
API Comparison of CPU-To-GPU Command
Offloading Latency on Embedded Platforms
(Artifact)
Roberto Cavicchioli
Università di Modena e Reggio Emilia, Italy
roberto.cavicchioli@unimore.it

Nicola Capodieci
Università di Modena e Reggio Emilia, Italy
nicola.capodieci@unimore.it

Marco Solieri
Università di Modena e Reggio Emilia, Italy
ms@xt3.it

Marko Bertogna
Università di Modena e Reggio Emilia, Italy
marko.bertogna@unimore.it

Abstract
High-performance heterogeneous embedded plat-
forms allow offloading of parallel workloads to an
integrated accelerator, such as General Purpose-
Graphic Processing Units (GP-GPUs). A time-
predictable characterization of task submission is
a must in real-time applications. We provide a
profiler of the time spent by the CPU for submit-
ting stereotypical GP-GPU workload shaped as a

Deep Neural Network of parameterized complex-
ity. The submission is performed using the latest
API available: NVIDIA CUDA, including its vari-
ous techniques, and Vulkan. Complete automation
for the test on Jetson Xavier is also provided by
scripts that install software dependencies, run the
experiments, and collect results in a PDF report.

2012 ACM Subject Classification Computer systems organization → System on a chip; Computer
systems organization → Real-time system architecture
Keywords and phrases GPU, Applications, Heterogeneus systems
Digital Object Identifier 10.4230/DARTS.5.1.4

Related Article Roberto Cavicchioli, Nicola Capodieci, Marco Solieri, and Marko Bertogna, “Novel
Methodologies for Predictable CPU-To-GPU Command Offloading”, in 31st Euromicro Conference on
Real-Time Systems (ECRTS 2019), LIPIcs, Vol. 133, pp. 22:1–22:22, 2019.
https://dx.doi.org/10.4230/LIPIcs.ECRTS.2019.22
Related Conference 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), July 9–12, 2019,
Stuttgart, Germany

1 Scope

This artifact allows a characterization of the CPU-to-GPU submission latencies for real-time
systems executing on heterogeneous embedded platforms. The experiments enable comparing the
recently released CUDA submission models, and the novel open standard Vulkan API, profiling
GPU command submission times and total execution times. Inferencing on a neural network of
parameterized topology has been selected as a typical workload.

Obtainable results firstly show that CPU offloading latencies can act as a bottleneck for
performance, negatively impacting predictability and jitter, and making the schedulability analysis
significantly more complex, due to the large number of CPU-GPU interactions.

© Roberto Cavicchioli, Nicola Capodieci, Marco Solieri, and Marko Bertogna;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 5, Issue 1, Artifact No. 4, pp. 4:1–4:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:roberto.cavicchioli@unimore.it
https://orcid.org/0000-0002-5845-4991
mailto:nicola.capodieci@unimore.it
https://orcid.org/0000-0003-4531-2633
mailto:ms@xt3.it
https://orcid.org/0000-0003-2115-4853
mailto:marko.bertogna@unimore.it
https://doi.org/10.4230/DARTS.5.1.4
https://dx.doi.org/10.4230/LIPIcs.ECRTS.2019.22
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


4:2 API Comparison of CPU-To-GPU Command Offloading Latency on Embedded Platforms

Secondly, considering CUDA approaches, the recently introduced submission models appear to
slightly improve performance (both on submission and execution times) compared to the commonly
utilized baseline approach. However, considering a deeper neural network and buffer data size,
the performance penalties during the actual kernel computations reduce or invalidate the benefits
of a reduced CPU activity gained for submission operations, especially for the CDP approach.

Finally, results show that the Vulkan API is able to minimize and better distribute the CPU
overhead in all the tested configurations. This led to significant improvements, i.e. up to 11×
faster submissions and from 2× to 6× faster GPU operations, with almost negligible jitter.

Further discussions are reported in the companion paper.

2 Content

The artifact package includes:
run_artifact.sh: Provides the main test automation.
1. Setup the board with highest supported frequencies and voltage for CPU and GPU, disabling

dynamic scaling.
2. Enable the scheduling parameter for launching a process with real time priority FIFO99.
3. Install the Vulkan SDK.
4. Run the test process, pinned on a single core.
5. Aggregate and pre-process the results in CSV form.
6. Install the minimum LATEX environment to chart results.
7. Compile and open the PDF report with charts.
Steps 1-4 all are mandatory to reproduce results. If you do not want some of these steps
executed (e.g., to follow a different installation method for some of the requirements, or to
exclude plotting), corresponding lines can just be commented out from the script.
install_vulkan.sh: Downloads the Vulkan SDK from https://github.com/KhronosGroup/
Vulkan-LoaderAndValidationLayers.git, installs the related software dependencies from
L4T (Ubuntu Xenial) distribution, and then build and install Vulkan.
tests.sh: Launches four kinds of experiments, one for each GPU submission kinds: baseline,
CUDA CDP, CUDA graphs, Vulkan. In each case, a deep-neural-network-like task graphs like
the following is submitted:

Input/output size matrices are (k ∗ block) × (k ∗ block), with k ∈ [1, 2, 4, 8] and block = 16.
Kernel launches length is given by 3 × l with l ∈ [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000].
Each configuration is executed 500 times, measuring two response times: submission completion
time, and total execution time. Further details are reported in the companion paper.
mainfile.cu, kernels.cu, vkcomp/stdafx.cpp: CUDA C implementation of the test.
vkcomp/: Vulkan implementation of the test.
table_jitter.py: data aggregation script.
results.tex, lipics-v2019.cls: Results reporting in PDF with LATEX.

https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers.git
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers.git


R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 4:3

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://git.hipert.unimore.it/rcavicchioli/cpu_gpu_submission.

4 Tested platforms

The artifact is known to work on NVIDIA Jetson AGX Xavier, on Jetpack 4.1.1 Developer Preview,
including Linux4Tegra r31.

5 License

The artifact is available under the Simple Non Code License (SNCL) Version 2.1.0, whose verbatim
text is included.

6 MD5 sum of the artifact

3978b2398eab0687e51009e681c0ada9

7 Size of the artifact

37961 bytes

DARTS

https://git.hipert.unimore.it/rcavicchioli/cpu_gpu_submission

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

