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Abstract
The Weisfeiler-Leman (WL) dimension of a graph is a measure for the inherent descriptive complexity
of the graph. While originally derived from a combinatorial graph isomorphism test called the
Weisfeiler-Leman algorithm, the WL dimension can also be characterised in terms of the number
of variables that is required to describe the graph up to isomorphism in first-order logic with
counting quantifiers.

It is known that the WL dimension is upper-bounded for all graphs that exclude some fixed graph
as a minor [17]. However, the bounds that can be derived from this general result are astronomic.
Only recently, it was proved that the WL dimension of planar graphs is at most 3 [26].

In this paper, we prove that the WL dimension of graphs embeddable in a surface of Euler genus
g is at most 4g + 3. For the WL dimension of graphs embeddable in an orientable surface of Euler
genus g, our approach yields an upper bound of 2g + 3.
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1 Introduction

The Weisfeiler-Leman (WL) algorithm is a simple combinatorial graph isomorphism test.
The 1-dimensional version of the algorithm, also known as colour refinement and naive
vertex classification, is known since at least the mid 1960s, and it is used as a subroutine
in almost all practical graph isomorphism tools (see, for instance, [9, 25, 34, 35]), but also
in machine learning (see, for instance, [1, 22, 29, 37, 40]). The 2-dimensional version can
be traced back to an article by Weisfeiler and Leman that appeared 50 years ago [41]. It
is closely related to the algebraic theory of coherent configurations. The generalisation to
higher dimensions is due to Babai (see [6, 8]), and again it plays an important role as a
subroutine in graph isomorphism algorithms, albeit more on the theoretical side. Notably,
Babai uses the (logn)-dimensional version in his quasipolynomial isomorphism test [6].

The connection between the WL algorithm and logic was made by Immerman and
Lander [24] and Cai, Fürer, and Immerman [8]. They showed that two graphs are distinguished
by the k-dimensional WL algorithm if and only if they can be distinguished in the logic
Ck+1, the (k + 1)-variable fragment of first-order logic using counting quantifiers of the
form ∃≥mx. The connection between the WL algorithm and logical definability is at the
core of some of the most interesting developments in descriptive complexity theory (see, for
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example, [17, 23, 39]). Only recently, it has been noted that the WL algorithm (and thus
the finite-variable counting logic) has further surprising characterisations. In a breakthrough
paper, Atserias and Maneva [4] showed that the dimension k of the WL algorithm required to
distinguish two graphs corresponds to the level of the Sherali-Adams relaxation of the natural
integer linear program for graph isomorphism testing (also see [21, 33]). This spawned a lot of
work relating the WL algorithm to semidefinite programming [5, 38] and algebraic (Gröbner
basis) approaches [7, 13] to graph isomorphism testing. These results can also be phrased in
terms of propositional proof complexity. The latest facet of the theory is a characterisation
in terms of homomorphism counts of graphs of tree width k [10]. Various aspects of the
WL algorithm and its relation to logic have been studied in detail in recent years (see, for
instance, [2, 3, 12, 27, 28, 31]).

Cai, Fürer, and Immerman [8] proved that for every k there are non-isomorphic (3-
regular) graphs Gk, Hk of size O(k) that are not distinguished by the k-dimensional WL
algorithm. Thus, as an isomorphism test, the k-dimensional WL algorithm is incomplete.
But, in view of the wide variety of seemingly unrelated combinatorial, logical, and algebraic
characterisations of the algorithm, we are convinced that the structural information the
algorithm does detect is of fundamental importance. The basic parameter of the algorithm
is the dimension, corresponding to the number of variables in logical and the degree of
polynomials in algebraic characterisations. It yields a structural invariant called the WL
dimension of a graph G [17], defined to be the least k such that the k-dimensional WL
algorithm distinguishes G from every graph H not isomorphic to G (we say that k-WL
identifies G), or equivalently, the least k such that G can be characterised up to isomorphism
(or identified) in the logic Ck+1. It is also convenient to define the WL dimension of a class C
of graphs to be the maximum of the WL dimensions of all graphs in C if this maximum exists,
and ∞ otherwise. We see the WL dimension as a measure for the inherent combinatorial
or descriptive complexity of a graph or a class of graphs. We are mostly interested in the
relation between the WL dimension and other graph invariants.

Work in descriptive complexity shows that the WL dimension is bounded for many natural
graph classes, among them trees [24], graphs of bounded tree width [19], planar graphs [14],
graphs of bounded genus [15, 16], all graph classes that exclude some fixed graph as a minor
[17], interval graphs [30, 32], and graphs of bounded rank width [20]. However, most of these
results do not give explicit bounds on the WL dimension, and the bounds that can be derived
from the proofs are usually bad. Only recently, the second author of this paper, jointly with
Ponomarenko and Schweitzer, established an almost tight bound for planar graphs [26]: the
WL dimension of planar graphs is at most 3, and there are planar graphs of WL dimension 2.

