
Exploration of High-Dimensional Grids by Finite
Automata
Stefan Dobrev
Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovakia
http://www.ifi.savba.sk/~stefan/
stefan@ifi.savba.sk

Lata Narayanan
Department of CSSE, Concordia University, Montreal, Canada
https://users.encs.concordia.ca/~lata/
lata@cs.concordia.ca

Jaroslav Opatrny
Department of CSSE, Concordia University, Montreal, Canada
https://users.encs.concordia.ca/~opatrny/
opatrny@cs.concordia.ca

Denis Pankratov
Department of CSSE, Concordia University, Montreal, Canada
https://users.encs.concordia.ca/~denisp/
denisp@cs.concordia.ca

Abstract
We consider the problem of finding a treasure at an unknown point of an n-dimensional infinite grid,
n ≥ 3, by initially collocated finite automaton agents (scouts/robots). Recently, the problem has
been well characterized for 2 dimensions for deterministic as well as randomized agents, both in
synchronous and semi-synchronous models [12, 21]. It has been conjectured that n + 1 randomized
agents are necessary to solve this problem in the n-dimensional grid [17]. In this paper we disprove
the conjecture in a strong sense: we show that three randomized synchronous agents suffice to
explore an n-dimensional grid for any n. Our algorithm is optimal in terms of the number of the
agents. Our key insight is that a constant number of finite automaton agents can, by their positions
and movements, implement a stack, which can store the path being explored. We also show how
to implement our algorithm using: four randomized semi-synchronous agents; four deterministic
synchronous agents; or five deterministic semi-synchronous agents.

We give a different algorithm that uses 4 deterministic semi-synchronous agents for the 3-
dimensional grid. This is provably optimal, and surprisingly, matches the result for 2 dimensions.
For n ≥ 4, the time complexity of the solutions mentioned above is exponential in distance D of
the treasure from the starting point of the agents. We show that in the deterministic case, one
additional agent brings the time down to a polynomial. Finally, we focus on algorithms that never
venture much beyond the distance D. We describe an algorithm that uses O(

√
n) semi-synchronous

deterministic agents that never go beyond 2D, as well as show that any algorithm using 3 synchronous
deterministic agents in 3 dimensions, if it exists, must travel beyond Ω(D3/2) from the origin.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Multi-agent systems, finite state machines, high-dimensional grids, robot
exploration, randomized agents, semi-synchronous and synchronous agents

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.139

Category Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and
Information Management

Related Version A full version of the paper is available at https://arXiv.org/abs/1902.03693.

Funding Research supported by NSERC, Canada.

EA
T

C
S

© Stefan Dobrev, Lata Narayanan, Jaroslav Opatrny, and Denis Pankratov;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 139; pp. 139:1–139:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ifi.savba.sk/~stefan/
mailto:stefan@ifi.savba.sk
https://users.encs.concordia.ca/~lata/
mailto:lata@cs.concordia.ca
https://users.encs.concordia.ca/~opatrny/
mailto:opatrny@cs.concordia.ca
https://users.encs.concordia.ca/~denisp/
mailto:denisp@cs.concordia.ca
https://doi.org/10.4230/LIPIcs.ICALP.2019.139
https://arXiv.org/abs/1902.03693
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

139:2 Exploration of High-Dimensional Grids by Finite Automata

1 Introduction

Motivated by the self-organizing behaviour of ants and other social insects, swarm robotics
leverages the collective capability of a collection of extremely simple and inexpensive robots.
Such robots have very limited computation and communication capabilities, and yet can
collectively perform seemingly complex tasks such as: forage for food [14]; form patterns [26];
pull heavy objects [23]; and play Für Elise on the piano [15].

A series of recent papers [24, 22, 21, 12, 17] studies the conditions required for such
primitive robots (also called agents or scouts) to search for a treasure placed at an unknown
location in an infinite two-dimensional grid. In particular, they consider agents whose
behaviour is controlled by a finite automaton (FA), who are equipped with a global compass,
and can only communicate with other agents that are at the exact same grid location as
themselves. Furthermore, this communication is limited to see the current state of other
co-located agents. The primary question of interest is: how many such agents are needed to
search for a treasure located at an unknown location in an infinite n-dimensional grid for
n ≥ 2? As shown in [12, 21] for n = 2, the answer depends on the computational power of the
agents: whether or not they have access to random bits, the amount of memory they have,
and whether or not they are synchronized. Note that for randomized algorithms, we require
a finite mean hitting time for every node in the grid. The set of agents is fully synchronous
if they operate by the same global clock; they are semi-synchronous1 if in every time slot, a
subset of adversarially scheduled agents is active. Full details of the agent models are given
in Section 2.

The case of the 2-dimensional grid has been completely characterized. It has been shown
that if the agents are deterministic and semi-synchronous, 4 agents are necessary [12] and
sufficient [21]. If the agents are fully synchronous and deterministic, then 3 agents are
necessary and sufficient [21]. In [17], the authors proved that 3 agents are necessary to
search the 2-dimensional grid, even if they are fully synchronized and are randomized. They
conjectured that in an n-dimensional grid, n+ 1 agents would be necessary.

I Conjecture 1 ([17]). For n ≥ 3, any search strategy on the n-dimensional infinite grid
requires at least n+ 1 agents.

The main result of this paper is to disprove the above conjecture; we show that three
randomized synchronous agents, or 5 deterministic semi-synchronous agents can explore
any n-dimensional grid. These algorithms are completely different from previous algorithms
for grid exploration, and are based on the key insight that a constant number of finite
automata agents can, by their positions and movements, implement a stack that stores the
path being explored.

