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Abstract
In this paper, we investigate a distributed maximal independent set (MIS) reconfiguration problem, in
which there are two maximal independent sets for which every node is given its membership status,
and the nodes need to communicate with their neighbors in order to find a reconfiguration schedule
that switches from the first MIS to the second. Such a schedule is a list of independent sets that
is restricted by forbidding two neighbors to change their membership status at the same step. In
addition, these independent sets should provide some covering guarantee.

We show that obtaining an actual MIS (and even a 3-dominating set) in each intermediate step
is impossible. However, we provide efficient solutions when the intermediate sets are only required
to be independent and 4-dominating, which is almost always possible, as we fully characterize.

Consequently, our goal is to pin down the tradeoff between the possible length of the schedule
and the number of communication rounds. We prove that a constant length schedule can be found in
O(MIS + R32) rounds, where MIS is the complexity of finding an MIS in a worst-case graph and R32
is the complexity of finding a (3, 2)-ruling set. For bounded degree graphs, this is O(log∗ n) rounds
and we show that it is necessary. On the other extreme, we show that with a constant number of
rounds we can find a linear length schedule.
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1 Introduction

Consider a distributed setting in which each node of a network receives an input from a
higher-level application which tells it whether it is selected or not, such that the set of selected
nodes is a maximal independent set (MIS), which we will denote by α. The reason that
the application requires an MIS is because it needs the set of selected nodes to dominate
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135:2 Distributed Reconfiguration of MIS

all nodes for the sake of, say, monitoring the network, but without having violations of two
neighbors being in the set, because they may cause conflicting actions. Now, because of
changes in the network traffic, the energy consumption, or any one of various conditions that
may change, the application needs to change the selected set of nodes. Once a new input
MIS, denoted by β, is given to the nodes by the application, the nodes need to reconfigure
their states to that set while never sacrificing the safety condition of independence. In fact,
for compatibility reasons, neighboring nodes cannot change their membership in the set at
the same time, so a sequence of changes is needed for converging into the new MIS. We call
such a sequence a reconfiguration schedule.

The length of the schedule is clearly a measure that is required to be minimized. Hence,
an extreme solution would be to have all nodes declare themselves as unselected, and then
the new set of nodes declare that they are selected. However, this very fast approach suffers
from loosing the domination property throughout the reconfiguration schedule. Thus, the
structure of the network must be taken into account, but since the topology is unknown,
finding a schedule that maintains a good covering at all times necessitates that the nodes
communicate. This brings another measure of complexity into question, which is the number
of communication rounds that are needed in order to find a short schedule. Our goal in this
work is to study the tradeoff between the possible length of the schedule and the number of
communication rounds needed for finding it.

Unfortunately, as we show, it is not always possible to find schedules where each set is an
MIS. This impossibility holds even if we relax the condition of domination and require only
independent 3-dominating sets. Even when 3-domination is possible, it may be extremely
inefficient (Section 6).

I Theorem 1. Requiring 3-domination for intermediate steps is costly:
1. There exists a class of inputs G = (V,E) with two MIS α and β such that there is no

reconfiguration schedule with 3-dominating intermediate steps.
2. There exists a class of inputs G = (V,E) with two MIS α and β such that any reconfigur-

ation schedule is of length Ω(n) and needs Θ(n) rounds to be found, if intermediate steps
must be 3-dominating.

However, we prove that independence and 4-domination can indeed be obtained. Our
main result is the following (Section 3).

I Theorem 2 (informal). For any graph G = (V,E) of diameter greater than 3 and any
input of two MIS α, β, there exists a reconfiguration schedule of constant length 28, with
independent 4-dominating intermediate steps. Moreover, such a schedule can be found in
O(MIS + R32) rounds, where MIS is the complexity of finding an MIS on a worst-case graph
and R32 is the complexity of finding a (3, 2)-ruling set on a worst-case graph.

Obtaining the above theorem turns out to be an involved task. Our key ingredients are
the following. We prove that graphs with a not-too-small diameter always admit a schedule
of reconfiguration steps from a given maximal independent set to another. Moreover, full
knowledge of the topology of the graph is not necessary in order to be able to locally add an
element to the set after having removed its neighbors (to avoid dependence). Rather, only
local manipulations are needed for doing so.

The currently known complexities that give O(MIS + R32) are discussed in the related
work part. Here, we draw attention to the fact that an immediate corollary of Theorem 2
is that for graphs of bounded degree we can compute the constant length schedule within
O(log∗ n) rounds. Further, we show that this is a lower bound by reducing the problem of
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finding an MIS on a path to obtaining a constant-length schedule for MIS reconfiguration.
The following theorem actually holds even if one requires only d-domination, for some
constant d ≥ 4 (Section 6).

