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Abstract
We present an improved exponential time algorithm for Energy Games, and hence also for Mean
Payoff Games. The running time of the new algorithm is O

(
min

(
mnW,mn2n/2 logW

))
, where n

is the number of vertices, m is the number of edges, and when the edge weights are integers of
absolute value at most W . For small values of W , the algorithm matches the performance of the
pseudopolynomial time algorithm of Brim et al. on which it is based. For W ≥ n2n/2, the new
algorithm is faster than the algorithm of Brim et al. and is currently the fastest deterministic
algorithm for Energy Games and Mean Payoff Games. The new algorithm is obtained by introducing
a technique of forecasting repetitive actions performed by the algorithm of Brim et al., along with
the use of an edge-weight scaling technique.
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1 Introduction

Energy Games (EGs) and Mean Payoff Games (MPGs) are simple and natural infinite-
duration games played on graphs that can be used to model quantitative properties of
interactive systems. They are also interesting as they are perhaps the most natural com-
binatorial problems that are in NP ∩ co-NP and yet not known to be in P or in BPP .
Mean Payoff Games (MPGs) were introduced by Ehrenfeucht and Mycielski [9]. Energy
Games (EGs) were introduced by Chakrabarti et al. [7] and later by Bouyer et al. [4] who
also showed their equivalence to MPGs.

Energy Games are games played by two players, player 0 and player 1, on a weighted
directed graph whose vertices are partitioned among the two players. The two players
construct an infinite path, that starts at a designated start vertex, in the following way.
The player controlling the end-point u of the path constructed so far extends the path by
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114:2 Energy Games

choosing an edge emanating from u. Let w1, w2, . . . be the weights of the edges on the
path constructed. Player 0 wins this play if lim infn→∞

∑n
i=1 wi > −∞, i.e., if there exists

an initial finite energy level c such that c +
∑n

i=1 wi ≥ 0, for every n ≥ 1. Player 1 wins
otherwise. Player 0 wins the game from an initial vertex u if she can ensure a winning play
from u, no matter what player 1 does. It is known that if player 0 can win from a certain
vertex, then she can also do it using a positional strategy, i.e., a deterministic strategy in
which the edge chosen depends only on the current vertex. Furthermore, she has a single
positional strategy using which she wins from all the vertices from which she can win. Solving
an EGs amounts to finding the winner from each vertex, and possibly an optimal positional
strategy and the minimal energy level required from every winning vertex.

Parity Games (PGs) form a very special sub-class of MPGs. In a recent breakthrough,
Calude et al. [6] obtained a deterministic quasipolynomial nO(log n)-time algorithm for
PGs, where n is the number of vertices. (Variants of their algorithm were obtained by
[3, 10, 13, 18, 21].) Unfortunately, these techniques do not seem applicable to MPGs and
EGs. (See [11].) The currently fastest algorithm for these games, as well as the more
general (turn-based) Stochastic Games (SGs), is a sub-exponential 2Õ(

√
n) ([1, 2, 16, 17, 23]).

These sub-exponential algorithms are based on randomized pivoting rules for the simplex
algorithm devised by Kalai [19, 20] and Matoušek, Sharir and Welzl [24]. The fastest
known deterministic algorithms for EGs and MPGs are the exponential O(mn2n logW )-time
algorithm of Lifshits and Pavlov [22],1 and a pseudo-polynomial O(mnW )-time algorithm of
Brim et al. [5].2 Polynomial time algorithms for EGs with very special weight structures
were obtained by Chatterjee et al. [8].

The simple and elegant O(mnW )-time algorithm of Brim et al. [5], henceforth referred
to as the BCDGR algorithm, is a progress measure lifting algorithm for solving EGs. MPGs
are essentially equivalent to EGs ([4]), hence the algorithm can also be used to solve MPGs.
The lifting technique used by Brim et al. is similar to the value iteration technique used by
Zwick and Paterson [26] on MPGs.

We present an improvement of the BCDGR algorithm that runs in O(min{mnW,
mn2n/2 logW})-time. The new algorithm is always as fast as the BCDGR algorithm and
strictly faster when W = ω(n2n/2). The running time of the new algorithm can be made to
be O(poly(n)2n/2), without any dependence on W , assuming that arithmetic operations on
integers of absolute value O(nW ) take constant time. (Details will appear in the full version
of the paper.) The new algorithm is currently the fastest deterministic algorithm for EGs
and MPGs when W ≥ n2n/2.

The new algorithm uses two new ideas. The first is a technique for predicting sequences
of update steps that are performed repetitively by the BCDGR algorithm, and achieving
the net effect of these repetitions much more quickly. To make this approach work, a
second idea, that of scaling, needs to be used. Scaling is a well-known technique used in
various combinatorial optimization problems such as shortest paths, flow problems, matching
problems etc. (See, e.g., [12, 14, 15].) A scaling algorithm first divides all edge weights by 2,
rounds them up so that they remain integers, solves the reduced problem recursively, and
then converts the solution of the reduced problem to a solution of the original algorithm.
It is quite natural to try to use the scaling technique on EGs or MPGs. However, naïve or

1 For solving EGs, and for deciding whether the values of a MPG are non-negative, the logW factor in
the running time of [22] is not needed.

