
Differential Logical Relations,
Part I: The Simply-Typed Case
Ugo Dal Lago
University of Bologna, Italy
INRIA Sophia Antipolis, France
ugo.dallago@unibo.it

Francesco Gavazzo
IMDEA Software Institute, Spain
francesco.gavazzo@gmail.com

Akira Yoshimizu
INRIA Sophia Antipolis, France
akiray@bp.iij4u.or.jp

Abstract
We introduce a new form of logical relation which, in the spirit of metric relations, allows us to assign
each pair of programs a quantity measuring their distance, rather than a boolean value standing
for their being equivalent. The novelty of differential logical relations consists in measuring the
distance between terms not (necessarily) by a numerical value, but by a mathematical object which
somehow reflects the interactive complexity, i.e. the type, of the compared terms. We exemplify this
concept in the simply-typed lambda-calculus, and show a form of soundness theorem. We also see
how ordinary logical relations and metric relations can be seen as instances of differential logical
relations. Finally, we show that differential logical relations can be organised in a cartesian closed
category, contrarily to metric relations, which are well-known not to have such a structure, but only
that of a monoidal closed category.

2012 ACM Subject Classification Theory of computation → Lambda calculus

Keywords and phrases Logical Relations, λ-Calculus, Program Equivalence, Semantics

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.111

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version https://arxiv.org/abs/1904.12137

Funding The authors are partially supported by the ERC Consolidator Grant DLV-818616
DIAPASoN, as well as by the ANR projects 14CE250005 ELICA and 16CE250011 REPAS.

1 Introduction

Modern software systems tend to be heterogeneous and complex, and this is reflected in
the analysis methodologies we use to tame their complexity. Indeed, in many cases the
only way to go is to make use of compositional kinds of analysis, in which parts of a large
system can be analysed in isolation, without having to care about the rest of the system, the
environment. As an example, one could consider a component A and replace it with another
(e.g. more efficient) component B without looking at the context C in which A and B are
supposed to operate, see Figure 1. Of course, for this program transformation to be safe, A
should be equivalent to B or, at least, B should be a refinement of A.

Program equivalences and refinements, indeed, are the cruxes of program semantics, and
have been investigated in many different programming paradigms. When programs have an
interactive behaviour, like in concurrent or higher-order languages, even defining a notion of

EA
T

C
S

© Ugo Dal Lago, Francesco Gavazzo, and Akira Yoshimizu;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 111; pp. 111:1–111:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ugo.dallago@unibo.it
mailto:francesco.gavazzo@gmail.com
mailto:akiray@bp.iij4u.or.jp
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
https://arxiv.org/abs/1904.12137
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

111:2 Differential Logical Relations

B

C A

⇓

C

Figure 1 Replacing A with B.

program equivalence is not trivial, while coming out with handy methodologies for proving
concrete programs to be equivalent can be quite challenging, and has been one of the major
research topics in programming language theory, stimulating the development of techniques
like logical relations [23, 20], applicative bisimilarity [1], and to some extent denotational
semantics [26, 27] itself.

Coming back to our example, may we say anything about the case in which A and B
are not equivalent, although behaving very similarly? Is there anything classic program
semantics can say about this situation? Actually, the answer is negative: the program
transformation turning such an A into B cannot be justified, simply because there is no
guarantee about what the possible negative effects that turning A into B could have on
the overall system formed by C and A. There are, however, many cases in which program
transformations like the one we just described are indeed of interest, and thus desirable.
Many examples can be, for instance, drawn from the field of approximate computing [21], in
which equivalence-breaking program transformations are considered as beneficial provided
the overall behaviour of the program is not affected too much by the transformation, while
its intensional behaviour, e.g. its performance, is significantly improved.

One partial solution to the problem above consists in considering program metrics rather
than program equivalences. This way, any pair of programs are dubbed being at a certain
numerical distance rather than being merely equivalent (or not). This, for example, can
be useful in the context of differential privacy [24, 6, 32] and has also been studied in the
realms of domain theory [13, 5, 14, 16, 4] (see also [28] for an introduction to the subject)
and coinduction [30, 29, 15, 9]. The common denominator among all these approaches is that
on the one hand, the notion of a congruence, crucial for compositional reasoning, is replaced
by the one of a Lipschitz-continuous map: any context should not amplify (too much) the
distance between any pair of terms, when it is fed with either the former or the latter:

δ(C[M], C[N]) ≤ c · δ(M,N).

This enforces compositionality, and naturally leads us to consider metric spaces and Lipschitz
functions as the underlying category. As is well known, this is not a cartesian closed category,
and thus does not form a model of typed λ-calculi, unless one adopts linear type systems, or
type systems in which the number of uses of each variable is kept track of, like FUZZ [24].
This somehow limits the compositionality of the metric approach [13, 17].

U. Dal Lago, F. Gavazzo, and A. Yoshimizu 111:3

Even if one considers affine calculi, there are program transformations which are intrins-
ically unjustifiable in the metric approach. Consider the following two programs of type
REAL → REAL

MSIN := λx.sin(x) MID := λx.x.

The two terms compute two very different functions on the real numbers, namely the sine
trigonometric function and the identity on R, respectively. The euclidean distance | sin x−x |
is unbounded when x ranges over R. As a consequence, comparing MSIN and MID using the
so-called sup metric1 as it is usually done in metric logical relations [24, 13] and applicative
distances [17, 10], we see that their distance is infinite, and that the program transformation
turning MSIN into MID cannot be justified this way, for very good reasons. As highlighted
by Westbrook and Chaudhuri [31], this is not the end of the story, at least if the environment
in which MSIN and MID operate feed either of them only with real numbers close to 0. If
this is the case, MSIN can be substituted with MID without affecting too much the overall
behaviour of the system.