In this paper, we establish bounds for graphs that can be embedded into an arbitrary
surface, for example, a torus or a projective plane. By the classification theorem for surfaces
(see [36, Theorem 3.1.3]), up to homeomorphism (that is, topological equivalence), all surfaces
fall into only two countably infinite families, the family (Sk)k≥0 of orientable surfaces and the
family (N `)`≥1 of non-orientable surfaces. For example, the sphere S0, the torus S1, and the
double torus S2 are the first three orientable surfaces, and the projective plane N1 and the
Klein bottle N2 are the first two non-orientable surfaces. The Euler genus eg(S) of a surface
S is 2k if S is homeomorphic to the orientable surface Sk, and ` if S is homeomorphic to
the non-orientable surface N `. We define the Euler genus of a graph G to be the least g such
that G is embeddable (that is, can be drawn without edge crossings) in a surface of Euler
genus g. Ssee Figure 1 for an example.

I Theorem 1. The WL dimension of the class of graphs of Euler genus g is at most 4g + 3.

For graphs embeddable in orientable surfaces, we can improve the bound further.
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Figure 1 Embedding of K5 into the torus.

I Corollary 2. The WL dimension of the class of graphs embeddable in an orientable surface
of Euler genus g is at most 2g + 3.

As mentioned above, it was first proved in [15] that the WL dimension of graphs of
bounded genus is bounded. A more detailed proof of the same result can be found in the
journal paper [16]. The proof of [16] only yields an asymptotically quadratic bound (in terms
of the genus) on the dimension, but neither of the two papers gives an explicit bound. It
seems that the proof of [15] gives a linear bound, albeit with a large constant factor of at least
80 (not all details are worked out there, so it is difficult to determine the exact bound). The
proof in both of these papers is based on the fact that sufficiently large graphs of minimum
degree at least 3, embedded in a surface, will have a facial cycle of length at most 6. The
proof we give here is completely different. It is based on the straightforward idea of removing
a non-contractible cycle to reduce the Euler genus and then using induction. The problem
with this idea is that we cannot define non-contractible cycles, but rather only families of
such cycles that may intersect in complicated patterns. Understanding these families leads to
significant technical complications, but in the end enables us to obtain a much better bound
than the simpler proofs of [15, 16]. Our proof is based on a simplified version of a construction
from [17, Chapter 15], applied there to graphs “almost embeddable” in a surface.

Outline of the Paper

In Section 2, we present the conventions as well as some topological notions and facts that we
use throughout the paper. In Section 3, we introduce the WL dimension and relate it to logic.
In Section 4, we present the graph-theoretic machinery that we need in the proof of our main
theorem. The proof is outlined in Section 5. The detailed proof is long and complicated and
can be found in [18], which also contains further material with respect to all other sections.

2 Preliminaries

2.1 Graphs

We use a standard graph terminology and notation. The only slightly unusual object is
our version of coloured graphs. In an arc-coloured graph, we colour both vertices and
orientations of edges. Formally, an arc-coloured graph is a graph G together with a function
χ : {(u, u) | u ∈ V (G)} ∪ {(u, v) | {u, v} ∈ E(G)} → C, where C is some set of colours. We
interpret χ(u, u) as the colour of the vertex u. Whenever we refer to coloured graphs in this
paper, we mean arc-coloured graphs.

ICALP 2019
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2.2 Topology

We have already discussed surfaces and their Euler genus in the introduction. In our pre-
sentation and notation, we follow [17, Chapter 9]. As an important notational convention,
we always use bold face letters to denote topological spaces. Many more details on surface
topology can be found in [17, 36], and in [11, Appendix B].

For a topological space X and a subset Y ⊆X, we define the boundary of Y in X to be
the set bdX(Y ) of all points x ∈ X such that every neighbourhood of x has a nonempty
intersection with both Y and X \Y . We omit the subscript X if the space, usually a surface,
is clear from the context.

A closed disk is a homeomorphic image of {x ∈ R2 | ‖x‖ ≤ 1} equipped with the usual
topology, and an open disk is a subspace of R2 homeomorphic to R2 (viewed as a topological
space). Let g be a simple closed curve in a surface S. Then g is contractible if it is the
boundary of a closed disk in S, otherwise g is non-contractible. If g is non-contractible, we
can obtain one or two surfaces of strictly smaller Euler genus by the following construction:
we cut the surface along g; what remains is a surface with one or two holes in it. Then we
glue a disk onto each hole and obtain one or two simpler surfaces.

It will be important for us to distinguish between graphs in their standard combinatorial
form – we refer to them as abstract graphs – and embedded graphs. The vertices of a graph
embedded in a surface S are points in S, and the edges are simple curves connecting the
vertices in such a way that they do not cross. If G is a graph embedded in S, we denote by
G the subset of S consisting of all points that are either vertices of G or contained in an
edge of G. The faces of G are the arcwise connected components of S \G.