1.1 Our results
Our main result is an algorithm for 3 randomized synchronous agents to explore an n-
dimensional grid for any n ≥ 3. This result is optimal, since 3 agents are necessary to explore
even the 2-dimensional grid. Next we show how to “derandomize” the algorithm with the
addition of one agent. If the agents are semi-synchronous, the algorithm can be implemented

1 In some related literature [22, 17, 21] the same model was referred to as asynchronous. We follow the
terminology of semi-synchronous of [12] and the vast literature on autonomous mobile robots to avoid
confusion with a fully asynchronous model.

S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov 139:3

with the addition of one more agent, in both the randomized and deterministic cases. We also
show that in the 3-dimensional grid, 4 deterministic semi-synchronous agents are sufficient
for grid exploration.

The algorithms mentioned above have an exploration cost/time that is exponential in the
volume of the smallest ball containing the treasure. In Section 5, we give an algorithm with
exploration cost linear in the volume of the ball, which is similar to the algorithm for the
2-dimensional grid given in [21], but with an important modification that enables exploration
of the 3-dimensional grid without increasing the number of agents. Our algorithm is optimal
in the explored space and also in the number of agents, since 4 agents are necessary to explore
even the 2-dimensional grid. In Section 4, we give a deterministic synchronous algorithm
for exploring the n-dimensional grid that uses 5 agents and takes time polynomial in D,
the distance from the origin to the treasure. A semi-synchronous implementation of this
algorithm uses 6 agents. Table 1 shows our results.

Table 1 Exploration of an n dimensional infinite grid. Numbers marked with ∗ indicate that
the number of agents used or the exploration cost is optimal. We use c in the exploration cost to
indicate a constant.

Model Number of agents Section Exploration cost

Randomized Synchronous 3∗ Section 3.2 cD

Randomized Semi-synchronous 4 Section 3.2 cD

Deterministic Synchronous 4
5

Section 3.3
Section 4

O(2D+2n)
DO(n)

Deterministic Semi-synchronous
4∗ (n = 3)
5 (n > 3)
6 (n > 3)

Section 5
Section 3.3
Section 4

O(D3) ∗
O(23D+4n)
DO(n)

In Section 6 we describe the following additional results. We give a lower bound of
Ω(D3/2) on the distance from the origin that must be travelled by some agent in any 3-agent
deterministic synchronous algorithm, and give an algorithm using O(

√
n) deterministic

semi-synchronous agents in which no agent travels distance more than 2D. Lastly, we extend
our algorithms to agents without global compass. We show that one additional agent is
sufficient in the semi-synchronous model, while two additional agents are sufficient in the
synchronous model.

1.2 Related work
There is a lot of related literature on multi-agent systems and the exploration problem: from
the early work on the cow-path problem to the more recent work on exploration of graphs,
labyrinths, and grids by finite state agents [3, 6, 1, 2, 4, 5, 11, 16, 29, 32, 31, 34, 10, 19, 28,
8, 7, 13, 27, 9]. In this section we briefly mention the work that is most directly relevant
to this paper.

The authors of [24] introduced the problem of k randomized mobile agents, starting
from the same initial position, and searching for a treasure at an unknown location on the
two-dimensional infinite grid. In their model, the agents are Turing machines, but cannot
communicate at all. They show that if the agents have a constant approximation of k, the
treasure can be found optimally in time O(D + D2/k), where D is the distance between
the initial location and the treasure. The authors of [22] consider semi-synchronous and
randomized FA agents and show that the same time complexity can be achieved. The
relationship between the number of random bits available and the search time was studied
in [33].

ICALP 2019

139:4 Exploration of High-Dimensional Grids by Finite Automata

Emek et al. [21] posed the question of how many agents are required to find the treasure.
They studied deterministic as well as randomized agents, synchronous as well as semi-
synchronous agents, and FA agents, as well as agents that are controlled by a push-down
automaton (PDA). They show that the problem can be solved by any of the following: 4
deterministic semi-synchronous FA agents; 3 deterministic synchronous agents; 3 randomized
semi-synchronous FA agents; 1 deterministic FA together with 1 deterministic PDA agent; 1
randomized PDA agent. On the negative side they show that the problem cannot be solved
by 2 deterministic (synchronous) FA agents; a single randomized FA agent; a deterministic
PDA agent. Cohen et al. [17] prove that at least 2 FA agents are necessary to explore the
one-dimensional grid and at least 3 FA agents are needed to explore the two-dimensional grid,
thus proving the optimality of the FA-agent deterministic synchronous and randomized semi-
synchronous algorithms in [21]. Recently it was shown that 3 deterministic semi-synchronous
FA agents cannot perform exploration of the 2-dimensional grid [12], thus proving the
optimality of the 4 FA-agent deterministic synchronous algorithm in [21].

A large body of work is devoted to the capabilities of autonomous mobile robots with very
limited computational and communication abilities; see [25] for a comprehensive introduction.
While we use some of that terminology in this paper, their robots are usually assumed to
be identical, anonymous, and communication is limited to being able to “see” each other’s
positions, regardless of how far they are. In contrast, in our model, the robots follow different
algorithms (this can be done by having different initial states of the same FSM), and only
see other robots if they are at the same location, and they can exchange a message with the
collocated robots. Equivalently, they can be assumed to see the current states of other robots
at the same location. This is similar to the “robots with lights” model in the autonomous
mobile robot literature [18].

2 Model and Notation

We use the same models (with the exception of Theorem 10 on agents without a global
compass) as in [21, 12]. For completeness, we recall key definitions and introduce some
notation in this section.