The key insight by Westbrook and Chaudhuri is that justifying program transformations
like the one above requires taking the difference δ(MSIN ,MID) between MSIN and MID
not merely as a number, but as a more structured object. What they suggest is to take
δ(MSIN ,MID) as yet another program, which however describes the difference between
MSIN and MID:

δ(MSIN ,MID) := λx.λε.| sin x− x|+ ε.

This reflects the fact that the distance between MSIN and MID, namely the discrepancy
between their output, depends not only on the discrepancy on the input, namely on ε,
but also on the input itself, namely on x. It both x and ε are close to 0, δ(MSIN ,MID) is
itself close to 0.

In this paper, we develop Westbrook and Chaudhuri’s ideas, and turn them into a
framework of differential logical relations. We will do all this in a simply-typed λ-calculus
with real numbers as the only base type. Starting from such a minimal calculus has at
least two advantages: on the one hand one can talk about meaningful examples like the
one above, and on the other hand the induced metatheory is simple enough to highlight
the key concepts.

The contributions of this paper can be summarised as follows:
After introducing our calculus STλ

R, we define differential logical relations inductively
on types, as ternary relations between pairs of programs and differences. The latter are
mere set theoretic entities here, and the nature of differences between terms depends on
terms’ types.
We prove a soundness theorem for differential logical relations, which allows us to justify
compositional reasoning about terms’ differences. We also prove a finite difference theorem,
which stipulates that the distance between two simply-typed λ-terms is finite if mild
conditions hold on the underlying set of function symbols.
We give embeddings of logical and metric relations into differential logical relations. This
witnesses that the latter are a generalisation of the former two.

1 Recall that given (pseudo)metric spaces (X, dX), (Y, dY) we can give the set Y X of non-expansive maps
between X and Y a (pseudo)metric space structure setting dY X (f, g) = supx∈X dY (f(x), g(x))

ICALP 2019

111:4 Differential Logical Relations

x : τ ∈ Γ
Γ ` x : τ Γ ` r : REAL

fn ∈ Fn
Γ ` fn : REALn → REAL

Γ, x : τ `M : ρ
Γ ` λx.M : τ → ρ

Γ `M : τ → ρ Γ ` N : τ
Γ `MN : ρ

Γ `M : τ Γ ` N : ρ
Γ ` 〈M,N〉 : τ × ρ Γ ` π1 : τ × ρ→ τ Γ ` π2 : τ × ρ→ ρ

Γ `M : τ Γ ` N : τ
Γ ` iflz M else N : REAL → τ

Γ `M : τ → τ Γ ` N : τ
Γ ` iter M base N : REAL → τ

Figure 2 Typing rules for STλ
R.

Finally, we show that generalised metric domains, the mathematical structure underlying
differential logical relations, form a cartesian closed category, contrarily to the category
of metric spaces, which is well known not to have the same property.

Due to space constraints, many details have to be omitted, but can be found in an Extended
Version of this work [12].

2 A Simply-Typed λ-Calculus with Real Numbers

In this section, we introduce a simply-typed λ-calculus in which the only base type is the
one of real numbers, and constructs for iteration and conditional are natively available.
The choice of this language as the reference calculus in this paper has been made for the
sake of simplicity, allowing us to concentrate on the most crucial aspects, at the same time
guaranteeing a minimal expressive power.

Terms and Types

STλ
R is a typed λ-calculus, so its definition starts by giving the language of types, which is

defined as follows:

τ, ρ ::= REAL
∣∣ τ → ρ

∣∣ τ × ρ.
The expression τn stands for τ × · · · × τ︸ ︷︷ ︸

n times
. The set of terms is defined as follows:

M,N ::= x
∣∣ r ∣∣ fn ∣∣ λx.M ∣∣MN

∣∣ 〈M,N〉
∣∣ π1 | π2

∣∣ iflz M else N
∣∣ iter M base N

where x ranges over a set V of variables, r ranges over the set R of real numbers, n is a natural
number, and fn ranges over a set Fn of total real functions of arity n. We do not make any
assumption on {Fn}n∈N, apart from the predecessor pred1 being part of F1. The family, in
particular, could in principle contain non-continuous functions. The expression 〈M1, . . . ,Mn〉
is simply a shortcut for 〈. . . 〈〈M1,M2〉,M3〉 . . . ,Mn〉. All constructs are self-explanatory,
except for the iflz and iter operators, which are conditional and iterator combinators,
respectively. An environment Γ is a set of assignments of types to variables in V where
each variable occurs at most once. A type judgment has the form Γ `M : τ where Γ is an
environment, M is a term, and τ is a type. Rules for deriving correct typing judgments
are in Figure 2, and are standard. The set of terms M for which · ` M : τ is derivable is
indicated as CT (τ).