I Theorem 3. For any fixed k, there exists a class of k-regular inputs G = (V,E) with two
MIS α and β such that any reconfiguration schedule of constant length with 4-domination
needs Θ(log∗ n) rounds to be found.

If one wants to optimize the communication cost of finding a schedule rather than its length,
we show that a (rather lengthy) schedule can be obtained within O(1) rounds (Section 4).

I Theorem 4 (informal). For any graph G = (V,E) and any input of maximal independent
sets α, β to the MIS-reconfiguration problem, there exists a reconfiguration schedule of length
Θ(f(n)), where f(n) is the largest identifier among the nodes in the graph, which can be
found in O(1) rounds.

The construction generalizes itself on graphs with a distance-k coloring of c colors, with
k big enough. It is possible, from this coloring, to compute a schedule of length O(c) after a
constant number of communication rounds. Let ∆ be the maximal degree of the graph. A
distance-k O(∆2k) coloring can be found in O(log∗ n) rounds [16], and a distance-k O(∆k)
coloring can be found in O(log∗ n +

√
∆k) rounds [4]. Hence, with the same respective

communication complexities, we can find schedules of lengths O(∆2k) and O(∆k).
Finally, as can be inferred from Theorem 2, 4-domination suffices for any graph with

diameter greater than 3. For graphs with small diameter, we give an exact characterization of
the conditions that allow the existence of a reconfiguration schedule (Section 5). This result
implies that our algorithm from Theorem 2, combined with a trivial algorithm that collects
the entire graph when the diameter is a small constant, produces an efficient reconfiguration
schedule in all cases for which it exists.

1.1 Related work
Distributed Reconfiguration. Questions of distributed reconfiguration were actually not
studied before 2018. Then, Bonamy et al. [6] considered distributed reconfiguration of
colorings, with the goal of finding which length of schedule can be computed within a given
number of communication rounds. The problem being PSPACE complete in the general
case, several subcases were explored. Since finding looser restrictions for the transitions is
important for making the problem local instead of having to solve a global PSPACE hard
problem, the addition of extra colors in the intermediate colorings was allowed. This aided
either having a solution, or finding one quickly.

Distributed Constructions. Our constructions sometimes make use of two fundamental
subroutines, which find an MIS or a (3, 2)-ruling set in a graph. An (x, y)-ruling set is a set
S ⊆ V in which every two nodes are at distance at least x, and every node that is not in S
is within distance at most y from S. Thus, an MIS is a (2, 1)-ruling set. Finding an MIS is
one of the most fundamental problems in distributed computing. The celebrated randomized
O(logn)-round algorithms of Luby [19] and Alon et al. [1] have been recently improved by
Ghaffari to O(log ∆+2O(

√
log logn)) rounds, where ∆ is the maximal degree in the network [9].

Deterministic solutions are the classic network-decomposition based algorithm of Panconesi
and Srinivasan that runs in 2O(

√
logn) rounds [21], and the O(∆ + log∗ n)-round algorithm

of Barenboim et al. [5]. The classic lower bound of Linial [17] shows that Ω(log∗ n) rounds
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135:4 Distributed Reconfiguration of MIS

are necessary, Kuhn et al. gives a higher bound of Ω(log ∆/ log log ∆,
√

logn/ log logn)
[15]. The latest results of Balliu et al. [3] give the new best known lower bounds to find a
MIS: There is no deterministic algorithm in o(∆ + logn

log logn ) nor randomized algorithm in
o(∆ + log logn

log log logn ). The Figure 1 in [3] sums up all the results on MIS. A (3, 2)-ruling set can
be computed by computing an MIS over G2, and more general ruling sets have been studied
in [2, 13,14,20,22].

Centralized Reconfiguration of Maximal Independent Sets. Reconfigurations problems
on graphs have been widely studied in the centralized setting during the last decade. An
excellent survey on reconfiguration problems can be found in [23]. In the centralized setting,
the transition rules are different, requiring that any intermediate set must be at least of a
certain size. While having their own motivation in that setting, these rules are not the ones
that are needed in the distributed setting, as they do not give covering guarantees (moreover,
such properties would be costly to obtain in a distributed setting, due to their global nature).

In more detail, three kinds of transitions have been studied for the independent set
reconfiguration problem. Token Addition and Removal [11], or TAR(k): at each transition,
one vertex is removed from or added to the current independent set, as long as there are at
least k nodes in the independent set. Token Jumping [12]: at each transition, one vertex
is removed from the independent set and another one is added somewhere else. Token
Sliding [10]: at each transition, an edge containing a vertex of the independent set is chosen.
This vertex is removed from the set and its neighbor on the other side of that edge is added
to the set. The two first versions are actually equivalent when k corresponds to the size of
the independent sets minus 1. Reconfiguration problems are in PSPACE, and independent
set reconfiguration problems are in general PSPACE complete [10]. Studies over subclasses
of graphs exist, and some polynomial algorithm or hardness proofs are given. For example,
planar graphs [10], perfect graphs [12], trees [8] and bipartite graphs [18].