Our search domain is Zn with the Manhattan metric, i.e., the distance between two points
p, p′ ∈ Zn is defined as ||p−p′|| =

∑n
i=1 |pi−p′i|. We refer to Zn as the n-dimensional integer

grid and its elements as grid points, points, or cells. A grid point p = (p1, p2, . . . pi, . . . , pn) is
adjacent to every grid point (p1, p2, . . . p

′
i, . . . , pn), where |pi − p′i| = 1 for some i, 1 ≤ i ≤ n.

We assume that any two grid points cannot be distinguished from each other by an agent,
and that includes the origin from which the search starts.

The search for the treasure in the grid is done using a fixed number of agents, each
modelled by a finite automaton. These finite automata can be the same, except they typically
have a different initial state. Two agents can exchange information with each other only
when they occupy the same grid location at the same time. We assume that all agents have
the same global n-dimensional compass. Initially, all agents are located in the same grid
point, assumed without loss of generality to be the origin of the grid. The treasure is located
at distance D from from the origin, where D is unknown to the agents.

Time is divided into discrete units. In each time unit an active agent performs a single
look-compute-move cycle. In the look part of the cycle the agent sees the state of other
agents located in its own grid point. In the compute part of the cycle the agent determines,

S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov 139:5

using its own state and those it sees, to which adjacent node to move to, if at all. The agent
also determines its new state. Such a move is then executed in the move part of the cycle.
When we consider randomized algorithms, we assume that an agent has access to an infinite
one-way tape with i.i.d. random bits. We say that the system is synchronous if at each
time unit all agents are active. We say that the system is semi-synchronous if at each time
unit only a subset of agents, chosen by an adversarial scheduler, is active. The adversarial
scheduler must schedule each agent infinitely often.

In addition to the question of whether Zn can be fully explored by k agents, we are
also interested in the efficiency of such exploration procedures. We refer to this measure of
interest as the exploration cost. Intuitively, we measure how long it takes for k agents to
visit all Θ(Dn) points in a sphere of radius D. In the synchronous model, this measure is
simply the number of time units taken by the agents to complete the exploration. In the
semi-synchronous case, because of adversarial scheduling, the exploration cost is defined as
the total distance travelled by all robots to visit all points in a sphere of radius D. Since the
number of robots is constant, we could as well define the exploration cost as the maximum
path length travelled. Now that we have discussed this subtlety, we will abuse the terminology
and use “exploration cost” and “time” interchangeably.

3 Exploration of n-dimensional Grids

A straightforward generalization of the algorithms for the exploration of 2D grids in [21] to n
dimensions results in algorithms that use Ω(n) agents. Consider, for example, such a simple
generalization of a randomized 2D algorithm. The basic idea of the n+ 1-agent randomized
algorithm for n dimensions is to make an n-segment walk, starting from the origin, and
walking the i-th segment along dimension i. The lengths of the segments are chosen randomly,
and one agent per segment is used to mark its endpoint. This allows the agent to find the
way back to the origin and start another random trial. In essence, this algorithm uses 2
agents per dimension to store in unary the distance travelled in this dimension, and by an
appropriate arrangement we can reuse one of the agents in the successive dimension to bring
the number of additional agents per dimension to 1.

The main idea of our approach is a realization that it is not necessary to use n + 1
agents to store n numbers of segment lengths. Observe that segment lengths are stored and
retrieved in this randomized algorithm in the first-in last-out order. Thus this algorithm can
be realized if we can store the agent’s movements in a stack. It turns out that we can use
a constant number of agents, independent of the grid’s dimension, to implement a stack in
which the active agent, that does the exploration, stores its walk and subsequently uses to
return to the origin. The active agent “carries” the stack along its walk, i.e., it always makes
the agents representing the stack to shift by one position in the direction it moves before
making that move itself in its walk.

3.1 The Stack Implementation
The format of data stored in the logical stack is the string α ∈ (0∗1)n, where 0 represents
continue walking in the current direction, 1 represents switch to the next dimension.
The physical implementation of the stack stores this data by interpreting αr (that is α
reversed) as a binary number S and storing it in unary as a distance between two agents
located in a row in the first dimension.

ICALP 2019

139:6 Exploration of High-Dimensional Grids by Finite Automata

We employ the following agents:
a: the active agent that is doing the exploration of the grid; in the semi-synchronous
model this is the only agent moving around and manipulating the other agents,
b: the base of the stack, from which measurements are taken, and representing the current
logical location of the exploration,
c: the counter agent; this is an auxiliary agent for implementing the stack operations in
the semi-synchronous model,
d: the distance agent; its distance from the base b stores the content of the stack in unary,
e: the extra agent used in the deterministic algorithms to store an extra copy of the
current stack value.

The basic stack operations we need to implement are isEmpty(), push(v) where v ∈ {0, 1} and
pop(). Operation isEmpty() simply returns whether b and d are collocated. Implementation
of push() and pop() is model-dependent and given below.

3.1.1 Implementing Semi-Synchronous Stack

Algorithms 1 and 2 show the implementation of push and pop operations for the semi-
synchronous stack. Notice that after each push/pop operation the agents b and c in these
algorithms are not only collocated, but they actually return to the position they had
before push/pop.