U. Dal Lago, F. Gavazzo, and A. Yoshimizu 111:5

V ⇓ V
M ⇓ fn N ⇓ 〈L1, . . . , Ln〉 Li ⇓ ri

MN ⇓ f(r1, . . . , rn)
M ⇓ λx.L N ⇓ V L{V/x} ⇓W

MN ⇓W

M ⇓ π1 N ⇓ 〈L,P 〉 L ⇓ V
MN ⇓ V

M ⇓ π2 N ⇓ 〈L,P 〉 P ⇓ V
MN ⇓ V

M ⇓ iflz L else P N ⇓ r r < 0 L ⇓ V
MN ⇓ V

M ⇓ iflz L else P N ⇓ r r ≥ 0 P ⇓ V
MN ⇓ V

M ⇓ iter L base P N ⇓ r r < 0 P ⇓ V
MN ⇓ V

M ⇓ iter L base P N ⇓ r r ≥ 0 L((iter L base P)(pred1(r)) ⇓ V
MN ⇓ V

Figure 3 Operational semantics for STλ
R.

Call-by-Value Operational Semantics

A static semantics is of course not enough to give meaning to a paradigmatic programming
language, the dynamic aspects being captured only once an operational semantics is defined.
The latter turns out to be very natural. Values are defined as follows:

V,W ::= r
∣∣ fn ∣∣ λx.M ∣∣ 〈M,N〉

∣∣ π1
∣∣ π2

∣∣ iflz M else N
∣∣ iter M base N

The set of closed values of type τ is CV (τ) ⊆ CT(τ), and the evaluation of M ∈ CT(τ)
produces a value V ∈ CV (τ), as formalised by the rules in Figure 3, through the judgment
M ⇓ V . We write M ⇓ if M ⇓ V is derivable for some V . The absence of full recursion has
the nice consequence of guaranteeing a form of termination:

I Theorem 1. The calculus STλ
R is terminating: if · `M : τ then M ⇓.

Theorem 1 can be proved by way of a standard reducibility argument. Termination implies
the following.

I Corollary 2. If · `M : REAL then there exists a unique r ∈ R satisfying M ⇓ r, which
we indicate as NF(M).

Context Equivalence

A context C is nothing more than a term containing a single occurrence of a placeholder [·].
Given a context C, C[M] indicates the term one obtains by substitutingM for the occurrence
of [·] in C. Typing rules in Figure 2 can be lifted to contexts by generalising judgments to
the form Γ ` C[∆ ` · : τ] : ρ, by which one captures that whenever ∆ `M : τ , it holds that
Γ ` C[M] : ρ. Two terms M and N such that Γ `M,N : τ are said to be context equivalent
[22] if for every C such that ∅ ` C[Γ ` · : τ] : REAL it holds that NF(C[M]) = NF(C[N]).
Context equivalence is the largest adequate congruence, and is thus considered as the coarsest
“reasonable” equivalence between terms. It can also be turned into a pseudometric [11, 10] –
called context distance – by stipulating that

δ(M,N) = sup
∅`C[Γ`·:τ]:REAL

|NF(C[M])−NF(C[M])|.

The obtained notion of distance, however, is bound to trivialise [11], given that STλ
R is not

affine. Trivialisation of context distance highlights an important limit of the metric approach
to program difference which, ultimately, can be identified with the fact that program distances

ICALP 2019

111:6 Differential Logical Relations

are sensitive to interactions with the environment. Our notion of a differential logical relation
tackles such a problem from a different perspective, namely refining the concept of program
distance to something which is not just a number, but is now able to take into account
interactions with the environment.

Set-Theoretic Semantics

Before introducing differential logical relations, it is useful to remark that we can give STλ
R a

standard set-theoretic semantics. To any type τ we associate the set JτK, the latter being
defined by induction on the structure of τ as follows:

JREALK = R; Jτ → ρK = JτK→ JρK; Jτ × ρK = JτK× JρK.

This way, any closed term M ∈ CT (τ) is interpreted as an element JMK of JτK in a natural
way (see, e.g. [20]). Up to now, everything we have said about STλ

R is absolutely standard,
and only serves to set the stage for the next sections.

3 Making Logical Relations Differential

Logical relations can be seen as one of the many ways of defining when two programs are to
be considered equivalent. Their definition is type driven, i.e., they can be seen as a family
{δτ}τ of binary relations indexed by types such that δτ ⊆ CT (τ)× CT (τ). This section is
devoted to showing how all this can be made into differential logical relations.

The first thing that needs to be discussed is how to define the space of differences between
programs. These are just boolean values in logical relations, become real numbers in ordinary
metrics, and is type-dependent itself. A function L·M that assigns a set to each type is
defined as follows:

LREALM = R∞≥0; Lτ → ρM = JτK× LτM→ LρM; Lτ × ρM = LτM× LρM;

where R∞≥0 = R≥0 ∪ {∞}. The set LτM is said to be the difference space for the type τ and
is meant to model the outcome of comparisons between closed programs of type τ . As an
example, when τ is REAL → REAL, we have that LτM = R× R∞≥0 → R∞≥0. This is the type
of the function δ(M,N) we used to compare the two programs described in the Introduction.

Now, which structure could we endow LτM with? First of all, we can define a partial order
≤τ over LτM for each type τ as follows:

r ≤REAL s if r ≤ s as the usual order over R∞≥0;
f ≤τ→ρ g if ∀x ∈ JτK.∀t ∈ LτM.f(x, t) ≤ρ g(x, t);

(t, u) ≤τ×ρ (s, r) if t ≤τ s and u ≤ρ r.

This order has least upper bounds and greater lower bounds, thanks to the nice structure
of R∞≥0:

I Proposition 3. For each type τ , (LτM,≤τ) forms a complete lattice.

