead, we conduct a
series of microbenchmarks to quantify the CPU cycles necessary for each CFI operation.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:3

Finally, based on the microbenchmark results, we empirically measure the effect on real-time
schedulability [36], or the ability to analytically guarantee all deadlines will be satisfied, a
fundamental metric in work on RTES. To our knowledge, we are the first to analyze the
effect of a memory-corruption defense on analytical schedulability – this analysis provides a
significant distinction from previous work in the embedded space (e.g., EPOXY [12]). Our
contributions are summarized as follows:

Binary instrumentation for ARM: We develop a CFI scheme, RECFISH, that
protects both ARM-based bare-metal applications and those that run on FreeRTOS.
Protection mechanisms for CFI data structures: We protect the instrumentation
required for CFI as well as the shadow stack on low-resource ARM-based systems that
lack native capabilities for such protections.
Process isolation without virtual memory: We devise a low-overhead method for
isolating critical parts of a process on ARM systems where all processes run in the same
address space.
A binary-patching framework for ARM: We create a binary-patching framework
that rewrites precompiled ARM binaries to add CFI protection.
Evaluation: We conduct both a security evaluation of RECFISH using BET and a
performance evaluation using benchmarks, microbenchmarks, and schedulability.

2 Background and Related Work

2.1 Control Flow Integrity
CFI-based defenses check, at runtime, if program execution follows a legal control flow.
Broadly, CFI schemes modify the target binary in three ways. First, at each indirect branch
target, they insert a label to encode legal control-flow transfers. Second, at each indirect
branch instruction, they insert instrumentation to verify the target has the expected label.
Third, at each function return, they insert instrumentation to ensure control returns to the
calling function.

Legal control flow is defined by the program’s control-flow graph (CFG). Typically
computed at compile-time, the CFG is a directed graph where the nodes represent basic
blocks – i.e. sequences of program instructions ending in a branch – and the edges represent
legal control-flow transfers between basic blocks. There are broadly two classes of branches:
direct branches statically specify the target, while indirect branches depend on a register
or memory value to specify the target at runtime. The latter are the target of control-flow
hijacking attacks [37] and the focus of CFI. Note, checks are not needed for direct jumps
when the code section of memory is read-only as the attacker cannot modify the target.

CFI implementations vary primarily in the choice of labeling scheme and the approach to
protecting function returns. For performance reasons, some CFI approaches ignore function
returns and only protect the other indirect branches. Other CFI-based defenses – including
the original implementation by Abadi et al. [5] and the system proposed in this paper – rely
on a runtime data structure, called a shadow stack, to securely store return addresses. This
structure increases the precision of CFI and, by extension, the security of the instrumented
program [17]; the tradeoff is higher overhead. See the survey by Burow et al. for a more
comprehensive treatment of prior work on control-flow integrity [9].

Compared to earlier control-flow defenses (e.g., StackGuard [14], RAD [11], and DISE [13]),
CFI implementations often consider a stronger threat model and provide stronger security
guarantees. Specifically, CFI-based defenses must ensure that control-flow integrity is enforced

ECRTS 2019

2:4 Control-Flow Integrity for Real-Time Embedded Systems

even against adversaries that have full control of the data memory. In contrast, these earlier
defenses do not protect all code pointers (only return address) and the shadow stack is either
left unprotected from attackers with the ability to arbitrarily write to memory or the defense
adds significant overhead by interposing on all (or a large subset of) memory writes.

2.2 Real-Time Embedded Systems

To facilitate writing real-time software, embedded-system designers often use a real-time
operating system (RTOS). In a real-time OS, tasks are the rough equivalent of a process in a
general purpose system. A scheduler is used to switch between executions of each task to
meet pre-defined timing constraints.

RTOSes vary greatly in their complexity. On more powerful hardware, RTES can leverage
versions of Linux compiled with SCHED_DEADLINE or SCHED_RT, which replace Linux’s default
scheduler with a real-time scheduler. On processors designed for embedded use – like those
targeted for this work – the hardware typically does not meet the minimum requirements
for Linux. For reference, in 2014, a minimally configured Linux kernel required at least 8
MB of program flash and 1.6 MB of RAM [40], whereas the test device for this work has
only 1.25 MB of flash and 192 KB of RAM. The alternative to real-time Linux is using an
embedded RTOS such as FreeRTOS or µC/OS, which are designed to run on devices with
storage space and memory on the scale of kilobytes, rather than megabytes or gigabytes.
One of the most common RTOSes is FreeRTOS. Designed to be as small as possible, this
free and open source RTOS fits in as little as 5 KB of program flash and under 1 KB RAM,
depending on the features used [4]. FreeRTOS is highly portable, with ports for most major
architectures. FreeRTOS, while minimal in nature, provides a few rich features such as
mutexes, semaphores, shared queues, and software timers.

2.3 Real-time Security

There has been some prior work on providing increased security to real-time systems. However,
most of this work has focused on different attack classes or adopt weaker threat models
than considered here. For example, Hasan et al. [22] considered how to schedule security
monitoring into real-time scheduling while respecting legacy real-time constraints. Others
have considered information-leakage attacks via cache-based and other side channels [29, 35],
and how schedule randomization can be applied to defend against such threats [39]. In this
work, we consider a much stronger, more pernicious threat model, that of memory corruption
and control-flow hijacking.

EPOXY [12] targets the same class of attacks as RECFISH, but the underlying approach
is significantly different. First, EPOXY does not guarantee control flow integrity, i.e., EPOXY
does not check the target of indirect branches. Second, EPOXY is compiler-based whereas
RECFISH retrofits existing binaries. It is unlikely that EPOXY could be re-engineered to
work on existing binaries, e.g., EPOXY’s code diversification presents significant challenges
if implemented outside of a compiler. Third, EPOXY only targets bare-metal applications
whereas RECFISH is implemented for both bare-metal and FreeRTOS. As we explain later
sections, context switching introduces additional security challenges, which EPOXY does not
address; notably, EPOXY does nothing to protect the stack in a multi-task environment.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:5

2.4 ARM Architecture

Our work focuses on ARM’s Cortex-R architecture for high performance real-time systems.
Most Cortex-R processors are single core and they have special interrupt controllers and
caching mechanisms to support the low latency required by real-time systems. Unlike x86-
based hardware, ARM Cortex-R does not support virtual memory. Consequently, all realtime
tasks share the address space. The lack of a memory-management unit and high-quality
entropy sources [19], coupled with a small address space, mean it is especially challenging
to implement randomization-based defenses (e.g., ASLR). Further, these challenges also
complicate the implementation of secure runtime data structures (e.g., the shadow stack).

Another important complication is that Cortex-R chips operate on several different
instruction sets, such as the ARM and Thumb instruction sets. It is common for a single
ARM binary to include instructions from multiple sets and switch among them during
execution. Broadly, the Thumb instruction set and its variations are used to reduce code size
with minimal reduction in performance. We further describe on the details of the Cortex-R
architecture and its implications for the design of RECFISH in Section 3.

3 Design of RECFISH

RECFISH is a software defense for embedded ARM architectures. RECFISH takes a control
flow graph and program binary as input, adds security instrumentation, and produces a
protected binary. We divide the discussion of RECFISH into four components: (i) basic
memory protections, (ii) forward-edge CFI, (iii) shadow stack operations, and (iv) secure
context switching. The first three are presented in the context of bare-metal execution and
the last in the context of FreeRTOS.

3.1 Threat Model

We assume a powerful adversary able to modify anything in writeable memory at any
time, including all data on the stack or heap. The attacker cannot, however, modify read-
only memory such as program code. Unlike other software defenses, we also assume that
writeable memory is, by default, executable. Consequently, we must implement basic memory
protections as part of RECFISH.