We say that an abstract graph G is embeddable into a surface S if it is isomorphic to (the
underlying graph of) a graph embedded in S. The Euler genus eg(G) of a graph G is the
smallest g such that G is embeddable into a surface of Euler genus g. The graphs of Euler
genus 0 are precisely the planar graphs, because a graph is embeddable into the 2-sphere S0
if and only if it is embeddable into the plane R2. The class of all graphs of Euler genus at
most g is denoted by Eg.

A graph G is polyhedrally embedded in a surface S if G is embedded in S, 3-connected,
and every non-contractible simple closed curve g ⊆ S intersects G in at least three points.
Just like 3-connected graphs embedded in a plane, polyhedrally embedded graphs have many
nice properties that we will exploit here.

2.3 Logic

C is the extension of first-order logic FO by counting quantifiers ∃≥mx with the obvi-
ous meaning. C is only a syntactical extension of FO, because ∃≥mxϕ(x) is equivalent to
∃x1 . . . ∃xm

(∧
i 6=j xi 6= xj ∧

∧
i ϕ(xi)

)
. However, we are mainly interested in the fragments

Ck of C consisting of all formulae with at most k variables. If m > k, then ∃≥mx cannot be
expressed in the k-variable fragment of FO, this is why we add the counting quantifiers. The
logics Ck have played an important role in finite-model theory since the 1980s.

We often write ϕ(x1, . . . , x`) to indicate that the free variables of ϕ are among x1, . . . , x`.
(Not all of these variables are required to appear in ϕ.) Then for a graph G and vertices
u1, . . . , u` ∈ V (G), we write G |= ϕ(u1, . . . , u`) to denote that G satisfies ϕ if for all i the
variable xi is interpreted by ui. Moreover, we write ϕ[G, u1, . . . , ui, xi+1, . . . , x`] to denote
the set of all (`− i)-tuples (ui+1, . . . , u`) such that G |= ϕ(u1, . . . , u`).
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The width of a formula ϕ ∈ C is the maximum number of free variables of a subformula of
ϕ. Clearly, every formula in Ck has width at most k. An important observation that we often
use is that every C-formula of width at most k is equivalent to a Ck-formula. We denote the
set of all C-formulae of width at most k by Ck

w.

3 The WL Dimension

We start by reviewing the k-dimensional WL algorithm (for short: k-WL) for k ≥ 1.
The atomic type atp(G, ū) of a k-tuple ū = (u1, . . . , uk) of vertices of a (possibly coloured)

graph G is the set of all atomic formulae satisfied by these vertices. The exact encoding is not
important for us, the relevant property is that tuples ū = (u1, . . . , uk) and v̄ = (v1, . . . , vk)
of vertices of graphs G and H, respectively, have the same atomic type if and only if the
mapping ui 7→ vi is an isomorphism from the induced subgraph G[{u1, . . . , uk}] to the
induced subgraph H[{v1, . . . , vk}].

Now k-WL is the algorithm that, given a graph G, computes the following sequence of
“colourings” Ck

i of
(
V (G)

)k for i ≥ 0 until it returns Ck
∞ = Ck

i for the smallest i such that
for all ū, v̄ it holds that Ck

i (ū) = Ck
i (v̄) ⇐⇒ Ck

i+1(ū) = Ck
i+1(v̄). The initial colouring Ck

0
assigns to each tuple its atomic type: Ck

0 (ū) := atp(G, ū). In the (i+ 1)-st refinement round,
the colouring Ck

i+1 is defined by Ck
i+1(ū) :=

(
Ck

i (ū),Mi(ū)
)
, where, for ū = (u1, . . . , uk),

Mi(ū) is the multiset{{(
atp

(
G, (u1, . . . , uk, v)

)
, Ck

i (u1, . . . , uk−1, v),

Ck
i (u1, . . . , uk−2, v, uk), . . . , Ck

i (v, u2, . . . , uk)
) ∣∣∣ v ∈ V}}

We say that k-WL distinguishes two graphs G and H if there is some colour c in the range of
Ck
∞ such that the number of tuples ū ∈

(
V (G)

)k with Ck
∞(ū) = c is different from the number

of tuples v̄ ∈
(
V (H)

)k with Ck
∞(v̄) = c. We say that k-WL identifies G if it distinguishes G

from all graphs H not isomorphic to G. The WL dimension of G is the smallest k such that
k-WL identifies G.

In this paper, we reason about the WL dimension in terms of logic, using the following
theorem.

I Theorem 3 ([8, 24]). Let k ≥ 1. Let G and H be graphs, possibly coloured, and ū =
(u1, . . . , uk) ∈

(
V (G)

)k and v̄ = (v1, . . . , vk) ∈
(
V (H)

)k. Then the following are equivalent:
1. Ck

∞(ū) = Ck
∞(v̄);

2. G |= ϕ(u1, . . . , uk) ⇐⇒ H |= ϕ(v1, . . . , vk) for all Ck+1-formulae ϕ(x1, . . . , xk).

We say that a graph G is identified by the logic Ck if there is a sentence isoG ∈ Ck such
that for all graphs H we have H |= isoG if and only if H is isomorphic to G.