The fact that LτM has a nice order-theoretic structure is not the end of the story. For
every type τ , we define a binary operation ∗τ as follows:

r ∗REAL s = r + s if r, s ∈ R≥0; (f ∗τ→ρ g)(V, t) = f(V, t) ∗ρ g(V, t);
r ∗REAL s =∞ if r =∞∨ s =∞; (t, s) ∗τ×ρ (u, r) = (t ∗τ u, s ∗ρ r).

U. Dal Lago, F. Gavazzo, and A. Yoshimizu 111:7

This is precisely what it is needed to turn LτM into a quantale2 [25].

I Proposition 4. For each type τ , LτM forms a commutative unital non-idempotent quantale.

The fact that LτM is a quantale means that it has, e.g., the right structure to be the
codomain of generalised metrics [19, 18]. Actually, a more general structure is needed for our
purposes, namely the one of a generalised metric domain, which will be thoroughly discussed
in Section 6 below. For the moment, let us concentrate our attention to programs:

I Definition 5 (Differential Logical Relations). We define a differential logical relation {δτ ⊆
Λτ × LτM× Λτ}τ as a set of ternary relations indexed by types satisfying

δREAL(M, r,N)⇔ |NF(M)−NF(N)| ≤ r;
δτ×ρ(M, (d1, d2), N)⇔ δτ (π1M,d1, π1N) ∧ δρ(π2M,d2, π2N)

δτ→ρ(M,d,N)⇔ (∀V ∈ CV (τ). ∀x ∈ LτM. ∀W ∈ CV (τ).
δτ (V, x,W)⇒ δρ(MV , d(JV K, x), NW) ∧ δρ(MW,d(JV K, x), NV)).

An intuition behind the condition required for δτ→ρ(M,d,N) is that d(JV K, x) overapprox-
imates both the “distance” between MV and NW and the one between MW and NV , this
whenever W is within the error x from V .

3.1 A Fundamental Lemma
Usually, the main result about any system of logical relations is the so-called Fundamental
Lemma, which states that any typable term is in relation with itself. But how would the
Fundamental Lemma look like here? Should any term be at somehow minimal distance to
itself, in the spirit of what happens, e.g. with metrics [24, 13]? Actually, there is no hope to
prove anything like that for differential logical relations, as the following example shows.

I Example 6. Consider again the term MID = λx.x, which can be given type τ = REAL →
REAL in the empty context. Please recall that LτM = R× R∞≥0 → R∞≥0. Could we prove that
δτ (MID, 0τ ,MID), where 0τ is the constant-0 function? The answer is negative: given two
real numbers r and s at distance ε, the terms MIDr and MIDs are themselves ε apart, thus
at nonnull distance. The best one can say, then, is that δτ (MID, f,MID), where f(x, ε) = ε.

As the previous example suggests, a term M being at self-distance d is a witness of M being
sensitive to changes to the environment according to d. Indeed, the only terms which are at
self-distance 0 are the constant functions. This makes the underlying theory more general
than the one of logical or metric relations, although the latter can be proved to be captured
by differential logical relations, as we will see in the next section.

Coming back to the question with which we opened the section, we can formulate a
suitable fundamental lemma for differential logical relations.

I Theorem 7 (Fundamental Lemma, Version I). For every · `M : τ there is a d ∈ LτM such
that (M,d,M) ∈ δτ .

Proof sketch. The proof proceeds, as usual, by induction on the derivation of · ` M : τ .
In order to deal with e.g. λ-abstractions we have to strengthen our statement taking into
account open terms. This turns out to be non-trivial and requires to extend our notion of

2 Recall that a quantale Q = (Q,≤Q, 0Q, ∗Q) consists of a complete lattice (Q,≤Q) and a monoid
(Q, 0Q, ∗Q) such that the lattice and monoid structures properly interact (meaning that monoid
multiplication distributes over joins). We refer to [25, 18] for details.

ICALP 2019

111:8 Differential Logical Relations

a differential logical relation to arbitrary terms. First of all, we need to generalise L·M and
J·K to environments. For instance, LΓM is the set of families in the form α = {αx}(x:ρ)∈Γ,
where αx ∈ LρM. Similarly for JΓK. This way, a natural space for differences between terms
Γ ` M,N : τ can be taken as LτMJΓK×LΓM, namely the set of maps from JΓK × LΓM to LτM.
Given an environment Γ, a family V = {Vx}(x:ρx)∈Γ such that Vx ∈ CV (ρx) is said to be
a Γ-family of values. Such a Γ-family of values can naturally be seen as a substitution V
mapping each variable (x : ρ) ∈ Γ to Vx ∈ CV (ρx). As it is customary, for a term Γ `M : τ
we write MV for the closed term of type τ obtained applying the substitution V to M . We
denote by CV (Γ) the set of all Γ-family of values. Given a set Z, an environment Γ, and
two Γ-indexed families α = {αx}(x:ρ)∈Γ, β = {βx}(x:ρ)∈Γ over Z (meaning that e.g. αx ∈ Z,
for each (x : ρ) ∈ Γ), we introduce the following notational convention. For a Γ-indexed
family B = {bx}(x:ρ)∈Γ such that bx ∈ {0, 1}, we can construct a “choice” Γ-indexed family
Bαβ as follows:

(Bαβ)x =
{
αx if bx = 0
βx if bx = 1.