2 Preliminaries

We work in the classic LOCAL model of computation, in which n nodes in a synchronous
network exchange messages with their neighbors in each round of computation.

Let G = (V,E,U) denote a graph with an assigned subset U ⊆ V . An input to the
MIS-reconfiguration problem is a pair Ginput = (V,E, α), Goutput = (V,E, β), where α and
β are the initial and final maximal independent sets, respectively. We refer to a node v ∈ α
as an α-node, and to a node v ∈ β as a β-node. Notice that a node may be both an α-node
and a β-node. We refer to node v ∈ V \ (α ∪ β) as an ε-node. Throughout the proofs, we say
that a node v is covered or 4-dominated by a node u if d(v, u) ≤ 4.

For a vertex v ∈ V , we denote by N(v) the set of neighbors of v (i.e., N(v) = {u ∈ V :
(u, v) ∈ E}), and given a set U ⊆ V we define NU (v) = U ∩N(v) for the subset of neighbors
of v that are in U , and we call this set the U -neighbors of v. For a subset U ⊆ Y ⊆ V and a
node v ∈ Y , we denote by dY (v, U) the distance of v from U in the subgraph induced by Y .

I Definition 5 (Reconfiguration Schedules). For a given property P of G = (V,E,U), an
(α, β, P )-reconfiguration schedule (or simply a schedule) S of length ` is a sequence of subsets
of V , S = (S0, . . . , S`), such that the following hold:
1. S0 = α and S` = β,
2. for every 0 < i < `, the graph (V,E, Si) satisfies P , and
3. for every 0 < i ≤ `, Si ⊕ Si−1 is an independent set of (V,E).
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3 An MIS reconfiguration schedule of constant length

Our main theorem is the following.

I Theorem 2 (formal). Let P be the property of (V,E,U) that says that U is a (2,4)-
ruling set. For any graph G = (V,E) of diameter greater than 3 and any input Ginput =
(V,E, α), Goutput = (V,E, β) to the MIS-reconfiguration problem, there exists an (α, β, P )-
reconfiguration schedule of constant length 28. Moreover, such a schedule can be found in
O(MIS + R32) rounds, where MIS is the complexity of finding an MIS on a worst-case graph
and R32 is the complexity of finding a (3, 2)-ruling set on a worst-case graph.

In particular, Theorem 2 immediately implies a highly efficient solution for bounded
degree graphs.

I Corollary 6. The constant length schedule of Theorem 2 can be found in O(log∗ n) rounds
in graphs of bounded degree.

We now describe the outline of the algorithm, as follows. Denote by W the set of
connected components of α ∪ β. Our main approach is to reconfigure the independent sets
according to the components in W . To this end, we first categorize each component in W
according to its diameter and whether it is isolated or not: We say that a component Vi ∈W
is isolated if for every ε-node u in its neighborhood, Nα(u) and Nβ(u) are contained in Vi.

Notice that within a constant number of rounds, all α and β-nodes can know whether
they are in a component of diameter 0, 1, 2, or at least 3. Moreover, if their diameter is
smaller than 3, they can know whether the component is isolated or not.

To avoid excessive notation, we will sometimes say that we update the component Vi in
steps {j, j + 1}. This means that we remove α ∩ Vi from the independent set in step j and
we add β ∩ Vi to the set in step j + 1. Formally, this means that Sj = Sj−1 \ (α ∩ Vi) and
Sj+1 = Sj ∪ (β ∩ Vi). Since we will sometimes update multiple components concurrently,
we will have Sj = Sj−1 \ (α ∩ Zj) and Sj+1 = Sj ∪ (β ∩ Zj), where Zj =

⋃
i∈Ij

Vi, with
Ij = {i : Vi is being updated in steps {j, j + 1}}.

The high-level description of our algorithm is as follows. First, for components in W of
diameter 0, we do not need to do anything, as such components are comprised only of nodes
in α ∩ β. These nodes remain in the independent set Si for the entire schedule, and we omit
these components and all of their ε-neighbors from the remaining discussion. Our algorithm
then handles non-isolated components and components of diameter ≥ 3, and finally handles
the isolated components of diameter ≤ 2.

We begin by claiming that with an overhead of 2 rounds, we may assume that α and
β are disjoint. Indeed, if we never remove nodes in α ∩ β from the independent set, we no
longer need to take care about α ∩ β nor its neighborhood. You can find a more complete
explanation of this in the full version of the paper [7].