2 Recently, Fijalkow et al. [11] gave an O(mn(nW )1−1/n)-time algorithm for solving MPGs. This, however,
is never asymptotically better than O(min{mnW,mn2n}), as W 1−1/n < 1

2W only if W ≥ 2n.
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direct approaches do not seem to give any improvement. To the best of our knowledge, the
algorithm presented here is the first algorithm that successfully uses scaling for speeding up
the solution of EGs and MPGs.

An EG, MPG or SG is said to be binary if the outdegree of each vertex is 2. It is known
that binary EGs, MPGs and SGs can be modeled as Acyclic Unique Sink Orientations
(AUSOs) (see, e.g., [23, 25]). Solving a game is then equivalent to finding the sink of the
associated AUSO. The fastest deterministic sink-finding algorithm runs in O(1.606n)-time.
Our new algorithm is faster than this algorithm and works for all games, not only binary.

The rest of the paper is organized as follows. In the next section we provide some
definitions and basic results and briefly review the algorithm of Brim et al. [5] on which
our new algorithm is based. In Section 3 we present our new algorithm. In the full version
of the paper we describe energy games on which the new algorithm requires Ω(2n/2) time,
showing that our analysis is essentially tight. We end in Section 4 with concluding remarks
and open problems.

2 Preliminaries

A game graph is a tuple Γ = (V0, V1, E, w), where V = V0 ∪ V1 is the set of vertices,
E ⊆ V × V is the set of edges, and w : E → Z is a weight function. We assume that
V0 ∩ V1 = ∅ and that each vertex has at least one outgoing edge. The sets V0 and V1 are the
sets of vertices controlled by player 0 and player 1. A positional strategy of player i is a mapping
σ : Vi → E such that for every v ∈ Vi we have (v, σ(v)) ∈ E. Given positional strategies
σ0, σ1 of player 0 and player 1 and an initial vertex v0, play(v0, σ0, σ1) = v0, v1, . . . , vi, . . . is
the infinite walk resulting from σ0 and σ1 starting at v0.

An Energy-Game is an infinite game on a game graph Γ. Player 0 wins from an
initial vertex v0 ∈ V if and only if there exists a positional strategy σ0, and a finite
energy level c = c(v0), such that for every positional strategy σ1 of player 1, we have
c+

∑n−1
i=0 w(vi, vi+1) ≥ 0, for every n ≥ 1, where play(v, σ0, σ1) = v0, v1, . . . .

We shall refer to a function f : V → N ∪ {∞} as a potential function.

I Definition 2.1. Let Γ = (V0, V1, E, w) be an energy-game. A function f : V → N ∪ {∞}
is a feasible potential iff for every v ∈ V :

if v ∈ V0, then f(v) + w(v, v′) ≥ f(v′) for some (v, v′) ∈ E.
if v ∈ V1, then f(v) + w(v, v′) ≥ f(v′) for all (v, v′) ∈ E.

We call the potential function g(v) = min{f(v) | f feasible potential} the solution of Γ.

Brim et al. [5] proved that g is a feasible potential and that player 0 wins from v if and
only if g(v) <∞, in which case g(v) is the minimal required initial energy.

Let Γ = (V0, V1, E, w) be an energy-game and let f : V → N∪{∞} be a potential function.
We denote by wf (u, v) = w(u, v) + f(u)− f(v) the modified weight of (u, v). An edge (u, v)
is valid with respect to f if wf (u, v) ≥ 0. A vertex v ∈ V0 (V1) is valid with respect to f if
(v, v′) is valid with respect to f for some (all) (v, v′) ∈ E, otherwise we say that v is invalid
with respect to f (we say just valid when f is clear from the context). An edge (v, v′) is
tight if wf (v, v′) = 0. A path p is tight if all its edges are tight. A vertex v ∈ V0 is tight if
it is valid and wf (v, v′) ≤ 0 for all (v, v′) ∈ E. A vertex v ∈ V1 is tight if it is valid and
wf (v, v′) = 0 for some (v, v′) ∈ E. We denote by in(u) and out(u) the sets of incoming and
outgoing edges from u, respectively.

ICALP 2019



114:4 Energy Games

2.1 The algorithm of Brim et al.
Brim et al. [5] suggested the following algorithm: maintain f : V → N ∪ {∞}, starting with
f ≡ 0. As long as there are invalid vertices, pick some invalid vertex v and increase f(v)
to the minimal value that would make v valid. It is known that if player 0 can win from a
certain vertex, then she can win with an initial energy of at most nW . Thus, if f(v) reaches
nW , we know that v is a losing vertex for player 0, and we can let f(v)←∞.

To efficiently find an invalid vertex, the algorithm maintains a list L of invalid vertices.
When f(v) of some invalid vertex v ∈ V is updated, the algorithm checks for every edge
(v′, v) ∈ in(v) that became invalid whether v′ is now also invalid. If v′ ∈ V1, then this is
the case, and v′ is added to L, if it is not already there. If v′ ∈ V0, then increasing f(v)
does not necessarily make v′ invalid, as v′ may have had other valid edges. The algorithm
maintains count[v′], the number of valid edges in out(v′). If (v′, v) was valid, then count[v′]
is decremented. If count[v′] becomes 0, then v′ is now invalid and it is added to L. It is not
hard to check that the running time of the resulting algorithm is O(mnW ), which is also
known to be tight.