Moreover, given a family B as above, we can construct the inverse family B as the family
{1− bx}(x:ρ)∈Γ. We can now talk about open terms, and from a differential logical relation
{δτ ⊆ Λτ × LτM × Λτ}τ construct a family of relations {δΓ

τ ⊆ ΛΓ
τ × LτMJΓK×LΓM × ΛΓ

τ }τ,Γ by
stipulating that δΓ

τ (M,d,N) iff

δΓ(V, Y,W) =⇒ ∀B ∈ {0, 1}Γ.δτ (MBV
W, d(JVK, Y), NBV

W).

We now prove the following strengthening of our main thesis: for any term Γ `M : τ , there
is a d ∈ LτMJΓK×LΓM such that δΓ

τ (M,d,M). At this point the proof is rather standard, and
proceeds by induction on the derivation of Γ `M : τ . J

But what do we gain from Theorem 7? In the classic theory of logical relations, the
Fundamental Lemma has, as an easy corollary, that logical relations are compatible: it suffices
to invoke the theorem with any context C seen as a term C[x], such that x : τ,Γ ` C[x] : ρ.
Thus, ultimately, logical relations are proved to be a compositional methodology for program
equivalence, in the following sense: if M and N are equivalent, then C[M] and C[N] are
equivalent, too.

In the realm of differential logical relations, the Fundamental Lemma plays a similar role,
although with a different, quantitative flavor: once C has been proved sensitive to changes
according to d, and V,W are proved to be at distance e, then, e.g., the impact of substituting
V with W in C can be measured by composing d and e (and JV K), i.e. by computing
d(JV K, e). Notice that the sensitivity analysis on C and the relational analysis on V and W
are decoupled. What the Fundamental Lemma tells you is that d can always be found.

3.2 Our Running Example, Revisited
It is now time to revisit the example we talked about in the Introduction. Consider the
following two programs, both closed and of type REAL → REAL:

MSIN = λx.sin1(x); MID = λx.x.

First of all, let us observe that, as already remarked, comparing MSIN and MID using the
sup metric on R → R, as it is done in metric logical relations and applicative distances,
naturally assigns them distance ∞, the euclidean distance |x − sin(x)| being unbounded
when x ranges over R.

U. Dal Lago, F. Gavazzo, and A. Yoshimizu 111:9

Let us now prove that (MSIN , f,MID) ∈ δREAL→REAL, where f(x, y) = y + |x− sin x|.
Consider any pair of real numbers r, s ∈ R such that |r − s| ≤ ε, where ε ∈ R∞≥0. We
have that:

|sin r − s| = |sin r − r + r − s| ≤ |sin r − r|+ |r − s| ≤ |sin r − r|+ ε = f(r, ε)
|sin s− r| = |sin s− sin r + sin r − r| ≤ |sin s− sin r|+ |sin r − r| ≤ |s− r|+ |sin r − r|

≤ ε+ |sin r − r| = f(r, ε).

The fact that |sin s− sin r| ≤ |s− r| is a consequence of sin being 1-Lipschitz continuous
(see, e.g., [12] for a simple proof).

Now, consider a context C which makes use of either MSIN or MID by feeding them with
a value close to 0, call it θ. Such a context could be, e.g., C = (λx.x(xθ))[·]. C can be seen
as a term having type τ = (REAL → REAL)→ REAL. A self-distance d for C can thus be
defined as an element of

LτM = JREAL → REALK× LREAL → REALM→ R∞≥0.

namely F = λλ〈g, h〉.h(g(θ), h(θ, 0)). This allows for compositional reasoning about program
distances: the overall impact of replacing MSIN by MID can be evaluated by computing
F (JMSIN K, f). Of course the context C needs to be taken into account, but once and for all:
the functional F can be built without knowing with which term(s) it will be fed with.

4 Logical and Metric Relations as DLRs

The previous section should have convinced the reader about the peculiar characteristics
of differential logical relations compared to (standard) metric and logical relations. In
this section we show that despite the apparent differences, logical and metric relations can
somehow be retrieved as specific kinds of program differences. This is, however, bound to
be nontrivial. The naïve attempt, namely seeing program equivalence as being captured
by minimal distances in logical relations, fails: the distance between a program and itself
can be nonnull.

How should we proceed, then? Isolating those distances which witness program equivalence
is indeed possible, but requires a bit of an effort. In particular, the sets of those distances
can be, again, defined by induction on τ . For every τ , we give LτM0 ⊆ LτM by induction on
the structure of τ :

LREALM0 = {0}; Lτ × ρM0 = LτM0 × LρM0;

Lτ → ρM0 = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀y ∈ LτM0.f(x, y) ∈ LρM0}.

Notice that Lτ → ρM0 is not defined as JτK× LτM0 → LρM0 (doing so would violate Lτ → ρM0 ⊆
Lτ → ρM). The following requires some effort, and testifies that, indeed, program equivalence
in the sense of logical relations precisely corresponds to being at a distance in LτM0:

I Theorem 8. Let {Lτ}τ be a logical relation. There exists a differential logical relation
{δτ}τ satisfying Lτ (M,N)⇐⇒ ∃d ∈ LτM0.δτ (M,d,N).

What if we want to generalise the argument above to metric relations, as introduced, e.g.,
by Reed and Pierce [24]? The set LτM0 becomes a set of distances parametrised by a single
real number:

LREALMr = {r}; Lτ × ρMr = LτMr × LρMr;

ICALP 2019

111:10 Differential Logical Relations

Figure 4 A total, but highly discontinuous, function.

Lτ → ρMr = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀y ∈ LτMs.f(x, y) ∈ LρMr+s}.