3.1 Components of diameter ≥ 3
We continue with the following lemma, which is useful for handling components in W whose
diameter is not too small. Roughly speaking, the way we handle components of sufficient
diameter is by finding a set of α-nodes that are not too close to each other to ensure that
β-nodes can be added not too far from them before we remove them from the independent
set. This way, we can reconfigure the rest of the component, and then this set of α-nodes and
their neighbors. We present the following lemma before the rest of the algorithm because
we will need to use it, but notice that it is not the case that we begin the algorithm by
reconfiguring components of diameter ≥ 3.
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135:6 Distributed Reconfiguration of MIS

I Lemma 7. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set,
and let G = (V,E, α) and G = (V,E, β) be an input to the MIS-reconfiguration problem
such that α ∩ β = ∅, the set Y = α ∪ β is a single connected component of diameter at
least 3, and each ε-node is connected to an α-node and to a β-node. Then, there exists an
(α, β, P )-reconfiguration schedule of length 8. Moreover, such a schedule can be found in
O(R32) rounds.

Proof. First, assume that the diameter of Y = α∪β is either 3 or 4. Consider a shortest path
of length 3 in Y , denoted by (v1, v2, v3, v4). Either v1 or v4 is in α, and is within distance 4
from all other nodes in the component. We denote this node by v, and define S1 = {v} and
we have that it 4-dominates the entire component. In addition, it 4-dominates all ε-nodes,
by the assumption of the lemma that all such nodes are neighbors of β-nodes, because v
actually 3-dominates all β-nodes in the component. We then denote R = {u ∈ β | u 6∈ N(v)}
and define S2 = {v} ∪R, and S3 = R, and finally S4 = R ∪N(v). It is easy to verify that
this results in a valid (α, β, P )-reconfiguration schedule. In particular, notice that, without
loss of generality, if v = v1, then R contains at least the node v4, which 4-dominates the
entire component.

For a diameter of Y that is at least 5, the high-level idea of the construction is as follows.
Consider a (3, 2)-ruling set R over the nodes in α, where we imagine an edge between two
nodes in α if they are at distance two in the subgraph induced by Y . We reconfigure all
β-nodes that are at distance 5 from R in G by removing their α-neighbors first, then by
adding them. Then, we do the same for β-nodes that are at distance 3 from R, and finally
we repeat this one last time for the β-nodes in the direct neighborhood of R. The choice
of a (3, 2)-ruling set ensures that all α-nodes in R have a β-node at distance 3 that will
be reconfigured in the 4th step. However, while we trust β-nodes at distance 3 from R to
cover α-nodes at distance 2 from R while R itself is being reconfigured, we must be careful
when handling α-nodes at distance 2 from R that do not have a neighbor at distance 3. We
overcome this caveat by taking care of these nodes separately.

Formally, we define a virtual multigraph G̃ = (Ṽ , Ẽ) as follows. The set of virtual
nodes Ṽ consists of all α-nodes. If v and u in Ṽ have a common β-neighbor, we add an
edge u, v to Ẽ. Let R be a (3, 2)-ruling set in G̃. It is easy to see that in G, the set of
nodes R is a (6, 5)-ruling set of Y . We denote R by R0 and we define Ri for 3 ≤ i ≤ 5
as Ri = {v ∈ Y | the distance of v from R in the subgraph induced by Y is i}. Then we
define R1 = {v ∈ Y | dY (v,R) = 1 and dY (v,R3) = 2} ∪ {v ∈ Y | NY (v) ⊆ R}, which
captures all β-neighbors of R that either do not have other α-neighbors, or have other
α-neighbors which in turn have β-neighbors that are farther from R. We separate those from
the set R−1 = NY (R0) \R1. We complete the partition by defining R2 = NY (R1) \R0 and
R−2 = NY (R−1) \ R0. Note that for even i, Ri contains only α-nodes, and for odd i, Ri
contains only β-nodes. We have that, for every −2 ≤ i ≤ 5, NY (Ri) ⊆ Ri−1 ∪ Ri+1 (with
R−3 = R6 = ∅). By construction of R, we have that each node in R has a node at distance 3
in R3, hence it has a node at distance 2 in R2 and a node at distance 1 in R1.

We define S0 = α and for i = 0, 1, 2, 3, we define S2i+1 = S2i \ R4−2i, S2(i+1) =
S2i+1 ∪R5−2i. We claim that S0, . . . , S8 is an (α, β, P )-reconfiguration schedule.

First, S0 = α by definition, and because every β-node is within an odd distance of at
most 5 from R and every α-node is within an even distance of at most 4 from R, we have
that S8 = β. This gives condition (1) of Definition 5.