2.2 A reduction to games with finite values
The description and the correctness proof of algorithms for solving EGs are often simplified if
it assumed that all vertices have finite values, i.e., are all winning for player 0. (This does not
trivialize the problem, as we still want to find the minimum energy level needed from each
vertex, and corresponding optimal positional strategies for the two players.) We describe a
simple reduction, inspired by a reduction of Björklund et al. [2], that shows that the solution
of a general EG can be reduced to the solution of an EG with finite values.

Let Γ = (V0, V1, E, w) be an EG, and let n = |V | and W = maxe∈E |w(e)|. Let f be the
solution of Γ. For every v ∈ V , we know that either 0 ≤ f(v) < nW , or f(v) = ∞. To
convert Γ into a game Γ′ in which all values are finite, we add a sink vertex s, with a self-loop
of weight 0, and add an edge (v, s) of weight −2nW for every v ∈ V0. This ensures that the
values of all vertices in V0 are finite. (In particular, their value is at most 2nW .)

To ensure that the values of all vertices in V1 are also finite, we need to perform a simple
preprocessing step. If u ∈ V1 and player 0 has a strategy for reaching a vertex of V0, starting
at u, then the value of u is also finite. We are thus left with vertices of V1 from which player 1
can win the game, i.e., reach a negative cycle, without leaving V1. It is easy to identify these
vertices and remove them from the game. The value of all remaining vertices is now finite.

If it is to player 0’s advantage to escape to the sink, she might as well do it without
closing any cycles. Player 0 can therefore gain at most (n− 1)W units of energy by following
original edges before deciding to take an edge to the sink. The energy needed in such a case
is therefore at least nW . We thus have:

I Lemma 2.2. Let Γ = (V0, V1, E, w) be an EG and let Γ′ be the EG obtained by the reduction
above. Let f and f ′ be the solutions of Γ and Γ′. Then, for every u ∈ V = V0 ∪ V1, we have

f(u) =
{
f ′(u) if f ′(u) < nW,

∞ otherwise.

Note that the reduction introduces only one new vertex which is important if we want to
use it in conjunction with exponential time algorithms. The maximal edge weight is increased
from W to 2nW , but this is not an issue if the running time of the algorithm depends only
logarithmically on W .
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Compute-Energy (V0, V1, E, w).
1 if w ≥ 0 then
2 return f ≡ 0
3 w′ ← dw

2 e
4 f ← Compute-Energy(V0, V1, E, w

′)
5 f, w′ ← 2f, 2w′
6 foreach v ∈ V do
7 foreach e ∈ out(v) do
8 if w′(e) > w(e) then w′(e)← w′(e)− 1
9 Update-Energy (V0, V1, E, w

′, f, v)
10 return f

Update-Energy (V0, V1, E, w, f, v).
1 if v ∈ V0 and ∀(v, u) ∈ E : wf (v, u) < 0 then L← {v}
2 if v ∈ V1 and ∃(v, u) ∈ E : wf (v, u) < 0 then L← {v}
3 foreach u ∈ V0 do
4 count[u]← |{u′ | (u, u′) ∈ E, wf (u, u′) ≥ 0}|
5 while L = {v} do
6 B ← {v}
7 Update(v, L,B)
8 while L \ {v} 6= ∅ do
9 pick u ∈ L \ {v}

10 Update(u, L,B)
11 ∆← Delta(B)
12 foreach u ∈ B do f(u)← f(u) + ∆

Figure 1 The main two functions of the new O
(
min

(
mnW,mn2n/2 logW

))
-time algorithm.

3 The new algorithm

We now describe our new algorithm. For simplicity, we assume that all the values in the
input game are finite. This can be achieved, for example, using the simple reduction above.
In the full version we show that the algorithm presented actually works, as is, even if some
values are infinite, but the correctness proof becomes slightly more complicated.

Given an EG Γ = (V0, V1, E, w), we construct a scaled down version Γ′ = (V0, V1, E, w
′ =

dw
2 e), where dw

2 e(e) = dw(e)
2 e, for every e ∈ E, and solve it recursively, obtaining the

solution f ′ of Γ′. (Note that Γ′ is “easier” for player 0 because of the rounding up. In
particular, if all values in Γ are finite, so are all the values in Γ′.) We now scale Γ′ back
up to Γ′′ = (V0, V1, E, 2dw

2 e). Note that f ′′ ≡ 2f ′ is the solution of Γ′′ and that Γ′′ is very
close to Γ: 2dw

2 e and w only differ, by 1, on edges e for which w(e) is odd. To convert f ′′
into a solution of Γ, we consider each vertex v ∈ V with odd outgoing edges, decrease the
corresponding edge weights in 2dw

2 e by 1, and update the solution f ′′ accordingly. (This is,
of course, the hardest part of the algorithm.) These operations are carried out by algorithms
Compute-Energy and Update-Energy given in Figure 1.