Algorithm 1 Semi-synchronous stack:
push(v).
1: On entry: b and c collocated, a and d

collocated at b+ Se1.
2: On exit: b and c collocated, a and d col-

located at b+ (2S + v)e1.
3: procedure push(v)
4: a goes to b and brings c to d
5: while b and d are not collocated do
6: a goes to c, pushes it one step away

from b and returns to d
7: a pushes d one step closer to b
8: end while
9: d becomes c

10: a goes to c and tells it to become d
11: if v=1 then
12: a pushes d one step away from b

13: end if
14: end procedure

Algorithm 2 Semi-synchronous stack:
pop().
1: On entry: b and c collocated, a and d

collocated at b+ Se1.
2: On exit: b and c collocated, a and d colloc-

ated at b+ bS/2ce1, returns S mod 2 = 1.
3: procedure pop
4: while b and c are at distance more

than 1 do
5: a pushes d one step closer to b
6: a goes to c and pushes it one step

away from b

7: end while
8: v = d is one step from c

9: c and d switch roles
10: a brings c to a and returns to d
11: return v
12: end procedure

3.1.2 Implementing Synchronous Stack

In the synchronous model, we can synchronize the movements of agents to effectively multiply
or divide the stack content by 2 without the need of the counter agent c, see Figure 1.

S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov 139:7

Algorithm 3 Synchronous stack: push(v).
1: On entry: a and d collocated at b+ Se1.
2: On exit: a and d collocated at b+ (2S +
v)e1.

3: procedure push(v)
4: a goes to b and then back towards d

until they meet, walking at speed 1
5: d walks away from b at speed 1/3

(move, wait, wait, see Figure 1)
6: if v=1 then
7: a pushes d one step away from b

8: end if
9: end procedure

Algorithm 4 Synchronous stack: pop().
1: On entry: a and d collocated at b+ Se1.
2: On exit: a and d collocated at b+bS/2ce1,

returns S mod 2 = 1.
3: procedure pop
4: a goes to b and then back towards d

until they meet, walking at speed 1
5: d walks towards b at speed 1/3 (move,

wait, wait, see Figure 1)
6: if a and d meet right after d’s move

then
7: return 1
8: else
9: return 0

10: end if
11: end procedure

time time

b

a d

b

a d

b′

d
is
ta
n
ce

d
is
ta
n
ce

Figure 1 Multiply/divide operations by synchronous agents, shown in time-space diagrams. At
left: multiplication by 2 by is done by agent a walking up to b and then down, while agent d walks
down at speed 1/3. When a and d meet they have doubled the distance to b. At right: division by 2
is shown, in this case a and d walk towards b at speed 1 and 1/3 respectively; for even case a turns
at b else at one node above b, and then walks back until meeting d.

3.2 The Randomized Algorithm
As already stated in the initial part of this section, the main idea of the algorithm is to use
the stack to store the random choices during the walk, so that the agent can return to the
origin. The agent a “carries” the stack along this walk so that the operations can be applied
without the need to search for the stack.

In addition to the stack methods, it uses two new procedures. Procedure random(p)
returns 1 with probability p, while moveStack() moves the whole stack one step in the
direction specified. Note that since the whole stack is located on a single line, this can be
accomplished by agent a walking to each of the other agents and instructing them to move
one step in the specified direction.

The algorithm works in rounds, that we number 1, 2, 3, . . ., that correspond to the iteration
numbers of the outer while loop. At the beginning of each round, the active robot picks
a binary string R ∈ {−1, 1}n uniformly at random. This string indicates that the robot is

ICALP 2019

139:8 Exploration of High-Dimensional Grids by Finite Automata

going to explore dimension i in direction Ri. Then for each dimension i from 1 to n, the
active robot travels for Zi − 1 steps in direction Ri, where Zi is geometrically distributed
with parameter p (to be determined later). Note that we want Zi to represent the length of
the string pushed onto the stack while moving in dimension i. Since the string pushed on
the stack includes the “separator” between dimensions, we have the −1 term for the actual
number of moves. We call the concatenation of all such moves over all dimensions the logical
path of the active robot. If no treasure is found, the active robot uses the stack to retrace its
logical path back to the origin by travelling Zn − 1 steps in direction −Rnen first, followed
by Zn−1 − 1 steps in direction −Rn−1en−1, and so on. To compute the exploration cost of
each round, we need a simple helper lemma.

Algorithm 5 Randomized Grid Exploration.
1: while treasure not found do
2: Pick a random n-bit string R ∈ {−1, 1}n

3: for i = 1 to n do
4: while random(p) = 0 do
5: push(0)
6: moveStack(Riei)
7: end while
8: if i < n then
9: push(1)

10: end if
11: end for
12: i = n

13: while not empty() do
14: while pop()= 0 do
15: moveStack(−Riei)
16: end while
17: i = i− 1
18: end while
19: end while

I Lemma 2. Let S be the maximal stack size during one iteration of the outer while loop
of Algorithm 5. The overall cost of this iteration is O(S2) when implemented by semi-
synchronous agents, and is O(S) when implemented by synchronous agents.

Proof. In the semi-synchronous model, each push() or pop() costs O(X2), where X is the
actual stack size, as the active agent zig-zags between b and d. On the other hand, in the
synchronous model, the cost of each operation is linear in the stack size. The cost of moving
the stack is linear in both models.

As the stack size grows exponentially, and then reduces exponentially, the overall cost
is determined by the cost when the stack is the largest, i.e. O(S2) and O(S) for the
semi-synchronous and synchronous models, respectively. J

Observe that during a given round the maximum size of the stack is 2Z1+···+Zn . Thus
the exploration cost of each round is at most

2(Z1 + · · ·+ Zn)2Θ(Z1+···+Zn)

S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov 139:9

where 2(Z1 + · · ·+Zn) is the bound on the overall length of the logical path (there and back)
of the active robot, and by Lemma 2 each step of the active path costs 2Θ(Z1+···+Zn), since
we need to perform operations on the stack of size 2Z1+···+Zn . Also note that

2(Z1 + · · ·+ Zn)2Θ(Z1+···+Zn) = 2Θ(Z1+···+Zn).

Let c be the constant in the Θ notation such that the exploration cost of a round is at
most 2c(Z1+···+Zn).