The attacker’s goal is to subvert the control-flow of a program by modifying the target
of an indirect branch. In ARM, an indirect branch is either (i) a branch instruction with a
register operand, or (ii) any operation with the program counter register as the destination.
These instructions are enumerated in Appendix A. RECFISH is charged with thwarting such
attacks. As with previous work, RECFISH does not prevent memory corruption, but it does
prevent corrupted code pointers from hijacking control-flow.

In a system executing without RECFISH modifications all of RAM is configured, by
default, to be readable, writeable, and executable. The code is stored in ROM which is only
readable and executable. Discussed in detail below, RECFISH uses binary instrumentation
to check the targets of indirect branches and leverages the MPU to disable the execute
permissions for RAM and to create a region of protected memory for the shadow stack (and
other security-critical structures in FreeRTOS). Most code executes in an unprivileged mode
and this protected memory region is only accessible from privileged modes.

ECRTS 2019

2:6 Control-Flow Integrity for Real-Time Embedded Systems

.text .cfi

foo:
 Prologue
 …
 Jump
 …
 Epilogue

Instrumented
Prologue

Instrumented
Jump

Instrumented
Epilogue

Figure 1 RECFISH uses trampolines to add CFI instrumentation to binaries without access to
the source code.

3.2 RECFISH for Bare-Metal Execution

RECFISH patches pre-compiled binaries to add security instrumentation. Binary patching
promotes broad adoption of the defense as it allows developers to employ RECFISH without
modifying existing toolchains. This capability is important for retrofitting security to existing
devices that may otherwise never receive updates.

However, binary patching is more complicated than simply inserting additional instructions
into the code section. Namely, the inserted instructions can break the relative addressing com-
mon in the ARM Thumb instruction set. For example, the instruction ldr r1, [pc, #32]
loads data from an address 32 bytes after the program counter. With in-line checks, we must
update this instruction (and likely many others) to point to the new location of the data. To
avoid this issue, we instead instrument instructions by replacing them with trampolines, i.e.,
direct branches to CFI code appended to an unused memory section. At a high level, the
patched binary follows the format shown in Figure 1. The original program code is in the
.text section, and the CFI instrumentation goes into a new .cfi section.

3.2.1 Basic Memory Protections

Like previous CFI implementations, RECFISH depends on two basic memory invariants.
First, code regions must be read-only. Second, writeable regions must be non-executable.
Unlike x86, Cortex-R does not offer virtual memory support, so these protections must
be implemented using the limited functionality of the memory protection unit (MPU) and
privileged processing modes.

The MPU, included by most Cortex-R processors, supports developer-defined permissions
for up to 12 memory regions. For each region, there are three sets of permissions to be
set: user mode, privileged mode, and execute permissions. For example, a memory region
can be configured to be read-only for user mode, read and write for privileged mode, and
non-executable (in any mode). In addition to the basic memory protections described above,
we also leverage the MPU to create a protected region for shadow stack operations (see
Section 3.2.3). MPU violations result in a data abort and any attempts by an adversary to
modify program code or execute from writeable memory will be prevented.

To enforce basic memory protections, RECFISH requires the device to have an MPU and
two available MPU regions. This includes many Cortex-M, Cortex-R, and RISC-V devices.
The primary difference between Cortex-M and Cortex-R, in the context of this work, is that
the former uses memory-mapped registers that must also be protected – though this can be
done in the same manner that RECFISH protects the shadow stack.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:7

Listing 1 Example function that uses function pointers.
1 int foo(int a, int b) {
2 int (* func [2])(int , int) = {add , sub };
3 static unsigned int i = 0;
4 return func[i++

Listing 2 Disassembly of the foo() function.
0x192: push {r4 , r7 , lr} #
0x194: sub sp , 20 # Function Prologue
0x196: add r7 , sp , 0 #
...
0x1e6: add r3 , r3 , r4 #
0x1e8: blx r3 # Indirect Call
...
0x1f0: mov sp , r7 #
0x1f2: pop {r4 , r7 , pc} # Function Epilogue

Cortex-R processors have seven processing modes: User, System, Supervisor, Interrupt,
Fast Interrupt, Abort, and Undefined. We leverage these different modes to perform
operations at different privilege levels. Specifically, we use the unprivileged User mode for
normal code execution and forward-edge CFI checks and the privileged System, Supervisor,
and Interrupt modes for other CFI functionality such as shadow stack operations and context
switching. The most relevant distinction between privileged and unprivileged modes is that
the former can access memory marked as privileged-only.

3.2.2 Forward-Edge Checks

We use a simple example to illustrate how RECFISH handles forward-edge checks with
binary patching. Consider the function foo() given in Listing 1 and its disassembly shown
in Listing 2. RECFISH instruments three components of this function: the prologue, the
indirect call resulting from the function pointer usage on line 4, and the epilogue. Listing 3
shows the resulting instructions after RECFISH is applied; namely, each component is
overwritten with trampolines to RECFISH instrumentation.

Listing 3 Instrumented version of the foo() function.
0x192: b.w 0 x13f60 # Branch to new prologue

0x196: <label > # Insert label
...
0x1e6: bl 0 x13f80 # Replace indirect call

with CFI check
...
0x1f0: b.w 0 x13f98 # Branch to new epilogue
...

ECRTS 2019

2:8 Control-Flow Integrity for Real-Time Embedded Systems

Listing 4 Function prologue instrumentation.
0 x13f60 : push {r4 , r7} # Copy displaced instructions
0 x13f62 : sub sp , 20 # from the orig. prologue
0 x13f64 : add r7 , sp , 0 # with modifications
0 x13f66 : svc 0 # Call ss_push
0 x13f68 : b.w 0x198 # Branch back , skipping label

Listing 5 Indirect call instrumentation.
0 x13f80 : add r3 , r3 , r4 # Copied instruction
0 x13f82 : push {r0 , r1} # Save registers
0 x13f84 : ldrh r0 , [r3 , 3] # Load target ’s CFI label
0 x13f86 : movw r1 , <label > # Load expected label
0 x13f88 : cmp r0 , r1 # Compare the labels

error:
0 x13f8a : bne error # Error if mismatch
0 x13f8c : pop {r0 , r1} # Restore registers
0 x13d8e : bx r3 # Perform indirect jump

3.2.2.1 Function Prologue

RECFISH instruments the function prologue to embed the appropriate CFI label for foo().
This allows any calling function to verify that foo() is a legal target. As mentioned previously,
RECFISH cannot simply insert this label without breaking relative addressing. Instead,
RECFISH replaces 6 bytes of the original function prologue with a 4-byte branch to the
CFI section (i.e., the trampoline) and a 2-byte label. The CFI section for the function
prologue, shown in Listing 4, includes the instructions replaced in the original prologue, adds
some shadow stack operations (discussed later), and returns to the instruction following the
original function prologue.

3.2.2.2 Indirect Branches

RECFISH ensures that the target of the indirect branch is legal by checking the value of
the target’s label against the expected value. As with the prologue, RECFISH inserts these
checks into a separate CFI code region (Listing 5) and uses a trampoline to jump to the
check. Note that the target’s label is stored in a function prologue – similar to what was
discussed above for foo() – and the expected label is hard-coded into the instruction at
0x13f86. In the event of a label mismatch, the instruction at 0x13f8a will branch to error
handling code, which in the current implementation will result in an infinite loop.

RECFISH must replace the 16-bit indirect branch instruction with a 32-bit direct branch
to the CFI check. To make space, RECFISH replaces both the indirect branch and the
preceding add instruction. The displaced add is moved to the start of the appropriate CFI
code region. We use a branch-and-link operation as the direct branch to copy the return
address into the link register for use by the called function.

