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Abstract
The permutation language Pn consists of all words that are permutations of a fixed alphabet of size
n. Using divide-and-conquer, we construct a regular expression Rn that specifies Pn. We then give
explicit bounds for the length of Rn, which we find to be 4nn−(lg n)/4+Θ(1), and use these bounds to
show that Rn has minimum size over all regular expressions specifying Pn.
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1 Introduction

Given a regular language L defined in some way, it is a challenging problem to find good
upper and lower bounds on the size of the smallest regular expression specifying L. (In
this paper, by a regular expression, we always mean one using the operations of union,
concatenation, and Kleene closure only.) Indeed, as a computational problem, it is known
that determining the shortest regular expression corresponding to an NFA is PSPACE-
hard [12]. Jiang and Ravikumar proved the analogous result for DFAs [11]. For more recent
results on inapproximability, see [9].

For nontrivial families of languages, only a handful of results are already known. For
example, Ellul et al. [7] showed that the shortest regular expression for the language {w ∈
{0, 1}n : |w|1 is even} is of length Ω(n2). Here |w|1 denotes the number of occurrences of
the symbol 1 in the word w. (A simple divide-and-conquer strategy provides a matching
upper bound.) Chistikov et al. [4] showed that the regular language

{ij : 1 ≤ i < j ≤ n}

can be specified by a regular expression of size exactly n(blog2 nc + 2) − 2blog2 nc+1, and
furthermore this bound is optimal. Mousavi [13] developed a general program for computing
lower bounds on regular expression size for the binomial languages

B(n, k) = {w ∈ {0, 1}n : |w|1 = k}.

Let n be a positive integer, and define Σn = {1, 2, . . . , n}. In this paper we study the
finite language Pn consisting of all permutations of Σn. Thus, for example,

P3 = {123, 132, 213, 231, 312, 321}.
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We are interested in regular expressions that specify Pn. In counting the length of regular
expressions, we adopt the conventional measure of alphabetic length (see, for example, [6]):
the length of a regular expression is the number of occurrences of symbols of the alphabet
Σn. Thus, other symbols, such as parentheses and +, are ignored.

A brute-force solution, which consists of listing all the members of Pn and separating them
by the union symbol +, evidently gives a regular expression for Pn of alphabetic length n · n!.
This can be improved to n!

∑
0≤i<n 1/i! ∼ e · n! by tail recursion, where E(S) represents a

regular expression for all permutations of the symbols of S:

E(S) =
∑
i∈S

i(E(S − {i})); E(i) = i.

For example, for P4 this gives
1(2(34+43)+3(24+42)+4(23+32))+2(1(34+43)+3(14+41)+4(13+31))+

3(1(24+42)+2(14+41)+4(12+21))+4(1(23+32)+2(13+31)+3(12+21)).
Can we do better?

Ellul et al. [7] proved the following weak lower bound: every regular expression for Pn
has alphabetic length at least 2n−1. A slightly stronger bound of n2n−1 was also shown by
Agrawal et al. [1]. In this note we derive an upper bound through divide-and-conquer. We
then show that the regular expression this strategy produces is, in fact, actually optimal.
This improves the results from [7, 1].

The language Pn is of particular interest because its complement has short regular
expressions, as shown in [7]. For other results concerning context-free grammars for Pn,
see [7, 2, 3, 8]. Cho et al. [5] considered the related problem of determining the size of the
minimal DFA recognizing all permutations of a given finite language.

2 Divide-and-conquer

Consider the following divide-and-conquer strategy, as given by Agrawal et al. [1]. Let S be
an alphabet of cardinality n. We consider all subsets T ⊆ S of cardinality bn/2c. For each
subset we recursively determine a regular expression for the permutations of T , a regular
expression for the permutations of S − T , and concatenate them together. This gives

E(S) =
∑
T⊆S

|T |=bn/2c

(E(T ))(E(S − T )); E(i) = i. (1)

Finally, we define Rn = E(Σn).
Thus, for example, we get

R4 = (12+21)(34+43)+(13+31)(24+42)+(23+32)(14+41)+
(14+41)(23+32)+(24+42)(13+31)+(34+43)(12+21)

for P4.
The alphabetic length of the resulting regular expression Rn for all permutations of Σn is

then f(n), where

f(n) =


1, if n = 1;(

n

bn/2c

)(
f(bn/2c) + f(dn/2e)

)
, if n > 1.