For simplicity, we will assume that the active robot checks for the treasure only at the
far end-point of the logical path in each round. This assumption might lead to a more
pessimistic upper bound on the exploration cost than if we assumed that the active robot
checks for treasure at each grid point that it visits. However, our assumption simplifies the
calculations and is sufficient for our purposes.

I Theorem 3. Algorithm 5 locates the treasure in the n-dimensional grid in finite expected
time, using either 4 semi-synchronous or 3 synchronous agents.

Proof. Consider the infinite sequence of random variables (Xi)∞i=1, whereXi is the exploration
cost of round i. Note that the Xi are independent and identically distributed. Consider the
exploration cost of a particular round, e.g., X1. Then we have X1 ≤ 2c(Z1+···+Zn), where the
Zi and c are as defined above. Therefore:

E(X1) ≤ E
(
2c(Z1+···+Zn))

=
∞∑

i1=1

∞∑
i2=1

· · ·
∞∑

in=1

2c(i1+···+in)pi1−1(1− p)pi2−1(1− p) · · · pin−1(1− p)

=

(
∞∑

i1=1

(2cp)i1−12c(1− p)

)(
∞∑

i2=1

(2cp)i2−12c(1− p)

)
· · ·

(
∞∑

in=1

(2cp)in−12c(1− p)

)
= 2cn(1− p)n 1

(1− 2cp)n
,

where the last step holds as long as 2cp < 1 that is p < 1/2c.
Define a random variable T to be the minimum t such that the far end-point ofXt coincides

with the treasure. That is, our exploration procedure terminates in round T , but not earlier.
Suppose that the treasure is located at position (k1, . . . , kn) where |k1|+ · · ·+ |kn| = D. By
the discussion immediately preceding the statement of this theorem, the probability that
the treasure is found in a particular round is p̂ = 2−n(1− p)npk1 · · · pkn = 2−n(1− p)npD,
where 2−n is the probability of guessing correctly the signs of the ki and pki(1− p) is the
probability of travelling the correct number of steps in dimension i. Thus T is geometrically
distributed with parameter p̂. Therefore, E(T) = 1/p̂.

We are interested in bounding the overall exploration cost, that is, E(X1 +· · ·+XT). Since
the Xi are i.i.d. and T is a stopping time, it follows by a generalization of Wald’s equation [35]
to stopping times that E(X1 + · · ·+XT) = E(T)E(X1) ≤ 1

p̂
2cn(1− p)n 1

(1−2cp)n <∞. This
holds as long as we choose p < 1/2c. Since c is a constant, such a probabilistic coin can be
implemented by a finite automaton. The statement of the theorem follows by the number
of robots sufficient to implement stack operations in each of the models (synchronous vs.
semi-synchronous). J

ICALP 2019

139:10 Exploration of High-Dimensional Grids by Finite Automata

3.3 The Deterministic Algorithm
The main idea is to exhaustively go over all possible stack contents in increasing order,
interpreting each stack as a specification of a walk. We also keep a backup of the initial stack
content, and at the end of the walk we use the backup to return to the origin. The back-up
stack is stored using an additional agent. The backup is needed, as reading the stack content
during the walk destroys it. Note that after the outward walk, we do not logically reverse
the stack; hence the return to the origin does not use the same path as the original walk.
However, this is not a problem as the walks along different dimensions are commutative.

Finally, we should mention that some generated stacks do not necessarily have the correct
format, some may contain too few or too many 1s. However, this is easy to handle by the
algorithm: too few ones just means we walked without using all of the dimensions, which is
still a perfectly valid walk. The excessive 1s are simply ignored by taking the first excessive
1 as a directive to end the walk and return to the origin.

Using essentially the same arguments as in Lemma 2 yields:

I Lemma 4. The cost of procedure Walk is O(S2) and O(S) in the semi-synchronous and
synchronous models, respectively, where S is the size of the backup stack.

I Theorem 5. Algorithm 6 locates the treasure in the n-dimensional grid with: (a) 5 agents
and the exploration cost of O(23D+4n) moves in the semi-synchronous model, and (b) 4 agents
and the exploration cost of O(2D+2n) in the synchronous model.

Algorithm 6 Deterministic Grid Exploration.
1: while treasure not found do
2: Increment the backup stack
3: for every n-bit string R ∈ {−1, 1}n do
4: execute Walk(R, 1)
5: execute Walk(R, −1)
6: end for
7: end while
8:
9: procedure Walk(R, s)
10: Restore stack from backup
11: i = 1
12: while not empty() and i ≤ n do
13: while pop()= 0 do
14: moveStack(sRiei)
15: end while
16: i = i+ 1
17: end while
18: end procedure

Proof. The number of agents and the correctness follows easily from the construction.
It remains to sum up the cost of all calls to procedure Walk. Note that each point in

space uniquely specifies a valid (i.e. with precisely n 1’s) stack. Hence, the valid stack for the
treasure at distance D contains D + n digits. Therefore, the overall cost of Algorithm 6 is
2n
∑2D+n

X=1 O(X2) = O(2n(2D+n)3) = 23D+4n in the semi-synchronous model, and O(2D+2n)
in the synchronous model (the initial 2n covers all choices for string R). J

S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov 139:11

4 Polynomial time solutions

While designing our exploration algorithms in the previous section, we concentrated on
minimizing the number of agents used, and the resulting cost of these algorithms is exponential
in the volume V (D), the smallest ball containing the treasure. A natural question to ask is
whether this is an unavoidable consequence of using only a constant number of agents in the
exploration. In this section we show that this is not the case: a single additional agent is
sufficient to bring the cost of exploration down to a polynomial in V (D).