I Corollary 4. A graph has WL dimension k if and only if it is identified by Ck+1.

The WL dimension of the class of planar graphs is at most 3 [26]. Using the previous
corollary, we can re-phrase this as follows.

I Theorem 5 ([26]). For every planar graph G there is a C4-sentence isoG that identifies G.

ICALP 2019



117:6 A Linear Upper Bound on the WL Dimension of Graphs of Bounded Genus

4 Shortest Path Systems, Patches and Necklaces

Here we introduce the graph-theoretic machinery necessary to prove our main theorem.
Essentially, the definitions and results of this section are from [17, Chapter 15]. In fact,
things are simpler here because [17, Chapter 15] deals with graphs almost embedded in a
surface, whereas we only need to consider embedded graphs. Sometimes, we need to change
the definitions in order to improve the resulting bounds on the WL dimension later. Notably,
our necklaces play the role of the belts in [17], but the definition is slightly different. This
also requires an adaptation of the proof that reducing necklaces exist.

I Definition 6. Let G be a graph and u, u′ ∈ V (G). A shortest path system (sps) from u to
u′ is a family Q of shortest paths in G from u to u′ such that every shortest path from u to
u′ in the subgraph

⋃
Q∈QQ is contained in Q.

We let V (Q) :=
⋃

Q∈Q V (Q) and E(Q) :=
⋃

Q∈QE(Q) and G(Q) :=
(
V (Q), E(Q)

)
=⋃

Q∈QQ. We call Q trivial if |V (Q)| ≤ 2, that is, if G(Q) consists of a single vertex or a
single edge.

The height htQ(v) of v ∈ V (Q) is the distance from u to v. The vertices in
⋂

Q∈Q V (Q)
are the articulation vertices of Q. An articulation vertex v is proper if v 6= u and v 6= u′. We
denote the set of all articulation vertices of Q by art(Q).

For all u, u′ ∈ V (G) such that there is a path from u to u′ in G, the canonical sps from
u to u′ in G is the set QG(u, u′) of all shortest paths from u to u′ in G.

While shortest paths systems are defined with respect to abstract graphs, the following
notions are defined with respect to embedded graphs. For the rest of the section, we make
the following assumption.

I Assumption 7. G is a graph polyhedrally embedded in a surface S of Euler genus g ≥ 1.

I Definition 8. A patch in G is an sps Q in G such that:
(i) Q has no proper articulation vertices.
(ii) There is a closed disk D ⊆ S such that G(Q) ⊆D. y

It can be shown that if Q is a non-trivial patch (i.e., a patch that does not consist of just
a single vertex or a single edge), then there is a unique disk D(Q) such that G(Q) ⊆D(Q)
and there is a cycle C(Q) ⊆ G(Q) such that bd

(
D(Q)

)
= C(Q). Furthermore, there are two

paths Q,Q′ ∈ Q such that C(Q) = Q ∪Q′.
We call a subgraph H ⊆ G simplifying if every connected component of G\H is contained

in Eg−1. Otherwise, H is non-simplifying.

I Lemma 9 ([17], Corollary 15.3.5). For every non-simplifying subgraph H ⊆ G, there is
exactly one connected component A∗ of G \ H with A∗ /∈ Eg−1, and all other connected
components are planar.

A patch Q is simplifying if the graph G(Q) is. It turns out that non-simplifying patches
form the basic building blocks of our theory. Let Q be a non-trivial non-simplifying patch.
Let A∗ be the unique connected component of G \V (Q) that is not planar (the existence and
uniqueness of A∗ follows from Lemma 9). Then we define G/A∗ to be the graph obtained
from G by contracting the subgraph A∗ to a single vertex a∗. By [17, Corollary 15.4.5], G/A∗
is a 3-connected planar graph. Figure 2 displays a schematic view of a patch Q with some
attached (planar) connected components as well as the non-planar component A∗, the disk
D(Q), and the boundary cycle C(Q).
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u′

u

A∗
C(Q)

u′

u

a∗
C(Q)

Figure 2 Left: A patch Q with non-planar component A∗ and boundary cycle C(Q). The curve
C(Q) is the boundary of the disk D(Q), which consists of the light gray and medium gray areas.
Right: the (planar) factor graph G/A∗.

We define the internal graph of a non-trivial non-simplifying patch Q to be the graph
I := I(Q) with vertex set V (I) := V (G)∩D(Q) and edge set E(I) := {e ∈ E(G) | e ⊆D(Q)}.
Note that C(Q) ⊆ I. The definitions of the graphs C(Q) and I(Q) do not only depend on
the abstract graph G and the sps Q, but on the embedding of G in S. However, it can be
proved that actually the graphs are invariant under embeddings.

I Lemma 10 ([17]). Let Q be a non-trivial non-simplifying patch in G. Let G′ be a graph
embedded in a surface S′ of Euler genus g such that G and G′ are isomorphic (as abstract
graphs), and let f be an isomorphism from G to G′. Then Q′ := f(Q) is a non-simplifying
patch in G′, and it holds that f

(
C(Q)

)
= C(Q′) and f

(
I(Q)

)
= I(Q′).