The first few values of f(n) are given in the table below.
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n f(n)
1 1
2 4
3 15
4 48
5 190
6 600
7 2205
8 6720
9 29988
10 95760

It is sequence A320460 in the On-Line Encyclopedia of Integer Sequences [15].
It seems hard to determine a simple closed-form expression for f(n). Agrawal et al. [1]

show that f(n) ≤ 8 · 4n. We can roughly estimate f(n) as follows, at least when n = 2m is a
power of 2:

f(2m) = 2
(

2m

2m−1

)
f(2m−1)

= 2m
(

2m

2m−1

)(
2m−1

2m−2

)
· · ·
(

2
1

)
= 2m (2m)!

(2m−1)! (2m−2)! · · · 2! 1! .

Substituting the Stirling approximation n! ∼
√

2πn(n/e)n and simplifying, we get that f(2m)
is roughly equal to

42m

e−1π(1−m)/22−(m2−5m+6)/4.

To make this precise, and make it work when n is not a power of 2, however, takes more work.
The rest of the paper is organized as follows: in Section 3, we prove that our regular

expression is in fact optimal, assuming one result that is proven at the end of the paper.
In Section 4, we establish some inequalities related to Stirling’s formula. In Section 5,
we connect these inequalities to f(n) and obtain the estimate mentioned in the abstract.
Finally, in Section 6 we use our obtained bounds on f(n) to provide the missing piece in our
optimality proof.

3 Optimality

In order to show that our regular expression has minimum possible length, we use the
following property of f(n) that we prove in Section 6:

I Lemma 1. If n ≥ 1, then every integer 0 < k < n satisfies
(
n
k

)
(f(k) + f(n− k)) ≥ f(n).

Equality occurs if and only if k = bn/2c or k = dn/2e.

For n ≥ 1 and 1 ≤ k ≤ n!, define `(n, k) to be the minimum alphabetic length of a regular
expression specifying a subset of Pn, where the subset has cardinality at least k.

I Lemma 2. If n ≥ 1 and 1 ≤ k ≤ n!, then `(n, k)/k ≥ `(n, n!)/n! ≥ f(n)/n!.

ICALP 2019
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Proof. We prove this by induction over the lexicographical ordering of pairs (n, k). This is
easy for our base case n = k = 1, as the best regular expression is a single character. We
thus suppose n ≥ 2.

Consider a regular expression for a subset of Pn of cardinality at least k ≥ 1 that has
minimum alphabetic length. Clearly no such expression will involve ε or ∅. We now consider
the possibilities for the last (outermost) operation in the regular expression. Clearly the only
relevant possibilities are union and concatenation.

If the last operation is a union, then it is the union of two subsets of Pn of cardinalities
k1, k2 ≥ 1 where k1 + k2 ≥ k, and k1, k2 < k by minimality. Then we get

`(n, k)
k

≥ `(n, k1) + `(n, k2)
k1 + k2

≥ min
{
`(n, k1)
k1

,
`(n, k2)
k2

}
≥ `(n, n!)

n! ≥ f(n)
n! .

If the last operation is a concatenation, then it is the concatenation of two regular
expressions for subsets of Pn1 and Pn2 of cardinalities k1 and k2 respectively (possibly after
changing alphabets) where n1 + n2 = n and k1k2 ≥ k. By minimality, we have n1, n2, k1, k2
all positive, so n1, n2 < n. We now obtain

`(n, k)
k

≥ `(n1, k1) + `(n2, k2)
k1k2

≥ `(n1, n1!) + `(n2, k2)
n1! k2

≥ `(n1, n1!) + `(n2, n2!)
n1! n2!

≥ f(n1) + f(n2)
n1! n2!

= 1
n!

(
n

n1

)
(f(n1) + f(n− n1))

≥ 1
n!