A result similar to Theorem 8 is unfortunately outside the scope of this paper, but can be
found in the Extended Version [12]. In particular, metric relations are only available in
calculi, like FUZZ [24], which rely on linear type systems, thus more refined than the one we
endow STλ

R with.

5 Strengthening the Fundamental Theorem through Finite Distances

Let us now ask ourselves the following question: given any term M ∈ CT(τ), what can
we say about its sensitivity, i.e., about the values d ∈ LτM such that δτ (M,d,M)? Two of
the results we have proved about STλ

R indeed give partial answers to the aforementioned
question. On the one hand, Theorem 7 states that such a d can always be found. On the
other hand, Theorem 8 tells us that such a d can be taken in LτM0. Both these answers are
not particularly informative, however. The mere existence of such a d ∈ LτM, for example, is
trivial since d can always be taken as d∞, the maximal element of the underlying quantale.
The fact that such a d can be taken from LτM0 tells us that, e.g. when τ = ρ→ ξ, M returns
equivalent terms when fed with equivalent arguments: there is no quantitative guarantee
about the behaviour of the term when fed with non-equivalent arguments.

Is this the best one can get about the sensitivity of STλ
R terms? The absence of full

recursion suggests that we could hope to prove that infinite distances, although part of the
underlying quantale, can in fact be useless. In other words, we are implicitly suggesting that
self-distances could be elements of LτM<∞ ⊂ LτM, defined as follows:

LREALM<∞ = R≥0; Lτ × ρM<∞ = LτM<∞ × LρM<∞;

Lτ → ρM<∞ = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀t ∈ LτM<∞.f(x, t) ∈ LρM<∞}.

Please observe that LτM<∞ is in general a much larger set of differences than
⋃
r∈R∞≥0

LτMr:
the former equals the latter only when τ is REAL. Already when τ is REAL → REAL, the
former includes, say, functions like f(r, ε) = (r + ε)2, while the latter does not.

Unfortunately, there are terms in STλ
R which cannot be proved to be at self-distance

in LτM<∞, and, surprisingly, this is not due to the higher-order features of STλ
R, but to

{Fn}n∈N being arbitrary, and containing functions which do not map finite distances to finite
distances, like

h(r) =
{

0 if r = 0
1
r otherwise

U. Dal Lago, F. Gavazzo, and A. Yoshimizu 111:11

(see Figure 4). Is this phenomenon solely responsible for the necessity of finite self-distances
in STλ

R? The answer is positive, and the rest of this section is devoted precisely to formalising
and proving the aforementioned conjecture.

First of all, we need to appropriately axiomatise the absence of unbounded discontinuities
from {Fn}n∈N. A not-so-restrictive but sufficient axiom turns out to be weak boundedness: a
function fn : Rn → R is said to be weakly bounded if and only if it maps bounded subsets of
Rn into bounded subsets of R. As an example, the function h above is not weakly bounded,
because h([−ε, ε]) is(

−∞,−1
ε

]
∪ {0} ∪

[
1
ε
,∞
)

which is unbounded for any as ε > 0. Any term M is said to be weakly bounded iff any
function symbol fn occurring in M is itself weakly bounded. Actually, this is precisely what
one needs to get the strengthening of the Fundamental Theorem we are looking for.

I Theorem 9 (Fundamental Theorem, Version II). For any weakly bounded term · `M : τ ,
there is d ∈ LτM<∞ such that (M,d,M) ∈ δτ .

The reader may have wondered about how restrictive a condition weak boundedness really
is. In particular, whether it corresponds to some form of continuity. In fact, the introduced
condition only rules out unbounded discontinuities. In other words, weak boundedness can
be equivalently defined by imposing local boundedness at any point in the domain R. This is
weaker than asking for boundedness, which requires the existence of a global bound.

6 A Categorical Perspective

Up to now, differential logical relations have been treated very concretely, without looking at
them through the lens of category theory. This is in contrast to, e.g., the treatment of metric
relations from [13], in which soundness of metric relations for FUZZ is obtained as a byproduct
of a proof of symmetric monoidal closedness for the category MET of pseudometric spaces
and Lipschitz functions.

But what could take the place of pseudometric spaces in a categorical framework capturing
differential logical relations? The notion of a metric needs to be relaxed along at least two
axes. On the one hand, the codomain of the “metric” δ is not necessarily the set of real
numbers, but a more general structure, namely a quantale. On the other, as we already
noticed, it is not necessarily true that equality implies indistancy, but rather than indistancy
implies inequality. What comes out of these observations is, quite naturally, the notion
of a generalized metric domain, itself a generalisation of partial metrics [7]. The rest of
this section is devoted to proving that the category of generalised metric domains is indeed
cartesian closed, thus forming a model of simply typed λ-calculi.

Formally, given a quantale Q = (Q,≤Q, 0Q, ∗Q)3, a generalised metric domain on Q is a
pair (A, δA), where A is a set and δA is a subset of A×Q×A satisfying some axioms akin
to those of a metric domain:

δA(x, 0Q, y)⇒ x = y; (Indistancy Implies Equality)
δA(x, d, y)⇒ δA(y, d, x); (Symmetry)

δA(x, d, y) ∧ δA(y, e, y) ∧ δA(y, f, z)⇒ δA(x, d ∗ e ∗ f, z). (Triangularity)

3 When unambiguous, we will omit subscripts in ≤Q, 0Q, and ∗Q.

ICALP 2019

111:12 Differential Logical Relations

Please observe that δA is a relation rather than a function. Moreover, the first axiom is dual to
the one typically found in, say, pseudometrics. The third axiom, instead, resembles the usual
triangle inequality for pseudometrics, but with the crucial difference that since objects can
have non-null self-distance, such a distance has to be taken into account. Requiring equality
to imply indistancy (and thus δA(x, 0Q, y)⇔ x = y), we see that (Triangularity) gives exactly
the usual triangle inequality (properly generalised to quantale and relations [18, 19]).