This follows from [17, Lemma 15.4.10]. Intuitively, the reason why this holds is that the
3-connected planar graph G/A∗ has a “unique” embedding.

I Corollary 11. Let u, u′ ∈ V (G) and Q := QG(u, u′) such that Q is a non-trivial non-
simplifying patch. Let f be an automorphism of G such that f(u) = u and f(u′) = u′. Then
f
(
C(Q)

)
= C(Q) and f

(
I(Q)

)
= I(Q).

We remark that the analogue of Corollary 11 for simplifying patches does not hold (see
[18, Figure 4]). The analysis of simplifying patches is much more involved, and we defer the
reader to [18].

The final objects we define in this section are necklaces.

I Definition 12. A necklace in G is a tuple B := (u0,Q0, u1,Q1, u2,Q2), where u0, u1, u2 ∈
V (G) and Qi = QG(ui, ui+1) (indices taken modulo 3) is the canonical sps from ui to ui+1,
such that the following conditions are satisfied for every i ∈ {0, 1, 2}:

u0, u1, u2 are pairwise distinct.
V (Qi) ∩ V (Qi+1) = {ui+1} (indices modulo 3).
There is a disk Di ⊆ S such that G(Qi) ⊆Di. y

For a necklace B := (u0,Q0, u1,Q1, u2,Q2) we write V (B) for the set
⋃2

i=0
⋃

Q∈Qi V (Q)
and E(B) for

⋃2
i=0
⋃

Q∈Qi E(Q), and we let G(B) :=
(
V (B), E(B)

)
. Moreover, we define the

set of articulation vertices of B to be art(B) :=
⋃2

i=0 art(Qi).

I Definition 13. A necklace B := (u0,Q1, u1,Q2, u2,Q3) is reducing if there are paths
Qi ∈ Qi such that B := Q1 ∪Q2 ∪Q3 is a non-contractible cycle. y

ICALP 2019
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u1

u0

u2

u0
1

Figure 3 A necklace on a torus section.

We can think of a reducing necklace as a necklace around a handle of our surface (or a
crosscap of the surface in the non-orientable case). The beads of the necklace are the disks of
the patches that form the necklace. Figure 3 shows a necklace on a torus with articulation
vertices u0, u0

1, u1, u2.

I Lemma 14 (Necklace Lemma). G has a reducing necklace.

Essentially, this is [17, Lemma 15.5.8], with the necklaces corresponding to the belts there.
But since apart from a renaming, we have also slightly changed the content of the definition
of a necklace/belt, the proof needs to be adapted, too. Again, we defer the reader to [18].

5 Upper Bound on the WL Dimension

In this section, we give an outline of the proof of our main theorem (Theorem 1). The full
proof can be found in [18].

By the correspondence between k-WL and the logic Ck+1 stated in Corollary 4, we need
to prove that every graph of Euler genus at most g can be identified by a C4g+4-sentence.
The proof is by induction on g. The base step g = 0 is Theorem 5.

For the inductive step, we make the following assumption.

I Assumption 15. g ≥ 1, and there is a natural number s ≥ 4 such that every graph in Eg−1
can be identified by a Cs-sentence.

We shall prove that every graph in Eg can be defined by a Cs+4-sentence. Then Theorem
1 follows by induction. After some fairly straightforward reduction steps, which include the
reduction to arc-coloured 3-connected graphs from [26], we find that it suffices to prove the
following lemma.

I Lemma 16. Let G be a coloured graph polyhedrally embedded in a surface S of Euler
genus g. Then there is a sentence isoG ∈ Cs+3 that identifies G.

For the rest of the section, we fix a positive integer n. The intended meaning of n is that
it is the size of the target graph G. At this point, we have fixed three numerical parameters:
the Euler genus g, the number s of variables required to identify graphs of smaller Euler
genus, and the order n.
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We start the proof by showing that basic objects such as shortest path systems, (pseudo-)
patches and (pseudo-)necklaces are definable in the logic Cs+3. The following lemma illustrates
the type of definability result we can expect, more of the same kind can be found in the full
version [18]. Instead of definability in Ck, we actually always study definability in Ck

w (see
Section 2.3) and exploit the fact that every Ck

w-formula is equivalent to a Ck-formula.

I Lemma 17. There are formulae csps-vert(x, x′, y) ∈ C3
w and csps-edge(x, x′, y1, y2) ∈ C4

w,
such that for all connected graphs G of order |G| ≤ n and all vertices u, u′ ∈ V (G),

csps-vert[G, u, u′, y] = V
(
QG(u, u′)

)
,

csps-edge[G, u, u′, y1, y2] = E
(
QG(u, u′)

)
.

Recall that QG(u, u′) is the canonical sps from u to u′, that is, the set of all shortest
paths from u to u′.