(
n

bn/2c

)
(f(bn/2c) + f(dn/2e)) (by Lemma 1)

= f(n)
n! .

In both cases, we get the desired inequalities for these choices of n and k, completing
our induction. J

I Theorem 3. Let n ≥ 1. Over all regular expressions for the permutation language Pn,
the regular expression Rn given by our divide-and-conquer strategy achieves the minimum
alphabetic length.

Proof. By our construction from Section 2, the regular expression Rn specifies the entirety
of Pn and has alphabetic length f(n). We thus get the upper bound `(n, n!) ≤ f(n). By
Lemma 2, we have the matching lower bound `(n, n!) ≥ f(n). Thus, Rn has minimum
possible alphabetic length for a regular expression specifying Pn. J
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4 Analysis

In what follows we use ln to denote the natural logarithm, and lg to denote logarithms to
the base 2.

Define S : R>0 → R>0 to be the usual Stirling approximation [14]:

S(x) =
√

2πx(x/e)x.

I Lemma 4. For every x ≥ 1, we have the bounds

S
(
x+ 1

2
)2 ≤ S(x)S(x+ 1) ≤ e1/(2x)S

(
x+ 1

2
)2
.

Proof. The first two derivatives of lnS(x) are

d

dx
lnS(x) = 1

2x + ln x

d2

dx2 lnS(x) = − 1
2x2 + 1

x
,

and so we see that lnS(x) is convex (that is, its derivative is increasing) for all x > 1/2.
Thus, by Jensen’s inequality [10] and exponentiating, we obtain the lower bound

S(x)S(x+ 1) ≥ S
(
x+ 1

2
)2

for all x ≥ 1.
Now, using the mean value theorem twice, we get that

(lnS(x)) + 1
2µ ≤ lnS(x+ 1

2) (2)

lnS(x+ 1) ≤ (lnS(x+ 1
2)) + 1

2M, (3)

where

µ = inf
z∈[x,x+ 1

2 ]
(lnS(z))′ = 1

2x + ln x

M = sup
z∈[x+ 1

2 ,x+1]
(lnS(z))′ = 1

2(x+ 1) + ln(x+ 1).

Adding the inequalities (2) and (3), we get

(lnS(x)) + (lnS(x+ 1)) ≤ (2 lnS(x+ 1/2))− µ/2 +M/2

≤ (2 lnS(x+ 1/2)) + 1
2 ln(x+ 1

x
)

≤ (2 lnS(x+ 1/2)) + 1
2x.

This gives us the inequality

S(x)S(x+ 1) ≤ e1/(2x)S(x+ 1/2)2

for all x ≥ 1. J

ICALP 2019
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Next, for α ∈ R, define the function gα : R>0 → R>0 by

gα(x) = 4x

x(lg x)/4x
α.

Our goal is to show that f can be approximated by gα for some choice of α.

I Lemma 5. Let α > 0. Then for every x ≥ 4α we have

e−1/(2
√
x) 5

2gα(x+ 1
2) ≤ gα(x) + gα(x+ 1) ≤ e1/(2

√
x) 5

2gα(x+ 1
2).

Proof. We again compute the logarithmic derivative:

d

dx
ln gα(x) = α− (lg x)/2

x
+ ln 4.

For x ≥ 4α, this derivative is at most ln 4, so by the mean value theorem,

ln gα(x+ 1)− ln 2 ≤ ln gα(x+ 1
2) ≤ ln gα(x) + ln 2.

Exponentiating, we get

1
2gα(x+ 1) ≤ gα(x+ 1

2) ≤ 2gα(x). (4)

Next, we note that the derivative of ln x exceeds that of
√
x for 0 < x < 4 and is less for

x > 4. So, since ln 4 <
√

4, we have ln x <
√
x for all x > 0. Hence

d

dx
ln gα(x) = α

x
− ln x

2x ln 2 + ln 4

≥ ln 4−
√
x

(2 ln 2)x
≥ ln 4− 1/

√
x

for all x > 0. Thus, by the mean value theorem and exponentiating again, we get

1
2e

1/(2
√
x)gα(x+ 1) ≥ gα(x+ 1

2) ≥ 2e−1/(2
√
x)gα(x). (5)

We can now combine the inequalities (4) and (5) for x ≥ 4α to get

e−1/(2
√
x) 5

2gα(x+ 1
2) ≤ 1

2gα(x+ 1
2) + 2e−1/(2

√
x)gα(x+ 1

2)

≤ gα(x) + gα(x+ 1)

≤ 1
2e

1/(2
√
x)gα(x+ 1

2) + 2gα(x+ 1
2)

≤ e1/(2
√
x) 5

2gα(x+ 1
2),

which gives us both desired bounds. J

We now show an identity relating gα and S.