ICALP 2019
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Update(u, L,B).
1 L← L \ {u}
2 f(u)← f(u) + 1
3 if u ∈ V0 then count[u]← |{(u, u′) ∈ E | wf (u, u′) ≥ 0}|
4 foreach u′ ∈ in(u) such that wf (u′, u) < 0 do
5 if u′ ∈ V0 then
6 if wf (u′, u) = −1 then count[u′]← count[u′]− 1
7 if count[u′] = 0 then L← L ∪ {u′}, B ← B ∪ {u′}
8 if u′ ∈ V1 then L← L ∪ {u′}, B ← B ∪ {u′}

Delta(B).
1 p1 ← min

{
−wf (u, u′) | (u, u′) ∈ E(B ∩ V0, B̄)

}
2 p2 ← min

{
γ(u) | u ∈ B̄ ∩ V0,∀u′ ∈ B̄ wf (u, u′) < 0

}
3 p3 ← min

{
wf (u, u′) | (u, u′) ∈ E(B̄ ∩ V1, B)

}
4 return min {p1, p2, p3}

Figure 2 The remaining two function of the new O
(
min

(
mnW,mn2n/2 logW

))
-time algorithm.

Update-Energy updates the solution f after the decrease of the weights of some of the
edges emanating from v by 1. As in [5], Update-Energy maintains a list L of all vertices
that are currently invalid. Initially only v may be invalid. To quickly determine whether a
vertex u ∈ V0 becomes invalid, we maintain in count[u] the number of valid edges from u. A
vertex u ∈ V0 is thus invalid iff count[u] = 0.

Lines 1–2 of Update-Energy determine whether v is invalid. If v is valid, we are done.
Otherwise, we add v to L and fix v by increasing f(v) by 1. This makes v valid, but vertices u
with edges (u, v) may become invalid and need to be added to L. Updating v’s potential
and checking for new invalid vertices is carried out by Update given in Figure 2. If we fix
invalid vertices from L in an arbitrary order, as done by [5], we get the running time of [5].

The main point in which our algorithm differs from the algorithm of [5], in addition to
the use of scaling, is that we fix at first only invalid vertices different from v, delaying an
additional fixing of v, if required, by as much as possible. Lemma 3.2 below shows that no
vertex needs to be fixed twice, before v is fixed again.

If v does not become invalid again, then Update-Energy is done. Otherwise, let B be
the set of vertices, including v, updated until v is the only invalid vertex. (Lemma 3.2 shows
that this must eventually happen.) When we update v again, it could be that the same set
of vertices B will eventually become invalid, and hence updated, again. Furthermore, in
worst-case examples of [5], the same sequences of update operations may be repeated many
times. Instead of carrying out these updates again and again, we predict how many times
the same sequence of updates will be repeated and perform all these updates at once. This
approach seems to work only when the weights of edges are decreased by 1, which is why the
scaling idea needs to be used.

The computation of ∆, the number of repetitions of the current sequence, carried out by
Delta(B) in Figure 2, is based on the following observation. Let B be the set of vertices
that became invalid after updating v and let B′ be the set of vertices that became invalid
after updating v again. Assume B′ 6= B. If B′ \B 6= ∅, let u ∈ B′ \B be the first vertex in
B′ \ B that became invalid. It must be the case that at least one of u’s valid edges to B
became invalid. If u ∈ V1 this could be any edge from u, and if u ∈ V0 this edge is the edge
with maximal modified weight from u and u had no valid edges to B̄ ≡ V \B.
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Figure 3 Calculating Delta(B): Vertices in V0 are red squares; Vertices in V1 are blue circles.

If B \B′ 6= ∅, then (B \B′) ∩ V0 6= ∅. To see this, let v0 = v, v1, . . . be the vertices of B
in the order in which they were updated. Let vj be the first vertex in this order which is
not in B′. Vertex vj must have an invalid edge (vj , v`) such that ` < j. This edge became
invalid when we updated v` and caused the addition of vj to B. Since vj is the first vertex
which is not in B′, v` ∈ B′ and therefore the edge (vj , v`) becomes invalid when we collect B′
following the second update of v. So vj ∈ V0, as otherwise it should have been added to B′.
Vertex vj is not added to L since it has an edge (vj , w), w /∈ B that had a modified weight
of −1 that became 0 (i.e., valid) following the update of vj .

Therefore, to compute ∆, we must consider all valid edges from B̄ to B (to detect new
vertices that might become invalid) and all invalid edges from vertices in V0 ∩B to B̄, see
Figure 3. We refer to minimum and maximum of an empty set as ∞ and −∞, respectively.
We let ∆ = min{p1, p2, p3} were p1, p2 and p3 are defined as follows. The value p1 is minus
the maximum modified edge weight of an edge from B ∩ V0 to B̄. Note that p1 ≥ 0. To
define p2 consider every vertex u ∈ V0 ∩ B̄ that does not have a valid edge (u,w) to w ∈ B̄.
For every such u let γ(u) be the maximum modified weight of an edge (u,w), w ∈ B. Note
that γ(u) ≥ 0. We define p2 to be the minimum value of γ(u) over all such vertices u. The
value p3 is the minimum modified edge weight of an edge from V1 ∩ B̄ to B. Note that p2
and p3 are nonnegative. Pseudo-code of Delta(B) is given in Figure 2.