For condition (2), it is easy to see that Si⊕Si−1 is an independent set of (V,E) for every
1 ≤ i ≤ 8. For an odd i this holds because to obtain Si we only remove α-nodes from Si−1,
and no two such nodes can be neighbors. For an even i this holds because to obtain Si we
only add β-nodes to Si−1, and no two such nodes can be neighbors.
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It remains to show condition (3) of Definition 5. To show that Si is independent for
i = 2, 4, 6, notice that β-nodes in Rj (for j = −1, 1, 3, 5) are only added to the sequence after
all α-nodes in Rk for k ≥ j − 1 have been removed. By definition, S0 is also independent.
Hence, for i = 1, 3, 5, 7, Si is independent because it is a subset of Si−1.

Next, we need to show that Si is 4-dominating for every 1 ≤ i ≤ 7. Our focus will be
for i = 1, 3, 5, 7, and for i = 2, 4, 6 it then follows because Si contains Si−1. We first show it
on Y , and will prove it for ε-nodes afterward. For i = 1 this holds because all nodes in Rj
for j ≤ 3 are in or have neighbors in R−2 ∪R0 ∪R2. All nodes in Rj for j = 4, 5 are within
distance 3 from R2. Similarly, S3 is 4-dominating because nodes in Rj for j ≤ 4 are covered
by R0, nodes in R5 are in the current independent set. For S5, recall that for any node in R,
there is a node at distance 3 from it in R3, that node being in the current independent set
since S4. Hence, R3 covers Rj for −1 ≤ j ≤ 5. R−2 is still included in S5. Finally, for S7,
R3 still covers Rj for −1 ≤ j ≤ 5. For each node in R−2, there is a node at distance 3 from
it in R1 that has been added in S6 that covers it.

Now, let u be an ε-node that has a node a ∈ α and b ∈ β in its neighborhood. We
show that a or b are always 3-dominated throughout the sequence. In a step where b has
no α-neighbor in the independent set, it must be a step right before b gets added to the
independent set. If b is in R5 or in R3 then when this happens, it is 3-dominated by an
α-node in R2 or R, respectively, and this node is still in the independent set. If b ∈ R−1
then it is 2-dominated by nodes in R−2 and then R1 (with an overlap in S6, the construction
ensures that such node exist at distance at most 3 from b). Finally, If b ∈ R1 then either
there is a β-node in R3 that 2-dominates it, and this node is already in the independent set,
or b is in {v ∈ Y | NY (v) ⊆ R}. Only in the latter case, we must resort to the α-neighbor of
u and check that it is 3-dominated by S5, as we removed R from S5 and b is added in S6.

Let i be such that a ∈ Ri. We need to make sure that a is 3-dominated at the step in
which we reconfigure R1. At this step, all of the β-nodes in R3, R5 are in the independent
set, and hence their α-neighbors in R2, R4 are covered by nodes in distance 1, and nodes in
R0 are covered by nodes in distance 3. For α-nodes in R−2 they are still in the independent
set at this step, and hence are 3-dominated.

This completes the correctness proof. For the round complexity, notice that simulating
the (3, 2)-ruling set over G̃ can be done in G with a constant overhead. J

3.2 Non-isolated components
We first observe that components of diameter ≤ 2 are such that there is a complete bipartite
graph between their α-nodes and β-nodes. Let u be an ε-node that is a neighbor of several
components. Let Wu be the set of all components that are its neighbors, so that in particular,
Vi, Vj ∈ Wu. For each pair of distinct components Vi, Vj ∈ Wu, if there is an α node in
Nα(u) ∩ Vi and a β node in Nβ(u) ∩ Vj , then we say that Vj is (u, α)-covered and that Vi is
(u, β)-covered (note that this definition allows a single component to satisfy both conditions).
As u is an ε-node, there must exist a component Vu,α ∈ Wu that is (u, β)-covered and a
component Vu,β ∈Wu that is (u, α)-covered.

We say that a component Vi ∈ W is α-covered (β-covered) if there is an ε-node u for
which Vi is (u, α)-covered ((u, β)-covered). A component that is both is αβ-covered.

The key insight is that a (u, α)-covered component of diameter ≤ 2 is covered (dominated
at distance 4) by some α-node of the component Vu,β (and similarly with the β-node of
Vu,α). Moreover, any ε-node that is connected to an α-node (a β-node) in that component is
covered by Vu,β (or Vu,α). This implies that an ε-node that is connected to two components
that are updated in different steps is always covered by the component that is currently not
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being updated. However, during the reconfiguration schedule, we need to be careful about
ε-nodes that are connected to a single component, and ε-nodes that are connected to two
components that are updated at the same time.

We denote by Cαβ the set of αβ-covered components of diameter ≤ 2, and by Cα and
Cβ the sets of α-covered and β-covered components of diameter ≤ 2 that are not in Cαβ ,
respectively. Define the component graph G̃ = (W, Ẽ), where there is an edge between
Vi, Vj ∈W iff there exists an ε-node u such that Vi is (u, α)-covered and Vj is (u, β)-covered,
or vice-versa. Notice that in G̃, the sets Cα and Cβ are two disjoint independent sets.

