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Abstract
There exist several graphical languages for quantum information processing, like quantum circuits,
ZX-Calculus, ZW-Calculus, etc. Each of these languages forms a †-symmetric monoidal category
(†-SMC) and comes with an interpretation functor to the †-SMC of (finite dimension) Hilbert spaces.
In the recent years, one of the main achievements of the categorical approach to quantum mechanics
has been to provide several equational theories for most of these graphical languages, making them
complete for various fragments of pure quantum mechanics.

We address the question of the extension of these languages beyond pure quantum mechanics,
in order to reason on mixed states and general quantum operations, i.e. completely positive maps.
Intuitively, such an extension relies on the axiomatisation of a discard map which allows one to get
rid of a quantum system, operation which is not allowed in pure quantum mechanics.

We introduce a new construction, the discard construction, which transforms any †-symmetric
monoidal category into a symmetric monoidal category equipped with a discard map. Roughly
speaking this construction consists in making any isometry causal.

Using this construction we provide an extension for several graphical languages that we prove to
be complete for general quantum operations. However this construction fails for some fringe cases
like the Clifford+T quantum mechanics, as the category does not have enough isometries.
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1 Introduction

Graphical languages that speak of quantum information can be formalised through the notion
of symmetric monoidal categories. Hence, it has a nice graphical representation using string
diagrams [41]. Qubits are represented by wires, and morphisms by graphical elements where
some wires go in, and some others go out, just as in quantum circuits (which is actually a
particular case of symmetric monoidal category), and where these graphical elements can
be composed either in sequence (usual composition) or in parallel (tensor product). They
usually come with an additional structure, a contravariant functor called dagger.

Examples of graphical languages for quantum mechanics and quantum computing are
the quantum circuits and the ZX-Calculus [11]. Some variants of the ZX-calculus have
been introduced more recently like the ZW-calculus [26] and the ZH-calculus [6]. All these
languages are defined using generators (elementary gates) and come with an interpretation
functor which associates to any diagram a pure quantum evolution, i.e. a morphism in the
category of Hilbert spaces. Given a graphical language, there are generally several ways to
represent a quantum evolution, thus a graphical language is also equipped with an equational
theory which allows to transform a diagram into another equivalent diagram. A fundamental
property, generally hard to prove, is the completeness of the language: given two diagrams
representing the same quantum evolution, one can be turned into the other using only the
transformation rules in the theory.

The languages considered have usually been built so as to be able to represent any
pure quantum evolution, i.e. any perfectly isolated quantum system which hence does not
interact with the environment. In this case, the language is called universal for pure quantum
mechanics. The hardness of the completeness problem, as well as constraints given by the
complexity to physically achieve some gates, focused the research on some restrictions of the
languages. On the one hand, finite presentations for the quantum circuits were shown to be
complete for some restrictions – namely Clifford [42], one-qubit Clifford+T [37], two-qubit
Clifford+T [43], CNot-dihedral [1] –, however none of these restrictions is universal, nor
approximately universal. Regarding the ZX-calculus, completeness results exist for non-
universal restrictions of the ZX-Calculus [3, 4, 16, 24], but also for the many-qubit Clifford+T
ZX-Calculus [31], which was the first completeness result for an approximately universal
fragment of the language. Then complete theories have been introduced for the universal
ZX-Calculus [28, 33, 32, 44] and ZW-Calculus [27, 28]. The completeness of the graphical
languages for pure quantum mechanics is one of the main achievements of the categorical
approach to quantum mechanics, and is the cornerstone for the application of this formalism
in many areas of quantum information processing. The ZX-Calculus already proved to be
useful for quantum information processing [14] (e.g. measurement-based quantum computing
[18, 23, 29], quantum codes [17, 9, 20, 22], circuit optimisation [21], foundations [5, 19] ...).
Moreover the ZX-calculus can be concretely used through two softwares: Quantomatic [36]
and PyZX [34].

The existence of complete graphical languages beyond pure quantum mechanics for more
general, not necessarily pure, quantum evolutions is an open question that we address in the
present paper.

While pure quantum evolutions correspond to linear maps over Hilbert spaces, probability
distributions over quantum states as well as some quantum evolutions like discarding a
quantum system can be represented, following the von Neumann approach, by means of
density matrices and completely positive maps. The category of completely positive maps
has been already studied [39], and in particular the connections between the pure and the
van Neumann approaches is a central question in categorical quantum mechanics. Selinger
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introduced a construction called CPM to turn a category for pure quantum mechanics into a
category for density matrices and completely positive maps [40]. Another approach to relate
pure quantum mechanics to the general one is the notion of environment structure [10, 12, 15].
The notion of purification is central in the definition of environment structure. The CPM-
construction and the environment structure approaches have been proved to be equivalent [12].