3.2.2.3 Function Epilogue

The modified function epilogue reverses the operations performed during the new prologue.
Namely, RECFISH restores the registers previously pushed to the normal stack and pops
the return address from the shadow stack. To do this, RECFISH again replaces two 16-bit

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:9

Listing 6 Function epilogue instrumentation.
0 x13f98 : mov sp , r7 # Execute displaced operation
0 x13f9a : svc 1 # Call ss_pop
0 x13f9c : pop {r4 , r7} # Perform pop without PC
0 x13f9e : bx lr # New return instruction

instructions with a 32-bit trampoline. In the instrumentation shown in Listing 6, the modified
epilogue includes code to retrieve the return address from the shadow stack and move it into
the link register. The original pop instruction is also modified such that the link register is
no longer included in operands. This modification is necessary as the link register is not
pushed to the normal stack in the new prologue. Finally, the code returns to the calling
function using a branch-and-exchange to the link register.

3.2.3 Shadow Stack
The shadow stack is a region of memory, separate from the normal stack, used to securely
store return addresses and increase the runtime precision of RECFISH checks. RECFISH
makes the shadow stack inaccessible from the User processing mode using the MPU, but
allows reading and writing from the Supervisor mode. Consequently, performing shadow
stack operations (e.g., push and pop) requires RECFISH to jump into a privileged mode,
modify the shadow stack, and jump back to an unprivilege mode. To implement this, we
created a system call interface using the ARM Supervisor call (svc) instruction.

The Supervisor call instruction takes one operand, an immediate value representing the
function number. When it executes, the svc instruction triggers an interrupt on the processor.
The handler for this interrupt determines the function number by reading the opcode of
the software interrupt instruction. The ARM assembly code function to do this is shown in
the Appendix in Listing 7. The short ARM assembly code functions for the shadow stack
operations are shown in the Appendix in Listing 8.

Procedure calls are handled differently in ARM than x86. In x86, procedure calls are
generally implemented with pairs of call and ret instructions. The call instruction is used
to branch to the target procedure, saving the return address onto the stack. The associated
ret instruction is later used to return to the caller, popping the return address off the stack.
In ARM, procedure calls are implemented using a branch-link-exchange instruction [16].
Branch-link-exchange instructions atomically branch to the target location stored in the
link register and then update the link register to store the return address. We leverage this
behavior to reduce the number of writes to the shadow stack. Specifically, we only need to
push LR to the shadow stack if the link register is spilled to the normal stack, e.g. when a
procedure calls another procedure.

3.2.4 Implementation
Our prototype implementation uses the Capstone disassembly engine [1], the pyelftools [3]
ELF file parser, and the Keystone assembler [2]. Capstone provides a powerful disassembly
and instruction decomposition framework that makes it possible to identify the registers
modified by any instruction. We search the executable for indirect branches and instructions
that indirectly modify the program counter register (such as a load multiple operation where
PC is a destination register). After enumerating the instructions that need instrumentation,
we follow the procedures outlined earlier in this section to generate the instrumentation.

ECRTS 2019

2:10 Control-Flow Integrity for Real-Time Embedded Systems

Finally, we use the Keystone assembler to write the patched code to a new binary. We follow
the same procedure for function prologues, epilogues, and indirect branch targets until we
have a fully instrumented binary.

3.2.4.1 Limitations

One limitation of our current implementation is that the size of the shadow stack must be
manually configured. However, RECFISH uses additional instrumentation to ensure that the
stack does not overflow.

Uncommon C features such as setjmp and longjmp pose additional challenges that
our current implementation does not directly address. Though such functionality was
not employed by any of the binaries we evaluated, we can extend RECFISH to support
setjmp/longjmp without a substantial impact on the security or performance results presen-
ted. For example, we can adopt an approach similar to that used by DISE [13] and push the
current stack pointer along with the return address to the shadow stack.

3.3 RECFISH for FreeRTOS
The primary challenge of extending RECFISH to the FreeRTOS real-time operating system
is supporting context switching and multithreading. As we discuss below and in the following
section, task preemption and the lack of memory isolation introduces the possibility of a
memory error in one task being used to corrupt the memory of another.

Each task has its own stack. This stack is also used by the scheduler to save and restore
state when switching from one task to another. Under our threat model, RECFISH must
assume any information stored on the stack during a context switch could be modified by the
attacker. Consequently, RECFISH cannot consider CFI checks as atomic operations as any
context-switches that preempt a CFI check could introduce a time-of-check to time-of-use
vulnerability. Specifically, CFI labels are loaded from read-only program code into registers.
In the presence of context switching, however, registers with CFI-critical information – i.e.,
the two registers with labels and the register storing the branch target – could be saved
to the task stack at any point during the CFI check. With careful timing, the attacker
could overwrite these saved register values. Defenses on general-purpose systems do not have
to address this challenge (for process threads) because register values are saved to kernel
memory during a context switch.

To avoid this vulnerability, RECFISH saves task state in the task’s shadow stack rather
than on the task’s unprotected regular stack. For FreeRTOS, this necessitates modification
of the Task Control Block (TCB) structure, the task creation procedure, and the scheduler.
The scheduler already runs in privileged mode with interrupts disabled, so we do not incur
additional overhead from the Supervisor call instruction.

One alternative to using the shadow stack for context switching would be to disable
interrupts during the CFI checks. However, we avoid this approach as it introduces additional
scheduling challenges, i.e., it introduces a new source of latency for real-time tasks. Even in
non-preemptive systems (where the scheduler only runs when a task yields), other real-time
sensitive hardware interrupts could be negatively impacted by disabling interrupts.

3.3.1 Task Creation Modifications
We modified the FreeRTOS task creation procedure to assign a shadow stack to each
task when it is created. Specifically, we extended the Task Control Block (TCB) struc-
ture to add a field for a shadow stack. We also modified the functions that initial-

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:11

ize this structure, the FreeRTOS function prvInitialiseNewTask and the port-specific
FreeRTOS function pxPortInitialiseStack. The prvInitialiseNewTask simply assigns
the next available shadow stack to the TCB of the newly created task. The port-specific
pxPortInitialiseStack function required more complicated changes. When FreeRTOS
creates a task, it sets up the stack such that the task appears to have been switched out
by the scheduler. This is an optimization that allows FreeRTOS to simply use its restore
context routine to start a task, rather than needing a special procedure.

3.3.2 Scheduler Modifications
Most of the scheduler is written in ARM assembly, and the instruction set makes it easy to
save context to the unprotected stack. Normally, to save the register information to the stack
from the scheduler, only two instructions are needed: srs and push. The srs mnemonic
is the store return state instruction, which pushes the IRQ return address and the saved
process state register to the system or user mode stack. After saving the return state, the
scheduler switches to system mode and pushes the rest of the registers to the stack. To
modify this to use the shadow stack, we need to get the pointer to the top of the shadow
stack, and use this like the stack pointer.

4 Evaluation

To evaluate RECFISH, we conducted three broad classes of experiments. First, we eval-
uated the security provided by RECFISH to show that the instrumentation will enforce
the CFI policy, even in the presence of a powerful attacker. Second, we conducted a series
of microbenchmarks to understand and quantify the overheads and costs associated with
specific functionality within our instrumentation, and how commonly such functionality
is invoked among many benchmark applications. Finally, the results of these microbench-
mark experiments informed the design of a large scale schedulability study, or effectively a
macrobenchmark study. This study demonstrates how the RECFISH overheads affect the
guarantees that a given task system will meet all deadlines.

The reference system used for this work is a Texas Instruments Hercules RM46L852, an
ARM Cortex-R4F processor. This processor has 1.25 MB of non-volatile program flash, 192
KB of RAM, and an additional 64 KB of flash for emulated EEPROM storage.