The main reason the cost of algorithms in the preceding section is exponential is the
number of incorrect stack contents being considered: as D grows compared to the fixed n,
ever larger proportion of stack contents does not have the correct format and they result
in repeatedly reaching already explored vertices. To avoid this problem we will efficiently
explore an n-dimensional cube qn of side q centered at the origin. We use again the stack
idea to trace the exploration of qn. The logical stack content now consists of n numbers in
q-ary alphabet, describing a location within this cube. However, in this case, we also need
to store the scale q. As before, the stack implementation interprets the logical content as a
q-ary number and stores it in unary2. Since q also needs to be stored on its own, this incurs
the additional cost of one agent. However, this allows us to multiply and divide by q, which
would not have been possible without the extra agent.

The stack is manipulated using the explicit commands: isDivisible() which checks the
divisibility by q; push(0) which multiplies the stack content by q; pop() which divides the
stack content by q; and increment() which increments the top of the stack.

4.1 Stack operations: semi-synchronous implementation

In addition to agents a, b and d, we use agent f to maintain the value of q by placing it at
b+ qe1. Furthermore, two counter agents cd and cf are used. At the beginning of the stack
operations, f and cf are collocated, as are b and cd, and a and d. The basic procedure is a
traversal of the whole stack by agent a, manipulating the tokens according to the specific
command.

In push(0) (i.e. multiplying the stack content by q), a pushes cf towards b and cd away
from b. Whenever cf reaches b, a transports it back to f as well as pushes d one step closer
to b. The process terminates when d reaches b; subsequently cd and d change roles. The
detailed procedure is given in Algorithm 8 in [20]. .

In isDivisible(), a pushes cf towards b and cd towards d, until cd reaches d. Whenever cf

arrives to b, it is transported back to f . isDivisible() returns true iff at the moment when cd

reaches d, cf is at b (or f).
Operation pop() means dividing the stack by q. The process is essentially reverse of

push() – in every iteration/traversal of the stack, cf and d are pushed towards b. Whenever
cf reaches b, it is brought back to f and cd is pushed away from b. When d reaches b, cd and
d exchange their roles.

The detailed pseudocode of isDivisible() and pop() are straightforward and omitted. It is
easy to see that the total cost of each of the stack operations is bounded by O(S2) where S
is the maximal size of the stack during the operation.

2 This is similar to the simulation of PDAs by counter machines – see Chapter 8.5 in Hopcroft, Motwani,
and Ullman text [30]; however, the details of our implementation are completely different.

ICALP 2019

139:12 Exploration of High-Dimensional Grids by Finite Automata

4.2 Stack operations: Synchronous implementation
A straightforward application of the technique from Section 3 would need agents travelling at
speed 1

2q+1 (for multiply) and q−1
s+q (for divide), which is impossible with finite state agents.

Instead, we take q to be a power of two and implement the operation of multiply, divide
by q via repeated applications of multiplication by 2, division by 2, respectively. Thus in
this case f is placed at distance log q from b, instead of placing it at distance of q from b.
The counter cf is used to count the number of multiplications/divisions already performed,
while the counter cd is not used at all, i.e. only agents a, b, d, f and cf are needed. The
operations of doubling and halving were already described in Section 3 and shown to take
O(S) time. Since these operations are performed log q times, the total time complexity of
every stack operation is O(S log q).

4.3 Fast deterministic grid exploration
Our polytime deterministic grid exploration algorithm is described in Algorithm 7. Starting
with q = 2, and for any fixed value of q, the algorithm generates and visits the addresses
(n-tuples from a q-ary alphabet) in lexicographic order. Then the agent a moves to position
(−q,−q, . . . ,−q), doubles the value of q, and moves on to the next iteration. Agent a always
drags the stack along as it performs the exploration. The procedure explore(i) is a recursive
procedure to generate n-tuples in lexicographic order; it is called with logical stack content
an i-tuple x0. It then iteratively calls explore(i+ 1) to visit the (n− i)-dimensional cube of
side q with (x, j, 0, . . . , 0) as the origin, for j ranging from 0 to q − 1.

Note that the algorithm as shown in Algorithm 7 is presented using recursive calls for
convenience; however, i is maintained in the local state.

I Theorem 6. Let V (D) be the volume of the ball of diameter D in the n-dimensional
grid. Algorithm 7 locates the treasure in the n-dimensional grid with: (a) 6 agents and the
exploration cost of O(V (D)3) moves in the semi-synchronous model, and (b) 5 agents and
the exploration cost of O(V (D)2 logD) in the synchronous model.

Proof. The number of agents and the correctness follows easily from the construction. It
remains to sum up the cost of all stack operations on a stack of size S. As already described,
the cost of each stack operations is O(S2) and O(S log q) in the semi-synchronous and
synchronous models, respectively. The maximal stack size S is bound by qn, which is also
the number of points covered by the stack base during one iteration of the outer loop (i.e. for
fixed q). This results in the overall cost of O(S3) and O(S2 log q) in the semi-synchronous and
synchronous models, respectively. As q grows exponentially, the overall cost is determined
by the cost for the last value of q. Finally, it is known that V (D) = 2n

n!D
n. As q < 4D (the

treasure would had been found if q ≥ 2D), we get that S ≤ (4D)n = 2nn!V (D), where n is a
constant. This proves the theorem. J

5 Exploring 3-dimensional Grids using 4 Semi-Synchronous agents

Our algorithm for the 3D grids explores the sphere consisting of all points at distance q
from the origin for q = 1, 2, 3, . . ., until reaching the sphere containing the treasure. In the
Manhattan metric, the points of such a sphere are located on 8 triangular faces of a regular
octahedron whose edges contain q + 1 grid vertices.