We are finally ready to formally provide the algorithm for handling all components that
are either non-isolated or have diameter ≥ 3.

I Lemma 8. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set, and
let G = (V,E, α) and G = (V,E, β) be an input to the MIS-reconfiguration problem such that
α ∩ β = ∅, and all connected components of α ∪ β are either non-isolated or have diameter
at least 3. Then, there exists an (α, β, P )-reconfiguration schedule of length 18. Moreover,
such a schedule can be found in O(MIS + R32) rounds.

Proof. Our reconfiguration schedule works according to the following parts.
1. Update components of diameter ≤ 2 in Cα.

%Let M be an MIS over all nodes in Cαβ .
2. Update components of diameter ≤ 2 that are α-covered by a component in M .
3. Reconfigure components of diameter ≥ 3 using the schedule given by Lemma 7.
4. Update components in M .
5. Update components of diameter ≤ 2 in Cαβ that were not previously updated.
6. Update components of diameter ≤ 2 in Cβ that were not previously updated.

First, it is easy to see that the schedule has length 18. The part that reconfigures
components of diameter ≥ 3 requires 8 steps, by Lemma 7. Each of the other 5 parts takes
exactly 2 steps as described in the definition of updating components (removing α-nodes and
then adding β-nodes), which sums to 18 reconfiguration steps in the schedule.

It remains to prove correctness. First, condition (1) of Definition 5 trivially holds, as the
schedule reconfigures all nodes. Moreover, by Lemma 7 and by the definition of updating a
component, it is also immediate that we do not reconfigure two neighbors in a single step,
thus the schedule satisfies condition (3) of Definition 5. For condition (2), Lemma 7 and the
definition of updating a component also guarantee that each Si is an independent set. The
remainder of the proof shows that each Si in the schedule is also 4-dominating.

By the order of the reconfiguration steps in the schedule, each component that is being
updated is covered by a component that is not concurrently being updated. This also holds
for ε-nodes that are connected to a component that is not currently being updated. The main
condition that must be verified is that ε-nodes remain covered even if all of their neighboring
components are being concurrently updated in a certain part of the schedule.

Part 1 guarantees that S1, S2 are 4-dominating because for each component that is being
updated, the α-node covering it is a member of S1, S2 and it also covers the required ε-nodes
that are neighbors of the updated component, as explained earlier. For part 2, let u be
an ε-node that is connected to two of the components that are being updated and is not
connected to any component that is not being updated. One of the components must be
connected to u via an α-node. Let Vi be such a component, let u1 be the α-node connected
to u, and let v be the α-node from a component of M that covers Vi. The distance between
v and u1 is 3: v is a distance 2 to a β-node of Vi and, because Vi is of diameter ≤ 2, within
Vi all β-nodes are connected to all α-nodes. Hence, u is at distance 4 from v.



K. Censor-Hillel and M. Rabie 135:9

For part 3, the 4-domination within the components that are being reconfigured is given
by Lemma 7. Notice that any ε-node connected to a component of diameter ≥ 3 is connected
either to connected components of diameter ≥ 3 through both an α and a β-node, or to
a component that is not being updated in those steps. In the first case it is covered by
Lemma 7, and in the second it is covered by the component not being concurrently updated.

For part 4, notice that all components that are β-covering components of M have been
updated in steps 2 or 3. Hence, as each component of M is in Cαβ , there is a β-node in the
current set S12 that covers it. As M is independent, we do not have ε-node between two
components that are being updated. For part 5, the ε-nodes between two components that
are being updated are covered by an argument that is symmetric to the one used for part
2. Finally, for part 6, for each component that is being updated it holds that the β-node
covering it is in a component that has already been updated and hence it is already in S16.

Finally, we note that apart from a constant overhead in communication, the number of
rounds required for computing the above schedule is proportional to that of finding the MIS
M plus solving the diameter ≥ 3 components, which completes in O(MIS + R32) rounds,
where MIS is the complexity of finding an MIS on a worst-case graph and and R32 is the
complexity of finding a (3, 2)-ruling set on a worst-case graph, as claimed. J

3.3 Isolated Components
What remains now is to handle components that are isolated and have diameter at most
2. When we address these components, we will also address all of their ε-neighbors. Hence,
from this point onwards we will slightly abuse our terminology, and when we refer to such a
component we refer to its nodes along with their ε-neighbors as the component. This means
that now the components that we address might have a diameter that is increased by 1, and
thus their diameter can be also 3. Note that the diameter cannot be increased by two as all
α-nodes are connected to all β-nodes, and each ε-node is connected to an α-node and to a
β-node of this component, otherwise the component would not be isolated.