4.1 Security Evaluation
The security benefits of control-flow defenses are difficult to describe quantitatively. While
measurements of ROP gadget reduction and Average Indirect Target Reduction (AIR)
have been used in previous work, Carlini et al. have discussed how these measurements
are misleading and reflect CFG precision more so than security [10]. Instead of using the
aforementioned metrics, we adopt the standard qualitative analysis used in prior work on
control-flow defenses for general-purpose systems; we show that RECFISH checks that all
branches are legal with respect to the control-flow graph, those checks cannot be bypassed,
and the shadow stack cannot be modified by an attacker. Because our focus is on the security
of the proposed CFI instrumentation rather than the precision of the control flow graph,
attacks that follow a legal control flow are out of the scope of this evaluation.

In addition to the qualitative analysis, we also tested RECFISH using the empirical
methodology proposed by Carlini et al. – the Basic Exploitation Test (BET) – where a
minimal, representative program is written with a known vulnerability (such as a buffer

ECRTS 2019

2:12 Control-Flow Integrity for Real-Time Embedded Systems

overflow) to show that a defense prevents an attacker from achieving their specific goal (i.e.
arbitrary code execution) [10]. We elide further discussion of the BET results as RECFISH
successfully prevented the attack.

4.1.1 Basic Memory Protections
RECFISH leverages the MPU to set memory as either writeable or executable, but not both.
This prevents an attacker from inserting and executing their own code to bypass the CFI
checks. Further, the attacker cannot modify program code to disable CFI checks. These two
basic protections ensure the attacker’s only attack vector is to modify writeable memory.

4.1.2 Label Assignment
The labels for CFI instrumentation must be chosen to satisfy the global uniqueness assumption.
This assumption states that the byte sequence representing a label only appears in the code
section as part of the CFI instrumentation. If this assumption does not hold and the label
coincidentally appears somewhere else in code memory (e.g. as an instruction opcode), an
attacker could circumvent CFI by overwriting a code pointer with an address that is the
correct offset from the location where the erroneous label appears. Given that RECFISH
patches pre-compiled binaries and that there is no dynamic linking in our target system, we
can use static analysis to verify that all labels are globally unique.

Further, because the label is stored in executable code, the instrumentation should either
ensure that the label is never executed, or it should be a side-effect free instruction. In
the original CFI implementation, the side-effect-free x86 prefetch instruction was used to
encode the label [5]. In RECFISH, the forward-edge and shadow stack protections to prevent
the label from being executed.

4.1.3 Forward-edge Instrumentation Without Context Switching
Each forward-edge check has two parts: the source and destination instrumentation. The
source instrumentation replaces the indirect branch and its preceding instruction with a direct
branch to the correct location in the .cfi section. The general format of the indirect call
instrumentation is shown in Listing 5. All critical operations of the CFI check are performed
entirely in registers and thus are protected in the shadow stack if the check is pre-empted.

The source label is hardcoded in a mov instruction, so that cannot be modified. Consider
the case where the target label matches the expected label. In this scenario, the target label
either resides in read-only program code, or it has been inserted into writeable memory by
the attacker. If the label is in program code and the labels are globally unique, the label
must be valid and it precedes a legal branch target. If the label was maliciously inserted
into writeable memory, the CFI check will allow the branch to be taken, but the MPU will
prevent the processor from executing the code at the target. In summary, there are three
possible outcomes from the label checking code: the branch is taken and execution continues,
the branch is taken and the MPU prevents execution, or execution enters an infinite loop. In
any of the three cases, the attacker cannot achieve arbitrary code execution.

4.1.4 Backward-edge Instrumentation With Shadow Stack
Each backward-edge check has two parts: function prologue and function epilogue instru-
mentation. In ARM, we do not need to consider the backward-edge in leaf functions, that is,
functions at the end of a call tree that do not call any other functions. Leaf functions do

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:13

not push the return address to the stack; they keep the return address in the link register
and end the function with a bx lr instruction. In non-leaf functions, however, the compiler
will generate a matching pair of push {<reglist>, lr} and pop {<reglist>, pc} in-
structions to store the return address on the unprotected stack. All non-leaf functions are
instrumented by RECFISH.

The instrumentation for non-leaf functions has a single goal – protect the return address
by saving the link register on the shadow stack rather than on the unprotected regular stack.
The general form for this instrumentation is shown in Listings 4 and 6. Importantly, memory
accesses always occur at the current hardware privilege level (i.e., privileged or unprivileged).
Most program code executes in unprivileged mode, but RECFISH places the shadow stack
in a memory region accessible only during privileged mode execution. RECFISH uses the
software interrupt (svc) instruction to change the processing mode from user to supervisor
mode, allowing it to modify the shadow stack.

To manipulate the shadow stack, the attacker must exploit a memory corruption vulner-
ability while the processor is in privileged mode. Interrupt handlers execute in privileged
mode, and thus are a potential avenue of attack; however, interrupt handlers in real-time
systems are designed to be short and deterministic and can be designed without arbitrary
memory writes. Finally, the shadow stack code itself is effectively atomic. If a context switch
occurs during shadow stack operations, RECFISH pushes all of the context to the shadow
stack, so there is no time-of-check to time-of-use vulnerability.

4.1.5 Forward-edge Instrumentation With Context Switching
The only time that the CFI checks can be tampered with is when context switching is possible.
If the scheduler interrupts the CFI check and puts CFI-critical registers into memory, our
threat model dictates that the attacker could use this as an opportunity to corrupt the saved
CFI-critical registers. When context is restored, the corrupted values will be loaded into the
registers, potentially allowing the attacker to bypass CFI. As stated previously, we combat
this issue by storing all saved context in the shadow stack.

Since the scheduler runs with interrupts disabled, the scheduler operations are atomic
from the perspective of program code. This means that there is no opportunity for an
attacker to corrupt the context before it gets pushed to the protected shadow stack. Further,
an attacker cannot change the pointer to a task’s shadow stack because RECFISH protects
the entire Task Control Block using the same privileged MPU region as the shadow stack.

4.2 Performance Impact
To measure the performance impact of RECFISH, we look at four different measurements.
First, we use an embedded system benchmark to determine the overhead associated with the
bare metal instrumentation. Second, we look at the additional latency added to FreeRTOS
context switching by adding the shadow stack. Third, we analyze the resource requirements
for RECFISH via microbenchmarking. Finally, we perform a large-scale schedulability
analysis to assess the suitability of RECFISH for real-time systems.

4.2.1 CPU Benchmarks
RECFISH is designed to work on embedded systems without a traditional operating system,
thus benchmarks designed for general-purpose machines such as the SPEC CPU2006 bench-
mark are not appropriate for this evaluation. To measure the raw overhead associated with

ECRTS 2019

2:14 Control-Flow Integrity for Real-Time Embedded Systems

CFI checks on a realistic workload, we used the CoreMark embedded system benchmark [18]
and the BEEBS benchmark suite [34]. These easily portable applications run on a variety of
embedded architectures. CoreMark performs various common embedded tasks, like matrix
manipulation, linked list manipulation, state machine operations, and cyclic redundancy
check (CRC) calculation. BEEBS combines benchmarks from MiBench [21], WCET [20],
and DSPStone [42].

On our TI RM46L852 evaluation board, we measured the CoreMark score both with
and without CFI using the default settings and 1000 iterations. Without CFI, the recorded
CoreMark score was 97.371, which is a reasonable score for that hardware running in Thumb
mode. With CFI, we recorded a score of 76.767, a decrease of about 21% compared to the
non-CFI score. Additionally, we recorded an approximately 30% increase in total execution
time for the benchmark code. In this evaluation, all default settings were used, and 1000
iterations were run of the benchmark.