The key to our success is an algorithm for exploring one such triangle using four agents,
in such a way that (i) the value of q is maintained by the distance between some of the agents
while exploring a triangle, so that it can be used for the exploration of all triangles of the

S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov 139:13

octahedron, (ii) the exploration of all eight triangles can be done in a fixed order, and (iii)
the value of q can be increased for the exploration of the larger sphere after the exploration
of the sphere of radius q is finished.

The detailed description of this algorithm and the proof of the following theorem appear
in the full arXiv version of this paper [20].

I Theorem 7. Assume that the treasure is located in a 3D grid at distance D from the
origin. Algorithm Explore3Dgrid finds the treasure using 4 semi-synchronous agents, with
the exploration cost of O(D3). This is optimal as far as the number of semi-synchronous
agents used, and up to a constant factor in the exploration cost.

6 Additional Results

In this section, we list without proofs three additional results mentioned in Section 1. We
point out the sections of the arXiv version of this paper [20] where the details are given.

I Theorem 8. Finding a treasure at distance D in an n-dimensional grid can be achieved
with O(

√
n) agents, exploration cost O(Dn+

√
n), and without agents venturing further than

distance 2D away from the origin (Section 6.1 of [20]).

I Theorem 9. Consider 3 deterministic synchronous agents that run a protocol for exploring
Z3. In order to visit all grid points in the ball of radius D the distance of some agent from
the origin must have been Ω

(
D3/2) (Section 6.2 of [20]) .

I Theorem 10. Every algorithm in this paper which assumes agents with a global compass
can be extended to work with agents without it by using one additional agent in the semi-
synchronous model, and two additional agents in the synchronous model (Section 7 of [20]).

7 Conclusions and Open Questions

We studied the exploration of n-dimensional grids for n ≥ 3 by finite state automata agents.
We showed the surprising result that three randomized synchronous agents suffice to find a
treasure in an n-dimensional grid for any n; this is optimal in the number of agents. Our
strategy can also be implemented by four randomized semi-synchronous agents, or four
deterministic synchronous agents, or five deterministic semi-synchronous agents. For the
three-dimensional case, we gave a different algorithm for the deterministic semi-synchronous
case that uses only 4 agents, and is optimal. Our algorithms for n ≥ 4 require agents to
travel far away from the origin, i.e., exponential in D distance away, while looking for a
treasure which is located at distance D from the origin. We also considered the question of
whether it is possible to design algorithms that use few agents and do not require travelling
much further than distance D away from the origin in order to explore the entire ball of
radius D around the origin. We answered the question positively by describing an algorithm
that uses O(

√
n) semi-synchronous deterministic agents that never travel beyond 2D while

exploring the ball of radius D. We also showed that 3 synchronous deterministic agents
in 3 dimensions performing search, if such an algorithm exists, must travel Ω(D3/2) away
from the origin.

ICALP 2019

139:14 Exploration of High-Dimensional Grids by Finite Automata

Algorithm 7 Fast Deterministic Grid Exploration.
1: q = 2
2: push(0)
3: while treasure not found do
4: explore(1)
5: moveStack(−q

∑n
i=1 ei)

6: q = 2q
7: end while
8:
9: procedure explore(i)

10: if i > n then
11: return
12: end if
13: repeat
14: push(0)
15: explore(i+ 1)
16: increment()
17: moveStack(ei)
18: until isDivisible()
19: pop()
20: moveStack(−qei)
21: end procedure

Many interesting questions about the exploration of the n-dimensional grids remain open.
Is it possible for 4 deterministic semi-synchronous agents to explore an n-dimensional grid
for n ≥ 4? For n ≥ 3, can exploration of an n-dimensional grid be achieved by 3 randomized
semi-synchronous agents or deterministic synchronous agents? What is the minimum number
of agents that achieve polynomial time exploration? What is the minimum number of agents
such that the distance of the furthest visited node from the origin is limited to polynomial in
D? Is it possible to save an agent in the case of synchronous unoriented grids?

References
1 R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching with Uncertainty

(Extended Abstract). In Proceedings of the 1st Scandinavian Workshop on Algorithm Theory
(SWAT 88), pages 176–189, 1988.

2 R. A. Baeza-Yates and R. Schott. Parallel Searching in the Plane. Computational Geometry,
5:143–154, 1995.

3 A. Beck. On the linear search problem. Israel Journal of Mathematics, 2(4):221–228, 1964.
4 A. Beck. More on the linear search problem. Israel J. of Mathematics, 3(2):61–70, 1965.
5 A. Beck and P. Warren. The return of the linear search problem. Israel J. of Mathematics,

14(2):169–183, 1973.
6 R. Bellman. An optimal search. SIAM Review, 5(3):274–274, 1963.
7 M. A. Bender and D. K. Slonim. The power of team exploration: two robots can learn unlabeled

directed graphs. In Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 75–85, November 1994. doi:10.1109/SFCS.1994.365703.

8 Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai, and Salil Vadhan. The
Power of a Pebble: Exploring and Mapping Directed Graphs. Information and Computation,
176(1):1–21, 2002. doi:10.1006/inco.2001.3081.

http://dx.doi.org/10.1109/SFCS.1994.365703
http://dx.doi.org/10.1006/inco.2001.3081

S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov 139:15

9 M. Blum and W.J. Sakoda. On the capability of finite automata in 2 and 3 dimensional space.
In Proceedings of FOCS, pages 147–161, 1977.

10 P. Bose, J.-L. De Carufel, and S. Durocher. Revisiting the Problem of Searching on a Line. In
ESA 2013, Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages 205–216, 2013.