3.1 Correctness
As explained, we assume for simplicity that all values are finite. This assumption is removed
in the full version of the paper. The correctness of the new algorithm follows from the fact
that the potential function kept by the algorithm is always a lower bound on the values of
the vertices, and hence the updates performed are justified, as in the correctness proof of the
BCDGR algorithm. As the new algorithm predicts sequence of updates that are going to be
performed repeatedly, and performs all these repetitions at once, what remains to be shown
is that the predictions of the algorithm are correct.

I Lemma 3.1. Let Γ1 =
(
V0, V1, E, w

1), Γ2 =
(
V0, V1, E, w

2) be two games graphs with
solutions f1 and f2, respectively. If w1 ≤ w2 then f1 ≥ f2 (coordinate-wise).

It follows Lemma 3.1 that the solution of Γ′′ is a lower bound on the solution of the
original game Γ. All that remains, therefore, is to show that the updates performed by
Update-Energy are justified.

Let Update(v1≡v),Update(v2), . . . ,Update(vk) be the sequence of vertex updates
performed by Update-Energy(. . . , f, v). A round is one iteration of the outer while loop of
Update-Energy, i.e., all vertex updates starting with Update(v) until and not including
the next Update(v). We number the rounds starting from 1 and let fr be f at the end
of round r. For convenience, we define f0 ≡ f . We let Br be the set of vertices that were
updated during round r (“bad” vertices). Thus, Br is B at the end of round r of the outer
while loop of Update-Energy. Let Gr = Br = V \Br be the set of “good” vertices.

ICALP 2019



114:8 Energy Games

I Lemma 3.2. In each round, each vertex is updated at most once.

Proof. By contradiction, let u be the first vertex that joined L for the second time during a
round. We have that u 6= v by the definition of a round. Assume u ∈ V0. Since u 6= v (i.e., u
is valid at the beginning of the round), wf (u, u′) ≥ 0 for some vertex u′ at the beginning of
the round. From the beginning of the round until u’s second update, u′ is updated at most
once and u is updated exactly once so we have that wf (u, u′) ≥ 0 right before u’s second
update which is a contradiction (u is valid). A similar argument works when u ∈ V1. J

I Lemma 3.3. During Update-Energy, u ∈ L if and only if u is invalid.

Proof. By induction on the iterations of the algorithm. J

Note that vertices u that were never updated (in any call to Update-Energy) are those
with f(u) = 0. Also, note that every tight vertex u has at least one tight edge.

I Lemma 3.4. During Update-Energy, if u /∈ L and f(u) > 0, then u is tight.

Proof. Following an update, u becomes tight and it remains tight as long as it is valid. Since
f(u) > 0, u was updated and since u /∈ L, u is valid (Lemma 3.3). J

I Lemma 3.5. At the end of round r, every u ∈ (Gr \ {v | f(v) = 0}) ∩ V0 is tight and for
every tight edge (u, u′) it holds that u′ ∈ Gr. Also, there exists u′ ∈ Gr such that (u, u′) ∈ E
is tight during round r.

Proof. We prove the first part by contradiction. Let (u, u′) be a tight edge at the end of
round r such that u′ ∈ Br. Since u′ ∈ Br, u′ was updated during round r and therefore at
the beginning of round r it holds that wf (u, u′) > 0, so u was not tight at the beginning of
the round. This contradicts Lemma 3.4 that implies that u is always tight during round r.

We now prove the second part. Since u is tight during the round and in particular at
the end of the round, (u, u′) ∈ E is tight for some u′ at the end of the round. By the first
part of the Lemma u′ ∈ Gr. Thus, (u, u′) is tight during the entire round (since both f(u)
and f(u′) remain unchanged during the round). J

I Lemma 3.6. At the end of round r, if u ∈ (Br \ {v}) ∩ V1 and (u, u′) ∈ E is tight,
then u′ ∈ Br.

Proof. If u′ ∈ Gr then (u, u′) was invalid at the beginning of round r (since f(u) but not
f(u′) was increased during the round), and therefore u was invalid at the beginning of
round r, but only v is invalid at the beginning of each round, a contradiction. J

I Remark. Note that we cannot guarantee that u has a tight edge during the round (as in
Lemma 3.5). This is because when u becomes invalid, it might be the case that all of its
edges became invalid (u is ensured to have a tight edge only when it is valid).

The proof of the following lemma is given in the full version of the paper.

I Lemma 3.7. Consider round r. If we would have performed Update-Energy without
lines 11–12, then in the following ∆ rounds r + 1, ..., r + ∆ we would have Br = Br+i, for
1 ≤ i ≤ ∆, where ∆ is the value returned by Delta(B). Furthermore, if r + ∆ is not the
last round then Br+∆+1 6= Br.

As a consequence we get:

I Theorem 3.8. Update-Energy (V0, V1, E, w, f, v) updates f correctly.
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The rest of the lemmas in this section are used in the next section to bound the complexity
of the algorithm.

Let u be a valid vertex such that fr(u) > f0(u) (i.e., the potential of u was changed
at least once before the end of round r). We let tr(u) be the time right after the last
Update(u) that occurred before the end of round r. We remove the subscript r when it is
clear from the context.