In the BEEBS benchmarks, over 70% of the applications saw less than 25% overhead.
On benchmarks with few or no function calls and no indirect branches, we see no significant
difference in execution time. However, in benchmarks like recursion and fac which both
use recursive function calls, we see up six times slowdown. In practice, real-time embedded
systems avoid using recursion because it introduces nondeterminism and can result in quickly
running out of memory, so a slowdown of this magnitude is unlikely to occur in production
systems. The trio-snprintf and mergesort benchmarks both have many indirect branches,
but they only see about 0.5 times slowdown. The CFI checks are fast relative to other
computation performed by these benchmarks.

4.2.2 Additional Resource Use

RECFISH requires an additional 10 bytes of storage per indirect branch and 8 bytes per
non-leaf function prologue and epilogue. While we cannot generalize the number of non-leaf
functions and indirect branches in any given program, the CoreMark benchmark required 964
bytes of instrumentation code for a 10 KB binary – just under a 10% increase in binary size.

RAM usage depends on the system being instrumented. On bare metal systems, a single
shadow stack is required, which on our evaluation system, we used a shadow stack size of 256
bytes plus 12 bytes for the shadow stack structure – a total of 268 additional bytes of RAM
for the shadow stack. In FreeRTOS, however, we used a larger shadow stack, since context
information is stored on the stack, so we required 528 bytes per task, which encompassed a
512-byte shadow stack, 12-byte shadow stack structure, and 4-byte pointer to the shadow
stack stored in each Task Control Block.

Finally, our implementation depends on some additional resources. We need at least two
MPU regions to prevent execution from RAM and to protect the shadow stack. On our
hardware, a maximum of 12 regions could be configured, so our utilization was minimal.
Also, we require two supervisor calls out of a possible 256 available in Thumb mode.

4.3 Microbenchmarks

To better understand the overhead introduced by RECFISH, we measured each component
of the instrumentation separately. In this section, we examine the number of CPU cycles
RECFISH adds to indirect branches, function prologues, and non-leaf function epilogues.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:15

4.3.1 Microbenchmark Design

We measured CPU cycles using the ARM Performance Monitoring Unit (PMU), configuring
the PMU to count three events: CPU cycles, predictable branches, and incorrectly predicted
branches. For each component, we took these measurements for a few different scenarios:
no instrumentation, inline instrumentation, and the trampoline-based instrumentation used
by RECFISH. We ran these microbenchmarks under different configurations of the branch
predictor. By default, ARM uses a 256-entry, 2-bit history-based branch predictor with a
hardware return stack [6]. The branch predictor can be configured to use static policies rather
than the history-based policy and the return stack can be disabled. For the schedulability
study, we also measured the context switch overhead in FreeRTOS, both with and without
the shadow stack. For this measurement, we used the default branch predictor configuration.

4.3.2 Results

Under default CPU settings, we found that unconditional indirect branches without RECFISH
instrumentation take 11 CPU cycles to execute. When adding inline checks to these branches,
we saw a varied number of cycles. In the worst-case, the forward-edge CFI check takes 41
cycles, although we only see this worst-case result in the first iteration of the experiment. In
later iterations, the branch predictor determined that the conditional branch inside the CFI
check was not likely to be taken, so the CFI check sped up to 26 cycles after 5 iterations.
For the trampoline method used in RECFISH, we saw a worst-case forward-edge check of
61 cycles, which sped up after 5 iterations to 44 cycles. By examining the execution time
under different branch predictor settings, we could account for the majority of variability in
execution time. By disabling the branch predictor’s dynamic history function and return
stack, only the first iteration of each microbenchmark was slower than the rest. We were
unable to determine the cause of this slowdown, but potential causes could include pipeline
stalls, pipeline flushes, or a conflict that prevents the CPU from dual-issuing instructions.

The other component that RECFISH affects is non-leaf function calls, since these functions
must save the return address at the start of the function and restore it at the end. RECFISH
requires that the return address be stored in the shadow stack, rather than on the unprotected
user stack. Since there are no conditional branches in the shadow stack operations, we saw a
constant increase from 19 cycles for the combined function prologue and epilogue without CFI
to 275 cycles with RECFISH. Most this overhead is associated with changing the execution
mode from User mode to Supervisor mode. Additionally, during these 275 cycles, interrupts
were disabled twice for 11 cycles during the handling of the svc instruction, which was used
once in the prologue and once in the epilogue. Since the combined function prologue and
epilogue in RECFISH requires significantly more CPU cycles than the unmodified binary, we
expect more performance degradation in binaries with many calls to short non-leaf functions.
By contrast, programs with many calls to longer functions (or leaf functions) will see less
performance degradation from shadow stack operations. Indeed, this matches our previous
observations of the macrobenchmarks.

The final microbenchmark that we measured was FreeRTOS context switch overhead,
which is critical to the schedulability study in Section 4.4. Without RECFISH, FreeRTOS
context switches take a total of 120 cycles, 57 for saving context and 63 for restoring it. With
RECFISH, we saw a moderate increase of context switch time to 159 cycles, 80 for saving
and 79 for restoring.

ECRTS 2019

2:16 Control-Flow Integrity for Real-Time Embedded Systems

Table 1 Microbenchmark results for individual components with the default branch predictor.
All units are CPU cycles.

Component CFI Type Worst Case Best Case
Indirect Branch No CFI 11 11
Indirect Branch Inline CFI 41 26
Indirect Branch RECFISH 61 44
Function Call No CFI 19 19
Function Call Inline CFI 237 237
Function Call RECFISH 275 275

4.4 Schedulability Study
Next, we incorporate the microbenchmark results into a large-scale schedulability study,
which demonstrates the effect RECFISH has on the ability to ensure that all deadlines
will be satisfied.

4.4.1 Schedulability
We begin our schedulability discussion with the periodic task model [28], which is implemented
in FreeRTOS. In this model, a task system τ is composed of a set of n tasks, denoted
τ = {T1, . . . , Tn}. Each task is mathematically modeled as a tuple, Ti = (ei, pi), and is
comprised of a (potentially infinite) sequence of jobs, which are common invocations of the
same logic. Each job of Ti executes for at most ei time units, or its worst-case execution
time (WCET). Jobs of Ti are released or made ready for execution every pi time units, and
must complete by their deadline. We assume the deadline of each job is pi time units after
it is released, i.e., when the next job of the task is released. The utilization of Ti is given
by ui = ei/pi, and the utilization of the task system U , is the sum of all tasks’ utilizations,
U =

∑
Ti∈τ ui. We assume fixed-priority scheduling, and evaluated schedulability using

standard fixed-priority time-demand analysis [27].

4.4.2 RECFISH Schedulability
RECFISH introduces sources of overhead that do not exist in an unprotected system. In
the rest of this section, we demonstrate how these overheads affect schedulability. To do
so, we must first consider how the RECFISH overheads should be incorporated into the
time-demand analysis. In our overhead analysis, we only consider overheads incurred on
normal control-flow paths. While detecting and triggering an exception on invalid control
flow incurs overhead, the code that must execute to handle such an exception is highly
application specific and we thus exclude them from the scope of this study.

RECFISH introduces several sources of overhead, which are described more completely
and quantified in Section 4.3. These overheads fall into two distinct categories: runtime
checks, which occur at indirect branches and function prologues/epilogues, and context-
switch-related overheads. These two types of overheads are accounted for analytically using
different techniques.