I Lemma 6. Suppose x > 0 and β > 0. If α = lg β + 1/4− (lg π)/2, then

β
S(2x)
S(x)2 gα(x) = gα(2x).
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Proof. We have

β
S(2x)
S(x)2 gα(x) = β

√
4πx(2x/e)2x

(
√

2πx(x/e)x)2
4x

xlg x/4x
α

= β
4x√
πx

4x

xlg x/4x
α

= 2lg β+1/4

π1/2x1/4x1/421/4
42x

xlg x/4x
α

= 2lg β+1/4−lgπ/2 42x

2(1+lg x)/4x(1+lg x)/4x
α

= 42x

(2x)(lg 2x)/4 (2x)α

= gα(2x). J

5 Bounds on f(n)

In this section we obtain an estimate for f(n), the size of the optimal regular expression
for Pn.

I Theorem 7. For all n ≥ 1 we have

0.195 4n

n(lgn)/4n
5/4−(lgπ)/2 ≤ f(n) ≤ 1

4
4n

n(lgn)/4n
(lg 5)−3/4−(lgπ)/2.

Further, when n is a power of two, we get the following upper bound, matching the general
lower bound.

f(n) ≤ 1
4

4n

nlgn/4n
5/4−(lgπ)/2.

Proof. Recall the Stirling approximation

e1/(12n+1)S(n) ≤ n! ≤ e1/12nS(n); (6)

see [14]. Now suppose that f(n) ≤ rngα(n) and f(n + 1) ≤ rn+1gα(n + 1), where n ≥
max{1, 4α}, for some non-decreasing function r : N→ R>0. Then by combining Lemma 4,
Lemma 5, and equation (6), we get

f(2n+ 1) =
(

2n+ 1
n

)
(f(n) + f(n+ 1))

≤ e
1

12(2n+1)−
1

12n+1−
1

12(n+1)+1
S(2n+ 1)

S(n)S(n+ 1)(rngα(n) + rn+1gα(n+ 1))

≤ 5
2rn+1e

1/(2
√
n) S(2n+ 1)
S(n+ 1/2)2 gα(n+ 1/2)

and

f(2n) =
(

2n
n

)
(f(n) + f(n))

≤ 2rne
1

12(2n)−2 1
12n+1

S(2n)
S(n)2 gα(n)

≤ 2rn
S(2n)
S(n)2 gα(n).

ICALP 2019
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For the case where n is a power of two only, we use β = 2 and rn = C, we set

α = lg β + 1/4− (lg π)/2 = 5/4− (lg π)/2,

so α > 0 and 4α < 2. Now Lemma 6 gives us the identity 2S(2x)
S(x)2 gα(x) = gα(2x). Then by

induction we have f(n) ≤ Cgα(n) for all n ≥ 1, where C is any constant that satisfies this
bound for n < 4. In particular, C = 1

4 works, so we have f(n) ≤ 1
4g5/4−lgπ/2(n) for all n ≥ 1

that are powers of two.
Next, for general n, we use β = 5/2 and rn = Ce

−
√

5
(4−
√

10)
√

n , we set

α = lg β + 1/4− lg π/2 = lg 5− 3/4− lg π/2,

so α > 0 and 4α < 4. Now Lemma 6 gives us the identity 5
2
S(2x)
S(x)2 gα(x) = gα(2x). For

n ≥ 4, we get

rn+1e
1/(2
√
n) = Ce

1
2
√

n
−

√
5

(4−
√

10)
√

n+1

≤ C(e
1√
n )

1
2−

√
5

4−
√

10

√
4√
5

= C(e
1√
n )−

√
10

2(4−
√

10)

= Ce
−

√
5

(4−
√

10)
√

2n

≤ r2n+1.