By definition of isolated components, the neighborhood of an ε-nodes within such a
component, besides containing vertices of the component itself, is only composed of other
ε-nodes. Moreover, there is at least one additional ε-node in this neighborhood, as we consider
graphs of diameter at least 4. We distinguish two kinds of isolated components, according to
whether their diameter is at most 2, or whether it is 3.

For a component Vi of diameter ≤ 2, suppose u is an ε-node that is a neighbor of Vi.
This node u has an α-node and a β-node in its neighborhood, that both cover the entire
component. Therefore, to update such components, it suffices to make sure that a non-ε
neighbor of u is in the current independent set during the two reconfiguration steps. By
considering connected two of those components that cover each other, we can take an MIS M
over those. The schedule of length 4 is: update M , and then update the other components.

Assume now that Vi is a component of diameter 3. It holds that there exists an ε-node
u, an α-node a and a β-node b such that (u, a) 6∈ E and (u, b) 6∈ E (otherwise the diameter
would be 2). Here is an informal description of a schedule of 6-steps for this component.
1. Remove Nα(u). The node a stays in the independent set and covers the entire component.
2. Add u in the set.
3. Remove the remaining α-nodes of the component. The node u covers everything.
4. Add b to the set. Note that b covers the component.
5. Remove u.
6. Add the remaining β-nodes of the component.
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A caveat is encountered in case there are two such components, V1 and V2, whose selected
ε-nodes, u1 and u2, are connected. In such case we cannot do the above 6-step schedule
in parallel without violating independence. However, observe that if a single of those two
ε-nodes is added to the set, it actually covers the second component as well, as it has a
diameter of 3. As a consequence, taking an MIS over those ε-nodes gives us a selection of
nodes that cover all the considered components. Hence, consider the schedule above as being
for component V1 and denote u = u1, then we can add the following to steps 3 and 4 above:
3. Remove the remaining α-nodes of V1 and all α-nodes of V2. The node u covers everything.
4. Add b and the β-nodes of V2 to the set. Note that V2 is updated and b covers V1.

We now formalize the above intuition in order to prove the following.1

I Lemma 9. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set, and
let G = (V,E, α) and G = (V,E, β) be an input to the MIS-reconfiguration problem such that
α ∩ β = ∅, and all connected components of α ∪ β are isolated and have diameter at most
2. Then, there exists an (α, β, P )-reconfiguration schedule of length 10. Moreover, such a
schedule can be found in O(MIS) rounds.

3.4 Completing the proof
We can now wrap-up all the ingredients and prove Theorem 2.

Proof of Theorem 2. We describe the full (α, β, P )-reconfiguration schedule S. First, each
node v in Vα,β = α ∩ β sends a message to its neighbors in N(v) and outputs that it is in Si
for all 0 ≤ i ≤ 28. Each node that received such a message, sends a message to its neighbors
and outputs that it is not in Si for all 0 ≤ i ≤ 28. The nodes that produced an output
terminate and any edges incident to them are removed from the graph.

Next, all nodes collect their 4-hop neighborhood to decide whether they are in a component
of diameter ≥ 3 or not, and if not then whether they are in an isolated component.

The components of diameter ≥ 3 and the non-isolated components compute the recon-
figuration schedule of 18 steps, as given in Lemma 8, which we denote by S′0, . . . , S′18. The
isolated components of diameter ≤ 3 compute the reconfiguration schedule of 10 steps, as
given in Lemma 9, which we denote by S′′0 , . . . , S′′10.

Formally, the (α, β, P )-reconfiguration schedule is now Si = S′′0 ∪ S′i ∪ Vα,β for 0 ≤ i ≤ 18
and Si = S′′i−18 ∪S′18 ∪Vα,β for 18 ≤ i ≤ 28. It is computed within O(MIS + R32) rounds. J

4 MIS reconfiguration in a constant number of rounds

I Theorem 4 (formal). Let P be the property of (V,E,U) that says that U is a (2,4)-ruling
set. For any graph G = (V,E) and any input Ginput = (V,E, α), Goutput = (V,E, β) to
the MIS-reconfiguration problem, there exists an (α, β, P )-reconfiguration schedule of length
Θ(f(n)), where f(n) is the largest identifier among the nodes in the graph, which can be
found in O(1) rounds.

To prove this, we first prove the following lemma, stating that we can always reconfigure
locally an independent set to add elements from β without losing any element in α ∩ β.

1 You can find all the missing proofs in the full version of the paper [7].
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I Lemma 10. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set. For
any graph G = (V,E) of diameter greater than 5, two MIS α and β and v ∈ β \ α, there
exists an MIS γ such that
1. (α ∩ β) ⊂ γ and v ∈ γ, and
2. there exists an (α, γ, P )-reconfiguration schedule of length 6. Moreover, for finding

the reconfiguration schedule the nodes only need to know the topology of their 5-hop
neighborhood and therefore can be found in O(1) rounds.