11 S. Brandt, K.-T. Forster, B. Richner, and R. Wattenhofer. Wireless Evacuation on m Rays
with k Searchers. In Proceedings of SIROCCO 2017, to appear, 2017.

12 S. Brandt, J. Uitto, and R. Wattenhofer. A Tight Bound for Semi-Synchronous Collaborative
Grid Exploration. In 32nd International Symposium on Distributed Computing (DISC), 2018.

13 P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao. Multirobot Tree and Graph Explora-
tion. IEEE Transactions on Robotics, 27(4):707–717, August 2011. doi:10.1109/TRO.2011.
2121170.

14 E. Castello, T. Yamamoto, F. d. Libera, W. Liu, A. Winfield, and Y. Nakamura. Adaptive
foraging for simulated and real robotic swarms: the dynamical response threshold approach.
Swarm Intelligence, 10(1):1–31, 2016.

15 S. Chopra and M. Egerstedt. Multi-Robot Routing for Servicing Spatio-Temporal Requests:
A Musically Inspired Problem. In IFAC Conference on analysis and design of hybrid systems,
2012.

16 M. Chrobak, L. Gasieniec, T. Gorry, and R. Martin. Group Search on the Line. In Proceedings
of SOFSEM 2015: 41st International Conference on Current Trends in Theory and Practice
of Computer Science, pages 164–176, 2015.

17 L. Cohen, Emek Y, O. Louidor, and J. Uitto. Exploring an Infinite Space with Finite Memory
Scouts. In Proc. of the 28th SODA, SODA ’17, pages 207–224, 2017.

18 S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous mobile robots
with lights. Theoretical Computer Science, 609(P1):171–184, 2016.

19 X. Deng and C.H. Papadimitriou. Exploring an unknown graph (Extended Abstract). In
Proceedings of FOCS, 1990.

20 Stefan Dobrev, Lata Narayanan, Jaroslav Opatrny, and Denis Pankratov. Exploration of
High-Dimensional Grids by Finite State Machines. Computing Research Repository (CoRR),
abs/1902.03693, 2019. arXiv:1902.03693.

21 Y. Emek, T. Langner, D. Stolz, J. Uitto, and R. Wattenhofer. How many ants does it take to
find the food? Theoretical Computer Science, 608:255–267, 2015.

22 Y. Emek, T. Langner, J. Uitto, and R. Wattenhofer. Solving the ANTS problem with finite
state machines. In Proceedings of ICALP, pages 471–482, 2014.

23 M.A. Estrada, S. Mintchev, D. Christensen, M.R. Cutkosky, and D. Floreano. Forceful
Manipulation with Micro Air Vehicles. Science Robotics, 2018.

24 O. Feinerman, A. Korman, Z. Lotker, and J-S. Sereni. Collaborative Search in the Plane
without Communication. In Proceedings of PODC, pages 77–86, 2013.

25 P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by oblivious mobile robots
(Synthesis Lectures on Distributed Computing Theory). Morgan & Claypool Publishers, 2016.

26 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation by
asynchronous, anonymous, oblivious robots. Theoretical Computer Science, 407(1–3):412–447,
2008.

27 Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. Remembering Without
Memory: Tree Exploration by Asynchronous Oblivious Robots. Theoretical Computer Science,
411(14-15):1583–1598, March 2010. doi:10.1016/j.tcs.2010.01.007.

28 Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph Exploration
by a Finite Automaton. Theoretical Computer Science, 345(2-3):331–344, 2005. URL: https:
//hal.archives-ouvertes.fr/hal-00341531.

29 S. K. Ghosh and R. Klein. Online algorithms for searching and exploration in the plane.
Computer Science Review, 4(4):189–201, 2010.

ICALP 2019

http://dx.doi.org/10.1109/TRO.2011.2121170
http://dx.doi.org/10.1109/TRO.2011.2121170
http://arxiv.org/abs/1902.03693
http://dx.doi.org/10.1016/j.tcs.2010.01.007
https://hal.archives-ouvertes.fr/hal-00341531
https://hal.archives-ouvertes.fr/hal-00341531

139:16 Exploration of High-Dimensional Grids by Finite Automata

30 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

31 L. Hua and E. K. P. Chong. Search on lines and graphs. In Proceedings of the 48th IEEE
Conference on Decision and Control, CDC 2009, China, pages 5780–5785, 2009.

32 A. Jez and J. Lopuszanski. On the two-dimensional cow search problem. Information Processing
Letters, 109(11):543–547, 2009.

33 C. Lenzen, N. A. Lynch, C. C. Newport, and T. Radeva. Trade-offs between selection
complexity and performance when searching the plane without communication. In ACM
Symposium on Principles of Distributed Comp. (PODC 2014),, pages 252–261, 2014.

34 A. López-Ortiz and G. Sweet. Parallel searching on a lattice. In Proceedings of the 13th
Canadian Conference on Computational Geometry (CCCG 2001), pages 125–128, 2001.

35 AbrahamWald. On Cumulative Sums of Random Variables. Ann. Math. Statist., 15(3):283–296,
September 1944. doi:10.1214/aoms/1177731235.

http://dx.doi.org/10.1214/aoms/1177731235

	Introduction
	Our results
	Related work

	Model and Notation
	Exploration of n-dimensional Grids
	The Stack Implementation
	Implementing Semi-Synchronous Stack
	Implementing Synchronous Stack

	The Randomized Algorithm
	The Deterministic Algorithm

	Polynomial time solutions
	Stack operations: semi-synchronous implementation
	Stack operations: Synchronous implementation
	Fast deterministic grid exploration

	Exploring 3-dimensional Grids using 4 Semi-Synchronous agents
	Additional Results
	Conclusions and Open Questions