Easily, we also get 2rn ≤ 5
2r2n. Thus, by induction we have f(n) ≤ rngα(n) for all n ≥ 12,

where C is chosen to make this work for 12 ≤ n < 24. In particular, C = 1
4 works again.

Further, since we have rn < C for all n ≥ 1, we also have f(n) ≤ 1
4glg 5−3/4−lgπ/2(n) for all

n ≥ 12. Finally, we check manually that this last inequality holds for 1 ≤ n < 12 too, and
thus for all n ≥ 1.

All that remains is the lower bound. We get similar recurrences, supposing f(n) ≥ rngα(n)
and f(n+ 1) ≥ rn+1gα(n+ 1), where n ≥ max{1, 4α} for some non-increasing r : N→ R>0.
Then by a similar argument as for the upper bounds, we have

f(2n+ 1) =
(

2n+ 1
n

)
(f(n) + f(n+ 1))

≥ 5
2rn+1e

1
12(2n+1)+1−

1
12n−

1
12(n+1) e−1/(2

√
n)e−1/(2n) S(2n+ 1)

S(n+ 1/2)2 gα(n+ 1/2)

≥ 5
2rn+1e

−1/(2
√
n)−2/(3n) S(2n+ 1)

S(n+ 1/2)2 gα(n+ 1/2)

and

f(2n) =
(

2n
n

)
(f(n) + f(n))

≥ 2rne
1

24n+1−
2

12n
S(2n)
S(n)2 gα(n)

≥ 2rne−1/(6n)S(2n)
S(n)2 gα(n).

This time, we set β = 2 with rn = Ce1/3n (indeed non-increasing), and α = 5/4 − lg π/2,
noting 4α < 4. Now for n = 16, we have ln 5

4 ≥
17
96 = 1

2
√
n

+ 5
6n . Since this right-hand side is

non-increasing in n, we in fact have ln 5
4 ≥

1
2
√
n

+ 5
6n for all n ≥ 17 too. This implies

5
2rn+1e

−1/(2
√
n)−2/(3n) = 2Celn 5

4 + 1
3(n+1)−

1
2
√

n
− 5

6n + 1
6n

≥ 2Ce
1

3(n+1) + 1
6n

≥ 2r2n+1.



A. Molina Lovett and J. Shallit 121:9

Further, 2rne−1/6n = 2r2n, so by induction we have f(n) ≥ rngα(n) for all n ≥ 17, where
C is chosen to satisfy this bound for 17 ≤ n < 34. In particular, C = 0.195 works. Since
rn > C for all n ≥ 17, we also have f(n) ≥ 0.195g5/4−lgπ/2(n) for all n ≥ 17. Finally, we
check manually that this works for all 1 ≤ n < 17 too, and thus for all n ≥ 1. J

6 Optimality revisited

We now give a simple lower bound on the growth of f .

I Lemma 8. We have f(n+ 1) ≥ 3f(n) for all n ≥ 1.

Proof. We prove this by induction on n. It is easy to verify the base case f(2) = 4 ≥ 3 = 3f(1).
Otherwise n > 1. Suppose the desired inequality holds for all smaller values of n. If n ≥ 2 is
odd, then let 1 ≤ m < n satisfy 2m+ 1 = n. Then

f(n+ 1) = f(2m+ 2)

= 2
(

2m+ 2
m+ 1

)
f(m+ 1)

= 22m+ 2
m+ 1

(
2m+ 1
m

)
f(m+ 1)

=
(

2m+ 1
m

)
(f(m+ 1) + 3f(m+ 1))

≥
(

2m+ 1
m

)
(3f(m) + 3f(m+ 1))

= 3f(2m+ 1)
= 3f(n).