Proof. It is straightforward to define, for every k ≥ 0, a C3
w-formula dist=k(x, y) stating

that the distance between the vertices x and y is exactly k. Then we let csps-vert(x, x′, y) :=
n∨

k=0

(
dist=k(x, x′) ∧

k∨
i=0

(dist=i(x, y) ∧ dist=k−i(y, x′))
)
.

The formula csps-edge(x, x′, y1, y2) can be defined similarly. J

With a little more effort, we can prove the following lemma.

I Lemma 18. Let h < g. Then there is a formula csps-comp-genush(x, x′, y) ∈ Cs+2
w such

that for all connected graphs G of order |G| ≤ n and all u, u′, v ∈ V (G) the following holds.
Let Q := QG(u, u′), and let A be the connected component of v in G \ G(Q) (assuming
v 6∈ V (Q)). Then

G |= csps-comp-genush(u, u′, v) ⇐⇒ v 6∈ V (Q) and eg(A) ≤ h.

Proof. It follows from Assumption 15 that for every h < g, there is a sentence genush such
that for all graphs G of order |G| ≤ n, it holds that G |= genush ⇐⇒ eg(G) ≤ h. Indeed,
we can simply let genush be the disjunction of all sentences isoH identifying the graphs H
with eg(H) ≤ h and |H| ≤ n.

Using careful bookkeeping and some tricks to reduce the number of variables. we can
combine genush with the formulae defined in Lemma 17 to obtain the desired formula. J

I Corollary 19. There is a formula csps-simplifying(x, x′) ∈ Cs+2
w such that for all connected

graphs G ∈ Eg of order |G| ≤ n and all u, u′ ∈ V (G),

G |= csps-simplifying(u, u′) ⇐⇒ QG(u, u′) is simplifying.

The formulae we have defined so far make no reference to an embedding of the input graph.
However, if we want to talk about patches and necklaces, we need to take the embedding
into account. For the rest of the section, we fix a specific embedded graph G.

I Assumption 20. G is a coloured graph of order |G| = n that is polyhedrally embedded in a
surface S of Euler genus g.

It is our goal to construct a Cs+3
w -sentence that identifies G. The following lemma is a key

step towards this goal, and we find it worthwhile to go into some of the details of its proof.
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I Lemma 21. There are C7
w-formulae int-vert(x, x′, y) and int-edge(x, x′, y1, y2) such that

for all vertices u, u′ ∈ V (G) for which Q := QG(u, u′) is a non-trivial non-simplifying patch,
the following holds:

int-vert[G, u, u′, y] = V
(
I(Q)

)
,

int-edge[G, u, u′, y1, y2] = E
(
I(Q)

)
.

Intuitively, the lemma says that even though the logical formulae only have access to the
abstract graph and the disk of a patch and the internal graph depend on the embedding, we
can still define the internal graph. This is non-trivial and somewhat surprising.

Proof. Let u, u′ ∈ V (G) such that Q := QG(u, u′) is a non-trivial non-simplifying patch. Let
D := D(Q), C := C(Q), and I := I(Q) (see Section 4).

By Lemma 9, the graph G \ G(Q) has a unique non-planar connected component A∗.
Since we can detect the planar connected components using the fact that we can identify all
planar graphs in C4, we can also detect A∗ as the only non-planar component. This allows
us to construct a C7

w-formula astar(x, x′, y) such that astar[G, u, u′, y] = V (A∗).
Let v1 be a vertex in V (Q) that is adjacent to A∗ and among all such vertices has minimal

height in the sps Q, and let h be this height. Since A∗ is embedded outside of the disk D, the
vertex v1 must be on the boundary cycle C of D. There is at most one other vertex of height
h on this cycle. Thus, even though v1 is not unique, there are at most two choices. If there is a
second vertex of height h adjacent to A∗, let us call it v′1. Using the formula astar(x, x′, y) and
the fact that vertices of a certain height are definable in C3

w, we can construct a C7
w-formula

ϕ1(x, x′, y1) such that v1 and possibly v′1 are the only vertices in ϕ1[G, u, u′, y1].
Recall that G/A∗ denotes the graph obtained from G by contracting the connected

subgraph A∗ to a single vertex, which we call a∗, and that the graph G/A∗ is a 3-connected
planar graph. By Whitney’s Theorem, the facial subgraphs (i.e., the subgraphs induced by
the boundaries of the faces of an embedding) of a 3-connected plane graph are precisely
the chordless non-separating cycles. In particular, they are independent of the embedding.
Furthermore, every edge is contained in exactly two of these facial cycles. Let us consider
the edge v1a

∗ in the graph G/A∗. Let F and F ′ be the two facial cycles that contain this
edge. Both F and F ′ contain exactly one neighbour of a∗ distinct from v1. Let v2, v