We can account for the time spent in CFI checks by inflating the execution time of the
task.1 We assume that each CFI check at an indirect branch (respectively, function epilogue
and prologue) imposes an overhead of ∆b (respectively, ∆f), and that each job of Ti executes

1 We note that for a mere 11 cycles, interrupts are disabled. This is handled as a priority inversion and
is incorporated into our analysis.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:17

at most Cbi indirect branches and Cfi functions. To incorporate the overhead of all of the
CFI checks, we simply inflate the execution time of each task to account for the time spent
in CFI checks, e′

i = ei + Cbi∆b + Cfi ∆f.
The second source of overhead in RECFISH is the additional context-switch overhead

associated with handling the shadow stack. We denote this overhead by ∆c. Specifically, ∆c
includes both the time to save the context of one process, as well as restore the context of
the next. We leverage existing techniques for handling context-switch overhead [8]. Instead
of charging the overhead of the context switch to the task whose context is being saved or
restored, instead, analytically, we charge the overhead to the preempting, higher-priority
task, as is commonly done for analyzing cache-related preemption delays [38]. Notably, each
job can only preempt at most one other job. Therefore, we analytically inflate each task’s
WCET to account for this overhead as, e′

i = ei + ∆c.
The other modifications to FreeRTOS required from RECFISH, such as augmenting the

TCB and the task initialization procedures do not affect schedulability. It is quite common
for a real-time system to startup and initialize the real-time tasks before entering a real-time
mode, during which all deadlines must be satisfied. The performance implications of the
remaining aspects of RECFISH fall within this initialization mode, and therefore do not affect
schedulability. As such, in our schedulability experiments, we consider that when RECFISH is
enabled, the execution time of each task is analytically treated as e′

i = ei+∆c+Cbi∆b+Cfi ∆f.
In the context of this study, these are the only overheads considered so as to focus on the
specific effects the RECFISH-specific overheads have on schedulability.

4.4.3 Experimental Design
We conducted a large-scale schedulability study to evaluate the tradeoff between security
and schedulability enabled by RECFISH. Practical real-time applications have varying
task-system parameters, and the interplay among these parameters, analysis pessimism,
and implementation overheads can have significant schedulability implications. Also, an
overhead may be observed to be minor, but if it is unpredictable, difficult to incorporate
into schedulability, or otherwise subject to analysis pessimism, it may significantly affect
schedulability. Accordingly, we consider many classes of real-time task systems in our
experimental design.

Overall, our schedulability study is conducted as follows. Using several different random
distributions, we generate over six million analytical task systems with different parameter
values. We then evaluate the schedulability of each task system both with and without
RECFISH applied.

We randomly generated sporadic task systems using a similar experimental design
as previous studies [8]. We generated task systems with a total system utilization in
U ∈ {0.05, 0.1 . . . , 1.0}. Per-task utilizations in each task system were chosen to be light,
medium, or heavy, which correspond to uniformly distributed utilizations in the range
[0.001, 0.1], [0.1, 0.4] and [0.5, 0.9], respectively. Tasks were randomly generated using
the chosen distribution until the desired system utilization was reached. The periods of
all tasks were chosen uniformly from either [3, 33] ms (short), [10, 100] ms (moderate), or
[50, 250] ms (long). Based on the micro-benchmark experiments presented previously, we
assume ∆c = 39 cycles. We also considered two different values for ∆b ∈ {33, 50} cycles,
which reflect the overhead at an indirect branch if branch correctly predicted or not. (In
provisioning a hard real-time system, one may assume branches are always mispredicted,
whereas in a soft real-time system, less analysis pessimism may be necessary.) We also
measured ∆f = 256 cycles.

ECRTS 2019

2:18 Control-Flow Integrity for Real-Time Embedded Systems

0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

NONE
RECFISH

(a) Bimodal indirect branches, few functions, short
periods, heavy utilizations.

0.0 0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

NONE
RECFISH

(b) Common indirect branches, frequent functions,
moderate periods, light utilizations.

Figure 2 Example schedulability graphs.

Based on our microbenchmark results, we considered several distributions for the frequency
of indirect branches and functions within each task. We considered that either no indirect
branches were taken (None), or the number of indirect branches were uniformly chosen
at a rate of one indirect branch among [103, 105] cycles (common), [106, 107] cycles (rare),
or bimodally between the two distributions none (90%) and common (10%). Similarly, we
considered the following distributions for the number of of functions: the total number of
functions per task is chosen uniformly among [1, 100] (few), or uniformly at a rate of one
function among [102, 103] cycles (frequent), [103, 104] cycles (moderate), or bimodally between
the two distributions moderate (90%) and few (10%).

We considered the cross product of these possible system parameters, resulting in 5,760
unique configurations. For each configuration, we generated and evaluated 1,000 task systems
for schedulability, for a total of over six million task systems.

The chosen taskset parameters were pioneered by Brandenburg [8] and have been widely
used in the community. We extended the taskset generation models to account for the
frequency of indirect branches and functions, based upon data from the benchmarks we
measured. To our knowledge, our work is the first to consider the effect of a control-flow
hijacking defense on schedulability, and therefore we could not compare against other defenses
from a schedulability perspective.

4.4.4 Schedulability Results and Observations
Based on these experiments, we generated 288 schedulability graphs, two of which, which
demonstrate the performance extremes, are depicted in Figure 2. From these figures, we
draw several observations.

Observation 1: RECFISH has a negligible impact on schedulability for some classes of
task systems. This observation is supported by inset (a) of Figure 2. In this system
configuration, there are relatively few tasks (because of the heavy utilizations) and relatively
few CFI checks on indirect branches or functions. As a result, RECFISH has a negligible
effect on schedulability, while improving security.

Observation 2: RECFISH has a significant impact on schedulability for some classes
of task systems. This observation is supported by inset (b) of Figure 2. In this system
configuration, there are many tasks given the light task utilizations, and each of those tasks
has many CFI checks on both indirect branches as well as function calls. In such a system
configuration, we would expect RECFISH to have a more significant effect on schedulability.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:19

In this case, there is roughly 30% utilization loss due to RECFISH, i.e., CFI checks and their
impact in overhead analysis cause 30% of the available system utilization to be sacrificed in
order to meet all deadlines.

Observation 3: Across all generated task systems, 85% of those that were schedulable
without RECFISH, were schedulable with RECFISH. This aggregate statistic demon-
strates the practical applicability of RECFISH. In 85% of the generated task systems,
RECFISH could be applied without compromising schedulability. Only those task systems
that stress the available computing resources are unlikely to be schedulable in the presence
of RECFISH. From these results, we believe that RECFISH can be deployed in most RTES
with only a minimal increase in system size, weight, and power.

4.4.5 Optimization Opportunities
While a real-time system is composed of many tasks, only a subset of those tasks typically
take external input, i.e. directly interact with the adversary. Any exploitation must involve
one of those tasks. Specifically, a task is unsafe if it accepts external inputs from the user,
and safe otherwise. We denote safe (resp. unsafe) tasks with the superscript TS (resp. TU).
We can reduce the overhead of RECFISH and improve schedulability on many task systems
by controlling the execution order of safe and unsafe tasks.

Consider the following example with two tasks TSi and TUj . Let us assume that TUj takes
external input, contains a memory error, and the attacker can leverage that error to corrupt
memory. Let us also assume that TSi does not contain any errors nor does it take external
input. Without RECFISH, if TUj has a higher priority than TSi then TSi can be pre-empted
by TUj . Thus, the attacker can leverage the bug in TUj to manipulate memory used by
TSi . Therefore, RECFISH checks are needed in both TSi and TUj to provide control-flow
integrity in this situation. If we prevent the preemption of TSi by TUj , then we need not
conduct the CFI checks on TSi , only TUj . This can be realized either by marking such tasks
as non-preemptive, or in fixed-priority scheduling which is supported in FreeRTOS and our
RECFISH implementation, by increasing the priority of TSi over that of all unsafe tasks.
Therefore, by carefully choosing priorities, we can eliminate the need for some CFI checks
and reduce the security overhead, while still providing the same security guarantees.