I Lemma 3.9. At the end of round r, for any u ∈ Gr with fr(u) > f0(u):
1. If u ∈ V0 then for any tight edge (u, u′) with u′ ∈ Gr, either fr(u′) = f0(u′) or

tr(u′) < tr(u).
2. If u ∈ V1 then there exists a tight edge (u, u′) such that u′ ∈ Gr and tr(u′) < tr(u).

Proof. Note that since u ∈ Gr, tr(u) is before round r begins. We begin with the first part.
Let (u, u′) be such an edge. If fr(u′) = f0(u′) then we are done. Otherwise, u′ must have
been updated at least once (and therefore t(u′) is defined). Assume by contradiction that
t(u′) > t(u). Since (u, u′) is tight at the end of round r then wf (u, u′) > 0 at tr(u). This
contradicts Lemma 3.4 since at tr(u) it holds that u is valid and not tight.

We now prove the second part. Since u must be tight at t(u) there exists u′ ∈ V such
that (u, u′) is tight at t(u). Note that u′ must be valid from t(u) until the end of round r,
since otherwise u will become invalid after t(u′) which is a contradiction. Thus, u′ ∈ Gr and
t(u′) < t(u). Since u and u′ remain valid from t(u) until the end of round r, (u, u′) is tight
at the end of round r. J

I Lemma 3.10. At the end of round r the following holds for all u ∈ V :
1. If u ∈ Br then u has a tight path of vertices in Br to v.
2. If u ∈ Gr then u has a tight path of vertices in Gr to a vertex u′ with fr(u′) = f0(u′).

Proof. We begin by proving the first claim. Every vertex u ∈ Br, u 6= v joins L because of
some edge (u, u′) which is invalid after we update u′. This edge must be tight at the end
of the round. So each vertex u has a tight edge to a vertex u′ which was updated before u
during round r. This implies the first part.

We now prove the second claim. If fr(u) = f0(u) then we are done. Otherwise, assume
fr(u) > f0(u). We continue the proof by induction on t(u). Base case, t(u) is minimal
(i.e., u was updated first). By Lemma 3.9, u has a tight edge (u, u′) with u′ ∈ Gr such that
fr(u′) = f0(u′) (since t(u) is minimal) and we are done. Assume that the claim follows for
all vertices u′ with t(u′) < t(u). By Lemma 3.9, u has a tight edge (u, u′) with u′ ∈ Gr such
that either fr(u′) = f0(u′) or t(u′) < t(u). If fr(u′) = f0(u′) then we are done. Otherwise,
t(u′) < t(u) and therefore by the induction hypothesis, u′ has a tight path to some vertex u′′
with fr(u′′) = f0(u′′). J

3.2 Complexity
Recall that |V | = n, |E| = m and W is the maximal absolute value weight.

I Theorem 3.11. The running time of compute–energy is O
(
min

(
mnW,mn · 2n/2logW

))
.

The O (mnW ) bound follows immediately since each vertex u is updated at most O(|V |·W )
times and each such update takes O(|in(u)|+ |out(u)|) time, where in(u) and out(u) are the
sets of ingoing and outgoing edges of u, respectively. To prove the latter bound we must
have a better understanding of the relation between Br and Gr. In the rest of this section
we prove the O

(
mn · 2n/2 logW

)
bound.
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For this we define a potential function that maps rounds (as defined in Section 3.1)
into integers. The good anchor of round r is defined as the set GAr = V \

⋃r
i=1B

i, i.e.,
vertices whose potential was not changed yet (fr(u) = f0(u)). Following each round
the good anchor can only lose vertices. The bad anchor of round r is defined as the set
BAr = {u ∈ Br | ∃tight path of vertices in V0 ∩Br from u to v}, i.e., BAr contains v and
all vertices in V0∩Br that have a tight path of vertices in V0∩Br to v. Note that if GAr = ∅,
then no vertex is winning for player 0: To see this, note that in this case f(u) > 0 for all
u ∈ V . Therefore, the potential f ′(v) ≡ f(v)− 1, for all v ∈ V is feasible, a contradiction
(since f is the solution).

We partition Br and Gr into layers BLr
i , GL

r
i , i = 0, 1 . . . , respectively, see Figure 4.

The layer BLr
i /GLr

i is called the i’th layer of Br/Gr, respectively. The 0’th layers are the
anchors, i.e., BLr

0 = BAr, GLr
0 = GAr. The layers are defined inductively as follows.

BLr
i = {u ∈ Br ∩ Vp | u has a tight path of vertices in u ∈ Br ∩ Vp to BLr

i−1}
GLr

i = {u ∈ Gr ∩ V1−p | u has a tight path of vertices in u ∈ Gr ∩ V1−p to GLr
i−1}.

(1)

where p = i (mod 2).
The following lemmas prove that only the first layers have tight edges to the anchors.

I Lemma 3.12. At the end of round r, if (u, u′) ∈ E is a tight edge s.t u ∈ Gr \GAr and
u′ ∈ GAr, then u ∈ GLr

1.