′
2 be

these neighbours.
By [26, Lemma 22], if we have a 3-connected planar graph H and three vertices w1, w2, w3

on a common facial cycle, then after individualising these three vertices, the 1-dimensional
WL algorithm computes a discrete colouring, i.e., a colouring in which every vertex has its
own unique colour. By Theorem 3, this implies that for every vertex w of H there is a formula
ψH,w(z1, z2, z3, y) ∈ C5

w such that ψH,w[H,w1, w2, w3, y] = {w}. We apply this to the graph
G/A∗ and the three vertices a∗, v1, v2 and obtain, for every vertex w ∈ V (G/A∗) = (V (G) \
V (A∗))∪{a∗}, a formula ψw(z∗, y1, y2, y) ∈ C5

w such that ψw[G/A∗, a∗, v1, v2, y] = {w}. From
this formula and the formula astar(x, x′, y) we can construct a C7

w-formula ψ̃w(x, x′, y1, y2, z)
such that ψ̃w[G, u, u′, v1, v2, z] = {w}. (Unfortunately, this construction is quite tedious;
details can be found in [18].)

Since A∗ ∩D = ∅, we have V (I) = V (G) ∩D ⊆ V (G \A∗). We let

δ(x, x′, y1, y2, z) :=
∨

w∈V (I)

ψ̃w(x, x′, y1, y2, z).

Then δ[G, u, u′, v1, v2, z] = V (I). Thus δ(x, x′, y1, y2, z) is almost the formula int-vert(x, x′, y)
we want, except that it has two additional parameters v1, v2, which we have to get rid of.
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We apply [26, Corollary 27], which says that the 3-dimensional WL algorithm determines
orbits in coloured 3-connected graphs. This means that it distinguishes two vertices if and
only if they belong to different orbits of the automorphism group of the given graph. It
follows that for every 3-connected planar graph H and for every orbit O of the automorphism
group of H, there is a formula ξH,O(y2) ∈ C4

w such that ξH,O[H, y2] = O.
To eliminate the parameter v2, we apply the corollary to the graph G/A∗, but only after

individualising the vertices a∗ and v1. That is, we modify the colouring such that each of
the two vertices gets its own colour and is thus fixed by all automorphisms. Let O2 be the
orbit of v2 in this coloured graph. By the definition of v2, either O2 = {v2, v

′
2} or O2 = {v2}.

Since the graph G/A∗ is 3-connected, by eliminating the colour relations for a∗ and v1
at the cost of new free variables z∗ and y1, we obtain a new formula ψ2(z∗, y1, y2) ∈ C6

w
such that ψ2[G/A∗, a∗, v1, y2] = O2. We can transform this formula ψ2 into a C7

w-formula
ψ̃2(x, x′, y1, y2) such that ψ̃2[G, u, u′, v1, y2] = O2. We let

δ′(x, x′, y1, z) := ∃y2
(
ψ̃2(x, x′, y1, y2) ∧ δ(x, x′, y1, y2, z)

)
.

If O2 = {v2}, then clearly δ′[G, u, u′, v1, z] = δ[G, u, u′, v1, v2, z] = V (I). So suppose that
O2 = {v2, v

′
2}, and let f be an automorphism of G with f(u) = u, f(u′) = u′, f(v1) = v1,

and f(v2) = v′2. By Corollary 11, we have f
(
V (I)

)
= V (I) and thus

δ[G, u, u′, v1, v
′
2, z] = δ[f(G), f(u), f(u′), f(v1), f(v2), z]

= f
(
δ[G, u, u′, v1, v2, z]

)
= f

(
V (I)

)
= V (I).

It follows that

δ′[G, u, u′, v1, z] = δ[G, u, u′, v1, v2, z] ∪ δ[G, u, u′, v1, v
′
2, z] = V (I).

So we have eliminated the parameter v2. To eliminate v1, we use a similar argument, which
gives us the formula int-vert(x, x′, y). The formula int-edge(x, x′, y1, y2) can be constructed
similarly. J

At this point, the proof of Lemma 16 branches into two cases.

Case 1: G does not contain any simplifying patches
By Lemma 14, the graph G contains a reducing necklace. We fix such a necklace B =
(u0,Q1, u1,Q2, u2,Q3). For this, it is sufficient to fix the three vertices u0, u1, u2, because
the Qi are canonical shortest path systems. We are going to define a subgraph Cut(B) of G
obtained from G by “cutting through the beads”. Since the necklace is reducing, the Euler
genus of every connected component of Cut(B) is at most g − 1 and we can identify it via a
Cs-sentence using Assumption 15. We colour Cut(B) in such a way that we can reconstruct
G and identify it.

Since in this case, there are no simplifying patches, we can define the internal graphs of
all patches that form the necklace using Lemma 21. The cut graph Cut(B) is obtained from
G by removing all trivial patches contained in B, all articulation vertices and the internal
graphs of all non-trivial patches contained in B. Since the necklace is reducing, there is a
non-contractible simple closed curve through the necklace, and we can choose this curve
such that it is disjoint from the cut graph. Thus, the cut graph is embeddable in the surface
obtained by cutting S along this non-contractible closed curve and therefore has smaller
Euler genus.