This raises the question, how should tasks be prioritized to minimize the number of
RECFISH-related CFI checks? We consider a technique we call task pushing in which the
priority of otherwise safe tasks are increased above the unsafe tasks. While task pushing
initially seems to have a negative impact on schedulability, we find that the resulting reduction
in RECFISH overhead actually increases the number of schedulable task sets.

To test task pushing, we generated additional task sets using the same configurations
as discussed earlier, and added an additional parameter for the probability of a task being
labeled safe. We considered several distinct values for this probability, 0%, 25%, 50%,
and 75%, which was constant for each generated task system. We then used a brute-force
algorithm to test all possible combinations of pushed tasks. We find that with task pushing,
the percentage of schedulable task sets with RECFISH increases from 85% to 88%, 91%,
and 95%, respectively. We also measured through simulation2, the total amount of overhead
observed during a hyperperiod, or the point at which the schedule repeats (the least-common

2 We assumed for this simulation that the execution time ei was exact.

ECRTS 2019

2:20 Control-Flow Integrity for Real-Time Embedded Systems

multiple of all periods). The average RECFISH overhead observed across all generated task
systems was 12%, 8%, and 4%, for safe-task probability of 25%, 50%, and 75%, respectively.
This is down from 16% overhead when RECFISH checks are applied to all tasks.

While these results are promising, there are still many open questions. For example, for
now we assume the developer provides the safe/unsafe label, but can automated mechanisms
(e.g., static program analysis) be leveraged to provide these labels? Can RECFISH-related
overheads be further reduced under different schedulers (e.g., non-preemptive unsafe tasks, or
other more dynamic scheduling policies)? How should information passing between safe and
unsafe tasks be handled? Intuitively, we believe it is simpler and more efficient to secure a few
well-defined interfaces between tasks rather than allowing an attacker unfettered access to
memory. Further, our analysis assumes that state from one execution of a task does not carry
over to subsequent executions. How do we use secure memory regions, e.g., the shadow stack,
to safely and efficiently persist that state? Finally, there is potential for greater optimization
through careful design by the application developer. For instance, if the developer designs
the tasks such that external input is always handled in low priority tasks then the process of
task pushing is greatly simplified.

5 Conclusions

CFI schemes are only as secure as the CFG is precise [41, 10, 17, 15]. There are two
sources of imprecision: the difficulty of sound and complete CFG generation and the labeling
scheme extracted from the CFG. Sound and complete CFG generation is believed to be
undecidable [10, 17], so to preserve functionality of programs, CFI schemes often use a more
permissive CFG, potentially allowing some unintended indirect branch targets. On top of
the inherent imprecision, the labeling scheme itself often introduces more imprecision for
performance reasons. For example, coarse-grained approaches assign a single label to all legal
targets. This imprecision can allow an attacker to achieve Turing-complete computation in
the presence of certain instruction sequences [10, 17]. RECFISH mitigates these attacks by
using fine-grained labeling and a shadow stack to increase precision.

One potential limitation of RECFISH is application-specific uses of privileged mode
execution in tasks, i.e., privileged code that is written by the developer and is not part of
RECFISH. In practice, this issue is unlikely to become a barrier to adoption. First, it is
uncommon for tasks themselves to have privileged sections (outside of handling hardware
interrupts). In the evaluated benchmarks, privileged code was limited to the RECFISH and
FreeRTOS code. Second, privileged code in tasks may not be an issue as long as that code
omits MPU-sensitive instructions. Specifically, the MPU in Cortex-R can only be modified
in privileged mode using the mcr and mrc instructions. As long as those two instructions
only appear in RECFISH code – this is statically verifiable – then RECFISH can rely on its
own CFI checks to prevent MPU instructions from being executed outside of normal control
flow and, consequently, prevent unwanted modification of the MPU. The proposed ARMv8-R
architecture provides another mechanism to address this issue with its bare metal hypervisor
mode, but these processors are not widely available yet, and existing systems with ARMv7-R
processors will likely not be upgraded.

In summary, RECFISH can be applied to both baremetal and FreeRTOS applications.
The defense introduces a minimal amount of program storage and RAM overhead, requiring
only 10 bytes of program storage per indirect branch and just 8 bytes per shadow stack
operation, and a constant, configurable block of memory for the shadow stacks. Further, in
the 85% of task systems where RECFISH can be applied without compromising schedulability,
there is no impact on real-time performance.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:21

While this work makes a significant step towards hardening real-time embedded systems,
there are many directions for future work. Beyond optimization, future work would benefit
from the use of formal methods to analyze the correctness of the CFI instrumentation.
Finally, new features in the upcoming ARMv8-R architecture could be leveraged to provide
stronger performance and security guarantees for RECFISH as well as other embedded
system hardening techniques.

References
1 The Capstone Disassembly Engine. http://www.capstone-engine.org/.
2 The Keystone Assembler. http://www.keystone-engine.org/.
3 pyelftools. https://github.com/eliben/pyelftools.
4 FreeRTOS FAQ relating to memory management and usage. http://www.freertos.org/

FAQMem.html, 2017. Accessed: 2017-03-28.
5 Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity principles,

implementations, and applications. ACM Transactions on Information and System Security
(TISSEC), 13(1):4, 2009.

6 ARM Limited. Cortex-R4 and Cortex-R4F Technical Reference Manual, 2011.
7 Michael Backes and Stefan Nürnberger. Oxymoron: Making Fine-Grained Memory Ran-

domization Practical by Allowing Code Sharing. In 23rd USENIX Security Symposium,
2014.

8 B. Brandenburg. Scheduling and Locking Multiprocessor Real-Time Operating Systems. PhD
thesis, The University of North Carolina at Chapel Hill, 2011.

9 Nathan Burow, Scott A Carr, Stefan Brunthaler, Mathias Payer, Joseph Nash, Per Larsen, and
Michael Franz. Control-flow integrity: Precision, security, and performance. ACM Computing
Surveys, 50(1), 2017.

10 Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R Gross.
Control-flow bending: On the effectiveness of control-flow integrity. In 24th USENIX Security
Symposium, 2015.

11 Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A Compile-Time Solution to Buffer Overflow Attacks.
In 21st International Conference on Distributed Computing Systems(ICDCS). IEEE, 2001.

12 Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast Srivastava, Jinkyu
Koo, Saurabh Bagchi, and Mathias Payer. Protecting Bare-metal Embedded Systems With
Privilege Overlays. In IEEE Symposium on Security and Privacy, 2017.

13 Marc L. Corliss, E. Christopher Lewis, and Amir Roth. Using DISE to Protect Return
Addresses from Attack. SIGARCH Computer Architecture News, 2005.

14 Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Battie, Aaron
Grier, Perry Wagle, and Qian Zhang. StackGuard: Automatic Adaptative Detection and
Prevention of Buffer-Overflow Attacks. In 7th USENIX Security Symposium, 1998.

15 Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity protection. In 23rd
USENIX Security Symposium, 2014.

16 Richard Earnshaw. Procedure call standard for the ARM architecture. ARM Limited, October,
2003.

17 Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard, Hamed
Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On the weaknesses of fine-grained
control flow integrity. In 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015.

18 Shay Gal-On and Markus Levy. Exploring CoreMark—A benchmark maximizing simplicity
and efficacy. The Embedded Microprocessor Benchmark Consortium, 2012.

19 Jacob Grycel and Robert J. Walls. A Random Number Generator Built from Repurposed
Hardware in Embedded Systems. CoRR, abs/1903.09365, 2019. arXiv:1903.09365.