Proof. It suffices to show that u ∈ V0. By contradiction, assume that u ∈ V1. Since
u /∈ GAr, u was in Br′ at some round r′ < r. Let Update(z) be the update that added
u into L in round r′ and let f1 be f right before this Update(z). Clearly, z 6= u′ (since
u′ ∈ GAr). Since u is was valid before Update(z) in round r′, and u ∈ V1, we have that
f1(u) + w(u, u′) ≥ f1(u′). Therefore, since f(u′) did not change until the end of round r
and u must have been updated following the update of z and before the end of round r,
we have that f(u) + w(u, u′) > f1(u) + w(u, u′) ≥ f1(u′) = f(u′) at the end of round r, a
contradiction to the assumption that (u, u′) is tight at the end of round r. J

I Lemma 3.13. At the end of round r, if (u, u′) ∈ E is a tight edge s.t u ∈ Br \BAr and
u′ ∈ BAr, then u ∈ BLr

1.

Proof. Immediate from the definition of BAr. J

The following lemma, which follows immediately from Lemma 3.10, shows that every
vertex belongs either to an anchor or to some layer of Br or Gr.

I Lemma 3.14. For any round r, Br =
n⋃

i=0
BLr

i , G
r =

n⋃
i=0

GLr
i .

We associate with Br and Gr binary numbers br and gr, respectively of length n + 1
defined as follows. Let k be maximal such that |BLr

k| > 0. Then, br is:

br =


1.....1︸ ︷︷ ︸
|BLr

1|

0.....0︸ ︷︷ ︸
|BLr

2|

..... 1.....1︸ ︷︷ ︸
|BLr

k
|

10..........0︸ ︷︷ ︸
n+1−|

⋃
i

BLr
i |

if k is odd

1.....1︸ ︷︷ ︸
|BLr

1|

0.....0︸ ︷︷ ︸
|BLr

2|

..... 0.....0︸ ︷︷ ︸
|BLr

k
|

10..........0︸ ︷︷ ︸
n+1−|

⋃
i

BLr
i |

if k is even.
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𝐺𝐴𝑟 𝐺𝐿1
𝑟

𝐵𝐴𝑟 𝐵𝐿1
𝑟

𝐺𝐿2
𝑟

𝐵𝐿2
𝑟

𝐺𝐿3
𝑟

𝐵𝐿3
𝑟

𝐺𝐿4
𝑟

𝐵𝐿4
𝑟

𝑣

Figure 4 The layer graph of round r. Red vertices refer to V0 and blue vertices refer to V1. All
drawn edges are tight at the end of round r. By Definition (1), each layer is either contained in V0

or in V1.

That is, for an odd layer we add a sequence of 1’s whose length is the size of the layer.
Similarly, for even layers we add sequences of 0’s. At the end we pad the number with a
single 1 followed by zeros. The number gr is defined similarly with respect to the layers of Gr.
Finally, the potential φr of round r is defined as φr = br + gr. Clearly φr ≤ 2 · 2n+1. In
Lemma 3.18 we prove that for every round r, under certain conditions (that can be violated
in at most |V |2 rounds), φr+1 ≥ φr + 2n/2, yielding the desired runtime.

The following lemmas consider Update-Energy at the end of round r.

I Lemma 3.15. For every r, GAr+1 ⊆ GAr and if GAr+1 = GAr, then BAr+1 ⊆ BAr.

Proof. Since f only grows the first claim follows directly from the definition of the algorithm.
We prove the second claim by contradiction. Assume GAr+1 = GAr and let u ∈ BAr+1\BAr.
By definition of bad anchor u ∈ V0 and at the end of round r + 1 there exists a tight path
p = v0v1...vk from u = v0 to v = vk such that vi ∈ V0 ∩ Br+1 for all i < k. Let j be
maximal such that vj ∈ BAr+1 \BAr (therefore vj+1 ∈ BAr+1 ∩BAr, j is well defined since
u ∈ BAr+1 \ BAr). If vj ∈ Br then (vj , vj+1) was tight also at the end of round r (since
both vj , vj+1 ∈ Br ∩ Br+1) and thus vj ∈ BAr, a contradiction. So we have that vj ∈ Gr.
Therefore, at the beginning of round r it must hold that f(vj) + w(vj , vj+1) > f(vj+1) (i.e.,
vj is not tight at the beginning of round r). By Lemma 3.3, vj ∈ GAr, a contradiction to
the assumption that GAr = GAr+1. J

The following lemma is similar to Lemma 3.7. Its proof is given in the full version of
the paper.

I Lemma 3.16. For every r, Br+1 6= Br.

I Lemma 3.17. Suppose that GAr+1 = GAr and BAr+1 = BAr.
1. Let i be the smallest such that GLr+1

i 6= GLr
i . Then, if i is odd then GLr

i ⊂ GL
r+1
i , and

if i is even then GLr+1
i ⊂ GLr

i .
2. Let i be the smallest such that BLr+1

i 6= BLr
i . Then, if i is odd then BLr

i ⊂ BL
r+1
i , and

if i is even then BLr+1
i ⊂ BLr

i .