In this section we show that generalised metric domains form a cartesian closed category,
unlike that of metric spaces (which is known to be non-cartesian closed). As a consequence,
we obtain a firm categorical basis of differential logical relations. The category of generalised
metric domain, denoted by GMD, is defined as follows.

I Definition 10. The category GMD has the following data.
An object A is a triple (A,Q, δ) where Q is a quantale and (A, δ) is a generalized metric
domain on Q.
An arrow (A,Q, δ) → (B, S, ρ) is a pair (f, ζ) consisting of a function f : A → B and
another function ζ : Q×A→ S satisfying ∀a, a′ ∈ A.∀q ∈ Q.δ(a, q, a′)⇒ ρ(f(a), ζ(q, a),
f(a′)) and ρ(f(a), ζ(q, a′), f(a′)).

We can indeed give GMD the structure of a category. In fact, the identity on the object
A = (A,Q, δ) in GMD is given by (idA, id′A) where idA : A → A is the set-theoretic
identity on A and id′A : Q × A → Q is defined by id′A(q, a) = q. The composition of two
arrows (f, ζ) : (A,Q, δ) → (B, S, ρ) and (g, η) : (B, S, ρ) → (C,T, ν) is the pair (h, θ) where
h : A→ C is given by the function composition g ◦ f : A→ C and h : Q×A→ T is given by
θ(q, a) = η(ζ(q, a), f(a)). Straightforward calculations show that composition is associative,
and that the identity arrow behaves as its neutral element.

Most importantly, we can give GMD a cartesian closed structure, as shown by the
following result4.

I Theorem 11. GMD is a cartesian closed category.

Proof sketch. Before entering details, it is useful to remark that the cartesian product of two
quantales is itself a quantale (with lattice and monoid structure defined pointwise). Similarly,
for any quantale Q and set X, the function space QX inherits a quantale structure from Q
pointwise. Let us now show that GMD is cartesian closed. We begin showing that GMD
has a terminal object and binary products. The former is defined as ({∗},O, δ0), where O
is the one-element quantale {0}, and δ0 = {(∗, 0, ∗)} (notice that ({∗}, δ0) is a generalized
metric domain on O), whereas the binary product A× B of two objects A and B in GMD
is given by a triple (A×B,Q× S, δ × ρ). Finally, we define exponentials in GMD. Given
C, B in GMD, their exponential CB is the triple (CB ,TS×B , νρ), where CB is the function
space {f | f : B → C}, TS×B is the exponential quantale, and νρ is a ternary relation over
CB×TS×B×CB defined by: if ρ(b, s, b′) then ν(f(b), d(s, b), f ′(b′)) and ν(f(b), d(s, b′), ζ(b′)).
Please notice that the relation νρ is indeed a differential logical relation. J

Interestingly, the constructions of product and exponential objects in the proof of The-
orem 11 closely match the definition of a differential logical relation. In other words,
differential logical relations as given in Definition 5 can be seen as providing a denota-
tional model of STλ

R in which base types are interpreted by the generalised metric domain
corresponding to the Euclidean distance.

4 See [12] for a detailed proof.

U. Dal Lago, F. Gavazzo, and A. Yoshimizu 111:13

7 Conclusion

In this paper, we introduced differential logical relations as a novel methodology to evaluate
the “distance” between programs of higher-order calculi akin to the λ-calculus. We have been
strongly inspired by some unpublished work by Westbrook and Chaudhuri [31], who were the
first to realise that evaluating differences between interactive programs requires going beyond
mere real numbers. We indeed borrowed our running example from the aforementioned work.

This paper’s contribution, then consists in giving a simple definition of differential logical
relations, together with some results about their underlying metatheory: two formulations of
the Fundamental Lemma, a result relating differential logical relations and ordinary logical
relations, and a proof that generalised metric domains – the metric structure corresponding
to differential logical relations – form a cartesian closed category. Such results give evidence
that, besides being more expressive than metric relations, differential logical relations are
somehow more canonical, naturally forming a model of simply-typed λ-calculi.

As the title of this paper suggests, we see the contributions above just as a very first step
towards understanding the nature of differences in a logical environment. In particular, at
least two directions deserve to be further explored.

The first one concerns language features: admittedly, the calculus STλ
R we consider here

is very poor in terms of its expressive power, lacking full higher-order recursion and
thus not being universal. Moreover, STλ

R does not feature any form of effect, including
probabilistic choices, in which evaluating differences between programs would be very
helpful. Addressing such issues seems to require to impose a domain structure on
generalised metric domains, on one hand, and to look at monads on GMD, on the other
hand (for the latter, the literature on monadic lifting for quantale-valued relations might
serve as a guide [18]).
The second one is about abstract differences: defining differences as functions with the
same rank as that of the compared programs implies that reasoning about them is complex.
Abstracting differences so as to facilitate differential reasoning could be the way out,
given that deep connections exist between logical relations and abstract interpretation [2].
Another way to understand program difference better is to investigate whether differential
logical relations can be related to abstract structures for differentiation, as in [3]. Indeed,
Example 6 suggests that an interesting distance between a program and itself can be
taken as its derivative, the latter being defined as in [8].