Lemma 10, means that for any element v in β, we can add v to the current MIS in a
constant number of steps without losing any element of β already in the MIS. It allows us to
prove Theorem 4 as follows.

Proof of Theorem 4. Nodes use their identifiers to know when to start their own reconfig-
uration. A node with identifier k uses slots [6k + 1, 6(k + 1)] for its schedule. Since a node
only needs to know its 5-hop neighborhood, this completes in O(1) rounds. J

If the identifiers are guaranteed to be {1, . . . , n} then Theorem 4 gives that a constant
number of rounds is sufficient for a linear length schedule. However, we can do even better
by using coloring algorithms, as stated in the following corollary.

I Corollary 11. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set.
For any graph G = (V,E) and any input Ginput = (V,E, α), Goutput = (V,E, β) to the
MIS-reconfiguration problem, if the nodes are given a k-coloring of G10, then there exists an
(α, β, P )-reconfiguration schedule of length O(k), which can be found in O(1) rounds.

5 A complete characterization for the existence of a reconfiguration
schedule with 4-domination

The following gives an exact characterization of inputs for which there exists a reconfiguration
schedule with 4-domination. In what follows, we say that two sets of nodes U1 and U2 are
fully connected if every node in U1 is a neighbor of every node in U2. If U1 contains only a
single node, then we simply say that this node is fully connected to U2.

I Theorem 12. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set. For
any input Ginput = (V,E, α), Goutput = (V,E, β) to the MIS-reconfiguration problem, there
does not exists an (α, β, P )-reconfiguration schedule if and only if:
1. The sets α and β are fully connected.
2. Let εα (resp. εβ) be the set of ε-nodes that are fully connected to α (resp. β). Then all

the ε-nodes are in εα ∪ εβ.
3. Let G′ = (V ′ = εα ∪ εβ , E′ = EV ′), where EV ′ is the complementary of E restricted to

vertices of V ′. Then there is no path from εα \ εβ to εβ \ εα in G′.

6 Impossibility results for MIS reconfiguration

We show here two types of impossibility results. One is the necessity of 4-domination in
the sense that 3-domination cannot be obtained, and the other is the necessity of Ω(log∗ n)
rounds with 4-domination, even on bounded degree graphs where it matches the complexity
we provide in Corollary 6.
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Impossibility of MIS reconfiguration with 3-domination.

I Theorem 1. Requiring 3-domination for intermediate steps is costly:
1. There exists a class of inputs G = (V,E) with two MIS α and β such that there is no

reconfiguration schedule with 3-dominating intermediate steps.
2. There exists a class of inputs G = (V,E) with two MIS α and β such that any reconfigur-

ation schedule is of length Ω(n) and needs Θ(n) rounds to be found, if intermediate steps
must be 3-dominating.

Figure 1 White nodes are α-nodes, and grey nodes are β-nodes. For the graph on the top, there
is no schedule with 3-dominating sets. For the graph on the bottom, any schedule with 3-dominating
sets must be of linear length and requires a linear number of rounds to be found.

An Ω(log∗ n) lower bound for MIS reconfiguration with 4-domination.

I Theorem 3. For any fixed k, there exists a class of k-regular inputs G = (V,E) with two
MIS α and β such that any reconfiguration schedule of constant length with 4-domination
needs Θ(log∗ n) rounds to be found.

Figure 2 White nodes are α-nodes, grey nodes are β-nodes, and black nodes are ε-nodes. Here,
Ω(log∗ n) rounds are needed with 4-domination.

7 Discussion and Open Questions

This paper defines relevant constraints for finding a reconfiguration schedule of maximal
independent sets in a distributed setting. For constant-length schedules in bounded-degree
graphs we completely settle the required complexity, as we provide an algorithm completing
in Θ(log∗ n) communication rounds, and prove that no lower complexity exists. A main open
question that remains is: Can a better complexity be found for general graphs?

Our definition only uses addition and removal of elements to the intermediate independent
sets. We propose the following question: Can an efficient distributed reconfiguration schedule
be found if the system allows that intermediate steps are 3-dominating and the transitions
used can be any combination of addition, removal and Token Sliding?
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Finally, we used as a hypothesis that the given independent sets are maximal. Our
algorithm still works when the sets are not maximal, as it suffices to complete those. For
example, if we are given (2,4)-ruling sets (which is equivalent to the 4-domination condition of
P ), the problem is solved. An interesting question could be to generalize for other (a, b)-ruling
sets. What relation between a and b is needed to ensure that a schedule exists, and that it
can be found efficiently with a distributed algorithm?
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