Proof. We prove only the first claim as the latter is similar. We divide the proof into cases
according to the parity of i.

i is odd : We show that GLr
i ⊂ GL

r+1
i . By contradiction, assume that ∃u ∈ GLr

i \GL
r+1
i . By

Definition (1), u ∈ V0 and at the end of round r there exists a tight path p = u0, u1, ...uk

from u0 = u ∈ GLr
i to uk ∈ GAr = GLr

0 that traverses the “good” layers in non-increasing
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order. Let j be the maximal such that uj ∈ GLr
i \GL

r+1
i . Thus, either uj+1 ∈ GLr

i−1 or
uj+1 ∈ GLr

i ∩GL
r+1
i . Note that in both cases uj+1 ∈ Gr+1 and therefore we have that

also uj ∈ Gr+1 (since (uj , uj+1) was tight at the end of round r and remains tight during
round r + 1). Assume uj+1 ∈ GLr

i−1. Since GLr
i−1 = GLr+1

i−1 and since (uj , uj+1) is tight
at the end of round r + 1, we have that uj ∈ GLr+1

` for some ` ≤ i, a contradiction
(since uj /∈ GLr+1

i and because lower layers are equal in both rounds by our assumption).
Assume now that uj+1 ∈ GLr

i ∩ GL
r+1
i . We get a contradiction since uj ∈ GLr+1

` for
some ` ≤ i.

i is even: We that show GLr+1
i ⊂ GLr

i . By contradiction, assume that ∃u ∈ GLr+1
i \GLr

i .
By Definition (1), u ∈ V1 and at the end of round r + 1 there exists a tight path
p = u0, u1, ...uk from u0 = u ∈ GLr+1

i to uk ∈ GAr+1 = GLr+1
0 that traverses the “good”

layers in non-increasing order. Assume u ∈ Br. By Lemma 3.6, at the end of round r,
all of u’s tight edges are directed to Br. Let ` be minimal such that u` ∈ V0. Hence,
by Lemma 3.6 u` ∈ Br. Therefore u` ∈ GLr+1

m for some m < i (since u` ∈ V0 and
GLr+1

i ⊂ V1), this contradicts our assumption GLr+1
m = GLr

m. Thus, u ∈ Gr.

Let j be maximal such that uj ∈ GLr+1
i \GLr

i . Hence, either uj+1 ∈ GLr
i−1 or uj+1 ∈

GLr
i ∩GL

r+1
i . In both cases uj , uj+1 ∈ Gr ∩Gr+1 and thus (uj , uj+1) is tight in both rounds.

Therefore uj ∈ GLr
` for some ` ≤ i. Note that ` > i − 1 since otherwise GLr

` 6= GLr+1
`

which contradicts our assumption. Therefore ` = i and this contradict the assumption
uj ∈ GLr+1

i \GLr
i . J

Note that if the conditions of Lemma 3.17 are satisfied, then by Lemma 3.17 and by the
definition of br and gr we have that br+1 ≥ br and gr+1 ≥ gr.

I Lemma 3.18. For every r, If GAr+1 = GAr and BAr+1 = BAr, then φr+1 ≥ φr+2(n+k)/2,
where k = |GAr|+ |BAr|.

Proof. Assume |Br \BAr| ≥ |Gr \GAr|, so |Gr \GAr| ≤ (n−k)/2 and therefore gr contains
at least (n+ k)/2 “padding bits”. Hence, by Lemma 3.17 we have that gr+1 ≥ gr + 2(n+k)/2

and br+1 ≥ br. Thus, φr+1 ≥ φr + 2(n+k)/2 and we are done.
The case |Br \BAr| < |Gr \GAr| is identical. J

We are now ready to present the proof of our main result.

Proof of Theorem 3.11. By Lemma 3.18, there can be at most 2(n−k)/2 consecutive rounds
satisfying GAr+1 = GAr and BAr+1 = BAr, where k = |GAr|+|BAr|. Thus, by Lemma 3.15
we get that the following bounds the number of rounds during Update-Energy

n∑
i1=1

n−i1∑
i1=1

2(n−(i1+i2))/2 = O(2n/2) ,

where i1 and i2 represent |GAr| and |BAr|, respectively. Hence, since a round takes O(m)
time and Compute-Energy calls Update-Energy at most n · logW times, we get that
Compute-Energy terminates in O

(
mn · 2n/2 logW

)
time. J

4 Concluding remarks and open problems

We presented an O
(
min

(
mnW,mn2n/2 logW

))
-time algorithm for solving EGs and MPGs.

The algorithm is always at least as fast as the algorithm of Brim et al. [5], and is the
fastest known deterministic algorithm when W ≥ n2n/2. (As mentioned the logW factor
can be replaced by a poly(n) factor.) The exponential running time of the new algorithm is
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still far from what we would wish for. We hope, however, that the techniques used in our
paper may lead to further improvements. The ultimate goal of using scaling is to obtain
an algorithm whose running time is O(poly(n) logW ). We are, of course, still extremely far
from achieving this goal.

Many open problems remain: (1) Improve the pseudopolynomial running time to
O(mnf(W )), where f(W ) = o(W ). A more ambitious open problem is: (2) Obtain a
deterministic sub-exponential time algorithm for solving EGs and MPGs, matching the
running time of the fastest randomized algorithms. Even more ambitious open problem is:
(3) obtain a quasipolynomial time algorithm for EGs and MPGs, matching the running time
of the fastest algorithm for solving PGs. The most ambitious problem, of course, is: (4)
obtain a polynomial time algorithm for PGs, EGs and MPGs.
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