To prove that G is identified in the logic Cs+3
w , we need to show that for every graph Ĝ

that is not isomorphic to G, there is a Cs+3
w -sentence that distinguishes G and Ĝ. To prove
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this, we show that if G and Ĝ satisfy the same Cs+3
w -sentences, then they are isomorphic. We

use the fact that the necklace B is definable in G by C7
w-formulae using the three parameters

u0, u1, u2. The same formulae define some object B̂ in Ĝ. We call B̂ a “pseudo-necklace”. It is
not necessarily a necklace, because Ĝ is not necessarily an embedded graph and objects like
patches and necklaces, which depend on an embedding, do not exist in Ĝ. Nevertheless, from
the pseudo-necklace we can define a pseudo-cut graph Cut(B̂). Since Cut(B) is identified in
the logic Cs

w, we can show that Cut(B) and Cut(B̂) are isomorphic. Since we can reconstruct
G and Ĝ from the respective (pseudo-)cut graphs, we conclude that G and Ĝ are isomorphic.

Case 2: G contains a simplifying patch

This case sounds simpler than the first one: instead of a complicated necklace, here we
only need to remove a simplifying patch from our graph. The remaining pieces have smaller
Euler genus and thus can be identified in the logic Cs

w. Hence, all we need to do is colour
the pieces in such a way that we can reconstruct the original graph. The problem with
this line of reasoning is that simplifying patches have a much more complicated structure
than non-simplifying patches. For example, we cannot define the interior of a simplifying
patch in the same way as we did for non-simplifying patches in Lemma 21 since there is
not necessarily a non-planar connected component which marks the “outside region” of the
patch. Therefore, the idea of the proof is to remove the canonical sps and some interior parts
of the corresponding patch, which are actually interiors of non-simplifying subpatches and
thus definable by Lemma 21.

More precisely, we fix two vertices u and u′ such that Q := QG(u, u′) is a minimal simpli-
fying canonical patch in G, that is, a simplifying canonical patch all of whose proper canonical
subpatches are non-simplifying. We extend Q by the internal graphs of all proper subpatches
and obtain a graph J , which is actually embedded in the disk of Q and therefore planar.

Now we distinguish between two cases. If J \ {u, u′} is connected, the patch Q behaves
almost like a non-simplifying patch, and we can argue similarly as in Case 1. If J \ {u, u′}
is disconnected, the patch Q can be split into several so-called fibres. The subgraph J

contained in the fibres is definable in our logic when we fix one more particular vertex. In
fact, the subgraph contained in every single fibre is definable. We exploit this in order to
encode in the boundary vertices of the fibres the way in which the remainder of the graph is
attached to them, similarly as in Case 1, but due to the possibly complex structure of J a
lot more involved.

An improved bound in case the surface is orientable

The combination of Case 1 and Case 2 yields Theorem 1. Exploiting our inductive approach
further, we can deduce a better bound in case we know that the given graph is embeddable
in an orientable surface of Euler genus at most g, as stated in Corollary 2.

Proof of Corollary 2. The Euler genus of an orientable surface is always even. Suppose G is
a graph embeddable in an orientable surface of Euler genus g. Since the subgraphs obtained
by cutting through the beads are also embeddable in orientable surfaces of smaller Euler
genus, their Euler genus is at least 2 smaller than the Euler genus of G. Therefore, proceeding
inductively and redefining s to be the number of variables needed for graphs embeddable in
orientable surfaces of Euler genus at most g − 2, we can improve our bound from Theorem 1
to 2g + 3. J



M. Grohe and S. Kiefer 117:13

6 Concluding Remarks

The WL dimension is a measure for the combinatorial and descriptive complexity of a graph.
In view of its numerous, seemingly unrelated characterisations in terms of logic, algebra,
mathematical programming, and homomorphisms, we can arguably regard the WL dimension
as a natural and robust graph invariant.

We have proved an upper bound of 4g+ 3 for the WL dimension of graphs of Euler genus
g and showed that if G is known to be embeddable in an orientable surface of Euler genus g,
the bound improves to 2g + 3. The immediate remaining question is how tight our bound is.

We believe that by refining our arguments in some places it might be possible to reduce
the bound from Theorem 1 to 3g + 3 or even 2g + 3; any further improvement seems to
require substantial additional ideas. It is conceivable that the WL dimension of planar graphs
is 2. If this is the case, the additive term in our bound would automatically drop to 2.

In terms of lower bounds, using the so-called CFI construction [8], it is easy to prove a
linear lower bound of ε · g for the WL dimension of graphs of Euler genus g, albeit with a
rather small constant ε > 0. To close the gap between upper and lower bound, it may be
worthwhile to spend some effort on improving the lower bound.

Beyond graphs of bounded genus, we can try to determine the WL dimension of other
graph classes and tie the WL dimension to other graph invariants. A natural target would
be the class of all graphs that exclude the complete graph K` as a minor. We know that
the WL dimension of this class is bounded [17]. But even an exponential bound on the WL
dimension in terms of ` would be major progress.
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