ECRTS 2019

http://www.capstone-engine.org/
http://www.keystone-engine.org/
https://github.com/eliben/pyelftools
http://www.freertos.org/FAQMem.html
http://www.freertos.org/FAQMem.html
http://arxiv.org/abs/1903.09365

2:22 Control-Flow Integrity for Real-Time Embedded Systems

20 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
benchmarks: Past, present and future. In OASIcs-OpenAccess Series in Informatics, volume 15.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

21 Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and
Richard B Brown. MiBench: A free, commercially representative embedded benchmark suite.
In IEEE International Workshop on Workload Characterization. IEEE, 2001.

22 Monowar Hasan, Sibin Mohan, Rakesh Bobba, and Rodolfo Pellizzoni. Exploring opportunistic
execution for integrating security in legacy hard real-time systems. In 37th IEEE Real-Time
Systems Symposium, RTSS, 2016.

23 J. Hiser, A. Nguyen, M. Co, M. Hall, and J.W. Davidson. ILR: Where’d my gadgets go. In
IEEE Symposium on Security and Privacy, 2012.

24 T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal, S. Brunthaler,
C. Wimmer, and M. Franz. Compiler-Generated Software Diversity. In Moving Target Defense,
Advances in Information Security. Springer, 2011.

25 Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn
Song. Code-Pointer Integrity. In 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 2014.

26 Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. SoK: Automated software
diversity. In 35th IEEE Symposium on Security and Privacy, S&P, 2014.

27 J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm, Exact character-
ization and average case behavior. In 1989 IEEE Real-Time Systems Symposium (RTSS’89),
December 1989.

28 C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM, 20(1):46–61, January 1973.

29 Sibin Mohan, Man-ki Yoon, Rodolfo Pellizzoni, and Rakesh Bobba. Real-time systems security
through scheduler constraints. In 26th Euromicro Conference on Real-Time Systems, ECRTS,
2014.

30 Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. SoftBound:
Highly compatible and complete spatial memory safety for C. In ACM Sigplan Notices, PLDI,
2009.

31 Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. CETS: compiler
enforced temporal safety for C. In ACM Sigplan Notices, 2010.

32 Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In ACM Sigplan Notices, volume 42 (6), 2007.

33 Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14–16, 1996.
34 James Pallister, Simon Hollis, and Jeremy Bennett. BEEBS: Open benchmarks for energy

measurements on embedded platforms. arXiv preprint, 2013. arXiv:1308.5174.
35 Rodolfo Pellizzoni, Neda Paryab, Man-Ki Yoon, Stanley Bak, Sibin Mohan, and Rakesh Bobba.

A generalized model for preventing information leakage in hard real-time systems. In 21st
Real-Time and Embedded Technology and Applications Symposium, RTAS, 2015.

36 Danbing Seto, John P Lehoczky, Lui Sha, and Kang G Shin. On task schedulability in real-time
control systems. In 17th IEEE Real-Time Systems Symposium, 1996.

37 Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86). In 14th ACM conference on Computer and communications security. ACM,
2007.

38 Bryan Ward, Abhilash Thekkilakattil, and James Anderson. Optimizing Preemption-Overhead
Accounting in Multiprocessor Real-Time Systems. In 22nd International Conference on
Real-Time and Network Systems, RTNS, 2014.

39 Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Liu Sha. TaskShuffler: A schedule
randomization protocol for obfuscation against timing inference attacks in real-time systems.
In 22nd Real-Time embedded Technology and Applications Symposium, RTAS, 2016.

40 Tom Zanussi. microYocto and the internet of tiny. Embedded Linux Conference, 2015.

http://arxiv.org/abs/1308.5174

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:23

41 Mingwei Zhang and R Sekar. Control Flow Integrity for COTS Binaries. In USENIX Security
Symposium, volume 13, 2013.

42 Vojin Zivojnovic, Harald Schraut, M Willems, and R Schoenen. DSPs, GPPs, and multimedia
applications-an evaluation using dspstone. In International Conference on Signal Processing
Applications and Technology, 1995.

A ARM Indirect Jumps

The following table lists all indirect branch operations in ARM. All such branches much be
instrumented to enforce forward-edge control flow integrity.

Table 2 Indirect jump operations in ARM.

Mnemonic Instruction Description
bx Rm Branch and exchange Branch to target address Rm, and

exchange instruction set based on
least significant bit (LSB) of Rm.
If LSB is set, switch to Thumb
mode, else switch to ARM mode.

blx Rm Branch, link, and exchange Branch to target address Rm, set
link register, and exchange instruc-
tion set based on LSB of Rm.

ldm{mode } Rm{!}, reglist Load multiple Load into registers in reglist, start-
ing at address in Rm. If Rm! is
specified, write back the final ad-
dress into Rm. Mode specifies the
addressing order: ia (increment
after), ib (increment before), da
(decrement after), db (decrement
before). The pseudo instruction
ldmfd is for loading from a full-
descending stack. It is the same
as ldmia.

pop reglist Pop from stack Same as ldmfd sp!, reglist
rfe Rn{!} Return from exception Pop PC and CPSR off of the stack

pointer specified by Rn to return
from an exception state. If Rn! is
specified, write back new stack top
to Rn.

B Selected Source Code

The following source code details the instrumentation used by RECFISH to handle shadow
stack operations. Note, this code will jump into the higher privilege mode needed to access
shadow stack memory.

ECRTS 2019

2:24 Control-Flow Integrity for Real-Time Embedded Systems

Listing 7 Supervisor call handler.
do_syscall :

cpsie aif # Re - enable interrupts
stmfd sp!, {r9 ,r10 ,r12 ,lr} # Store registers
mrs r9 , spsr # Working register
tst r9 , 0x20 # Test if thumb state
ldrneh r9 , [lr , -2] # Yes: load halfword
bicne r9 , r9 , 0xFF00 # and get func num
ldreq r9 , [lr , -4] # No: load word and
biceq r9 , r9 , 0 xFF000000 # and get func num
ldr r10 , table # Load address of table
ldr pc , [r10 , r9 , lsl 2] # Jump to routine

table:
.word jump_table

jump_table :
.word ss_push
.word ss_pop

Listing 8 Shadow stack operations.
Input: User lr containing value to push to shadow stack
Returns : void
.type ss_push , ss_push :

ldr r9 , current_ss_const # Load stack pointer
ldr r10 , [r9] # Load stack top
stmfd r10!, {lr}^ # Push lr to stack
str r10 , [r9] # Store new top
exit_syscall # Syscall exit macro

Input: void
Returns : value at top of shadow stack -> lr
.type ss_pop , ss_pop :

ldr r9 , current_ss_const # Load stack pointer
ldr r10 , [r9] # Load stack top
ldmfd r10!, {lr}^ # Pop into user mode lr
str r10 , [r9] # Store new stack top
exit_syscall # Syscall exit macro

Constant pointer reference to current_ss
current_ss_const .word current_ss

	Introduction
	Background and Related Work
	Control Flow Integrity
	Real-Time Embedded Systems
	Real-time Security
	ARM Architecture

	Design of RECFISH
	Threat Model
	RECFISH for Bare-Metal Execution
	Basic Memory Protections
	Forward-Edge Checks
	Shadow Stack
	Implementation

	RECFISH for FreeRTOS
	Task Creation Modifications
	Scheduler Modifications

	Evaluation
	Security Evaluation
	Basic Memory Protections
	Label Assignment
	Forward-edge Instrumentation Without Context Switching
	Backward-edge Instrumentation With Shadow Stack
	Forward-edge Instrumentation With Context Switching

	Performance Impact
	CPU Benchmarks
	Additional Resource Use

	Microbenchmarks
	Microbenchmark Design
	Results

	Schedulability Study
	Schedulability
	RECFISH Schedulability
	Experimental Design
	Schedulability Results and Observations
	Optimization Opportunities

	Conclusions
	ARM Indirect Jumps
	Selected Source Code