Otherwise, if n ≥ 2 is even, then let 1 ≤ m < n satisfy 2m = n. We note that 4m+2 ≥ 3m+3,
so 2 2m+1

m+1 ≥ 3. We then have

f(n+ 1) = f(2m+ 1)

=
(

2m+ 1
m

)
(f(m) + f(m+ 1))

= 2m+ 1
m+ 1

(
2m
m

)
(f(m) + f(m+ 1))

≥ 2m+ 1
m+ 1

(
2m
m

)
(f(m) + 3f(m))

= 22m+ 1
m+ 1 f(2m)

≥ 3f(2m)
= 3f(n). J

Armed with this inequality and the bounds given by Theorem 7 of Section 5, we are
ready to complete our proof of the optimality of Rn. We recall Lemma 1, which is what we
have left to show:

I Lemma 1. If n ≥ 1, then every integer 0 < k < n satisfies
(
n
k

)
(f(k) + f(n− k)) ≥ f(n).

Equality occurs if and only if k = bn/2c or k = dn/2e.

ICALP 2019



121:10 Optimal Regular Expressions for Permutations

Proof. We easily check the cases n < 12 by hand. Let n ≥ 12 be arbitrary. It suffices to
consider the cases where k ≤ bn/2c, as those where k ≥ dn/2e are symmetric. Equality for
the case k = bn/2c is given by the definition of f(n).

Suppose that n/6 ≤ k < bn/2c. Then n > 9, so 3n− 3 > 2n+ 6. Hence we get
n/2− 1/2
n/2 + 3/2 > 2/3

and so
bn/2c
dn/2e+ 1 > 2/3. (7)

Also, from k ≥ n/6 we get 3k + 3 ≥ dn/2e+ 2, and so
k + 1
dn/2e+ 2 ≥ 1/3. (8)

Then(
n

k

)
(f(k) + f(n− k))

≥
(
n

k

)
f(n− k)

≥
(
n

k

)
3bn/2c−k f(dn/2e) (by Lemma 8)

≥ 3bn/2c−k
(
n

k

)
f(bn/2c) + f(dn/2e)

2

= 3bn/2c−k

2
∏

k≤j<bn/2c

j + 1
n− j

(
n

bn/2c

)
(f(bn/2c) + f(dn/2e))

= 3bn/2c−k

2

∏
k<j≤bn/2c j∏
dn/2e<j≤n−k j

f(n)

= 3bn/2c−k

2
bn/2c
dn/2e+ 1

∏
k+1≤j≤bn/2c−1 j∏
dn/2e+2≤j≤n−k j

f(n)

>
3bn/2c−k

2 (2/3)
∏

1≤j≤bn/2c−k−1

k + j

dn/2e+ 1 + j
f(n) (by (7))

≥ 3bn/2c−k−1
(

k + 1
dn/2e+ 2

)bn/2c−k−1
f(n)

≥ 3bn/2c−k−1 (1/3)bn/2c−k−1 f(n) (by (8))
= f(n).

Next, suppose 1 ≤ k < n/6. Then 4k < n− n/3 and so 4 < n−1
k . Then if k > 1,(

n

k

)
= n

∏
2≤j≤k

n− 1− k + j

j

≥ n
(
n− 1
k

)k−1

≥ n4k−1.
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We note also that
(
n
1
)

= n40, so we have
(
n
k

)
≥ n4k−1 for all 1 ≤ k < n/6. We note from our

proof of Lemma 5 that the derivative of ln gα(x) is at most ln 4 for x ≥ 4α. In particular, for
α = 5/4 − lg π/2, this derivative is at most ln 4 for all x ≥ 2, and so 4kgα(n − k) ≥ gα(n)
here (as n− k > 5n/6 ≥ 10). Thus(

n

k

)
(f(k) + f(n− k))

≥
(
n

k

)
f(n− k)

≥ n4k−1 (0.195g5/4−lgπ/2(n− k)
)

(by Theorem 7)

≥ n4k−1
(

0.195
g5/4−lgπ/2(n)

4k

)
= 0.195n1

4g5/4−lgπ/2(n)

= 0.195n1
4n

2−lg 5glg 5−3/4−lgπ/2(n)

≥ 0.195n3−lg 5f(n) (by Theorem 7)

> f(n) (since n ≥ 12 > 0.195−
1

3−lg 5 ). J
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