References
1 S. Abramsky. The Lazy Lambda Calculus. In D. Turner, editor, Research Topics in Functional

Programming, pages 65–117. Addison Wesley, 1990.
2 Samson Abramsky. Abstract Interpretation, Logical Relations and Kan Extensions. J. Log.

Comput., 1(1):5–40, 1990.
3 Mario Alvarez-Picallo and C.-H. Luke Ong. Change Actions: Models of Generalised Differenti-

ation. In Proc. of FOSSACS 2019, pages 45–61, 2019.
4 A. Arnold and M. Nivat. Metric Interpretations of Infinite Trees and Semantics of non

Deterministic Recursive Programs. Theor. Comput. Sci., 11:181–205, 1980.
5 C. Baier and M.E. Majster-Cederbaum. Denotational Semantics in the CPO and Metric

Approach. Theor. Comput. Sci., 135(2):171–220, 1994.
6 Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin C. Pierce. Programming language

techniques for differential privacy. SIGLOG News, 3(1):34–53, 2016.
7 Michael A. Bukatin, Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh. Partial

Metric Spaces. The American Mathematical Monthly, 116(8):708–718, 2009.

ICALP 2019

111:14 Differential Logical Relations

8 Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. A theory of changes
for higher-order languages: incrementalizing λ-calculi by static differentiation. In Proc. of
PLDI, pages 145–155, 2014.

9 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. Generalized
Bisimulation Metrics. In CONCUR 2014 - Concurrency Theory - 25th International Conference,
CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings, pages 32–46, 2014.

10 Raphaëlle Crubillé and Ugo Dal Lago. Metric Reasoning about λ-Terms: The Affine Case. In
Proc. of LICS 2015, pages 633–644, 2015.

11 Raphaëlle Crubillé and Ugo Dal Lago. Metric Reasoning About λ-Terms: The General Case.
In Proc. of ESOP 2017, pages 341–367, 2017.

12 Ugo Dal Lago, Francesco Gavazzo, and Akira Yoshimizu. Differential Logical Relations, Part
I: The Simply-Typed Case (Extended Version), 2018. arXiv:1904.12137.

13 A.A. de Amorim, M. Gaboardi, J. Hsu, S. Katsumata, and I. Cherigui. A semantic account of
metric preservation. In Proc. of POPL 2017, pages 545–556, 2017.

14 J.W. de Bakker and J.I. Zucker. Denotational Semantics of Concurrency. In STOC, pages
153–158, 1982.

15 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labelled Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

16 M.H. Escardo. A metric model of PCF. In Workshop on Realizability Semantics and Applica-
tions, 1999.

17 Francesco Gavazzo. Quantitative Behavioural Reasoning for Higher-order Effectful Programs:
Applicative Distances. In Proc. of LICS 2018, pages 452–461, 2018.

18 D. Hofmann, G.J. Seal, and W. Tholen, editors. Monoidal Topology. A Categorical Approach to
Order, Metric, and Topology. Number 153 in Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2014.

19 F.W. Lawvere. Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis.
Milano, 43:135–166, 1973.

20 John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
21 Sparsh Mittal. A Survey of Techniques for Approximate Computing. ACM Comput. Surv.,

48(4), 2016.
22 J. Morris. Lambda Calculus Models of Programming Languages. PhD thesis, MIT, 1969.
23 Gordon D. Plotkin. Lambda-Definability and Logical Relations. Memorandum SAI-RM-4,

University of Edinburgh, 1973.
24 J. Reed and B.C. Pierce. Distance makes the types grow stronger: a calculus for differential

privacy. In Proc. of ICFP 2010, pages 157–168, 2010.
25 K.I. Rosenthal. Quantales and their applications. Pitman research notes in mathematics series.

Longman Scientific & Technical, 1990.
26 Dana Scott. Outline of a mathematical theory of computation. Technical Report PRG02,

OUCL, November 1970.
27 Dana Scott and Christopher Strachey. Toward a mathematical semantics for computer

languages. Technical Report PRG06, OUCL, August 1971.
28 F. Van Breugel. An introduction to metric semantics: operational and denotational models

for programming and specification languages. Theor. Comput. Sci., 258(1-2):1–98, 2001.
29 F. Van Breugel and J. Worrell. A behavioural pseudometric for probabilistic transition systems.

Theor. Comput. Sci., 331(1):115–142, 2005.
30 Franck van Breugel and James Worrell. Towards Quantitative Verification of Probabilistic

Transition Systems. In Proc. of ICALP 2001, pages 421–432, 2001.
31 Edwin M. Westbrook and Swarat Chaudhuri. A Semantics for Approximate Program Trans-

formations. CoRR, abs/1304.5531, 2013. arXiv:1304.5531.
32 Lili Xu, Konstantinos Chatzikokolakis, and Huimin Lin. Metrics for Differential Privacy in

Concurrent Systems. In Proc. of FORTE 2014, pages 199–215, 2014.

http://arxiv.org/abs/1904.12137
http://arxiv.org/abs/1304.5531

	Introduction
	A Simply-Typed lambda-Calculus with Real Numbers
	Making Logical Relations Differential
	A Fundamental Lemma
	Our Running Example, Revisited

	Logical and Metric Relations as DLRs
	Strengthening the Fundamental Theorem through Finite Distances
	A Categorical Perspective
	Conclusion