In terms of graphical languages, the environment structure approach cannot be used
in a straightforward way to extend a graphical language beyond pure quantum mechanics.
Roughly speaking the environment structure approach provides second order axioms which
associates with any equation on arbitrary (non necessarily pure) evolutions an equivalent
equation on pure evolutions. Such a second order axiom cannot be easily handled by a
equational theory on diagrams. Regarding the CPM-construction, the main property which
has been exploited in [14] is that CPM(C) is essentially a subcategory of C, thus one can
use a graphical language which has been designed for C in order to represent morphisms
in CPM(C): Given a complete graphical language for C, we can use a subset of the pure
diagrams to represent the evolutions in CPM(C). The main caveat of this approach is that
this subset is not necessarily closed under the equational theory on pure diagrams, and as a
consequence does not provide a complete graphical language for CPM(C).

Our contributions. In [30] was shown that the category CPTPM of completely posit-
ive trace-preserving maps is the universal monoidal category with a terminal unit and a
functor from the category of isometries. We build upon this result by introducing a new
construction, the discard construction, which transforms any †-symmetric monoidal category
into a symmetric monoidal category equipped with a discard map. Roughly speaking this
construction consists in making any isometry causal. Indeed, in quantum mechanics, the
isometries (linear maps U such U† ◦ U = I) are known to be causal, i.e. applying U and
then discarding the subsystem on which it has been applied is equivalent to discarding the
subsystem straightaway. Specifically, the discard construction proceeds as follows: first the
discard is added to the subcategory of isometries, making the unit of the tensor a terminal
object in this sub-category , as pointed out in [30]. Then the discard construction is obtained
as the pushout of the resulting category and the initial one.

We show that the discard construction does not always produce an environment structure
for the original category, and thus is not equivalent to the CPM construction. We show that
a necessary and sufficient condition for the two constructions to be equivalent is that the
initial category has enough isometries. We show that most of the categories usually used in
the context of the categorical quantum mechanics, like FHilb and Stab, do have enough
isometries, however Clifford+T does not.

Finally, we show that the discard construction provides a simple recipe to extend graphical
languages beyond pure quantum mechanics. We provide an extension for several graphical
languages that we prove to be complete for general quantum operations.

Structure of the paper. In section 2, we review some categorical notions used in categorical
quantum mechanics. Section 3 is dedicated to the definition of the discard construction and
the relation with the CPM construction. Finally, in section 4 we use the discard construction
to extend the ZX-calculus to make it complete for general (not necessarily pure) quantum
evolutions. The construction is also applied to other graphical languages.

ICALP 2019
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2 Background

2.1 Dagger symmetric monoidal categories
To avoid any size issue, all our categories are small, the homset of a category C will be
denoted C[A,B]. For simplicity, all the monoidal categories considered in the following will
be strict. Recall that a strict symmetric monoidal category (SMC) C is a category together
with a tensor product bifunctor ⊗ : C×C→ C, a unit object I such that A⊗ I = I⊗A = A

and A⊗(B⊗C) = (A⊗B)⊗C, and a symmetry natural isomorphism: σA,B : A⊗B → B⊗A
satisfying σA,I = 1A, σA,B⊗C = (1B⊗σA,C)◦(σA,B⊗1C), and σA,B ◦σB,A = 1B⊗A. A prop is
an SMC whose set of objects is freely spanned by one object. There is an associated notion of
strict symmetric monoidal functor F : C→ D which preserves unit, tensors and symmetries.
We will use string diagram notations for SMC where morphisms are described as boxes and

g ◦ f :=
f

g
f ⊗ g := gf 1A := A 1I := σA,B :=

A †-SMC C, is an SMC with an i.o.o. (identity on object) involutive and contravariant
SMC-functor (.)† : C→ C. That is, every morphism f : A→ B has a dagger f† : B → A

such that f†† = f , moreover the dagger respects the symmetries σ†A,B = σB,A. The dagger
is a central notion in categorical quantum computing and can be used to define specific
properties of morphisms:

I Definition 1. f : A→ B is an isometry if f† ◦ f = 1A, i.e.
f

f† = .

In this paper most of the categories considered are furthermore compact closed: A dagger
compact category (†-CC) is a †-SMC where every object A has a dual object A∗ such that
for all objects A, there are two morphisms A A∗ : A⊗A∗ → I and AA∗ : I → A∗⊗A

satisfying = A
A

A
A∗ , = A∗

A∗

A∗

A and
(
A A∗

)† =
A∗

A∗

A

A
.

2.2 Examples
We will consider two kinds of SMCs in this paper: the categories of quantum evolutions and
the graphical languages.

Quantum evolutions. Pure quantum evolutions correspond the category of Hilbert spaces.
We will consider several of its subcategories: FHilb is the category of finite dimensional
Hilbert spaces whose objects are Cn and morphisms are linear maps. Its tensor is the usual
tensor product of vector spaces and its dagger is the adjoint with respect to the usual scalar
product. It is the mathematical model for pure quantum mechanics. In quantum information
processing, quantum data is usually carried by qubits, hence Qubit is the full subcategory
of FHilb with objects of the form C2n . Stab is the sub-category of Qubit which is finitely
generated by the Clifford operators: H, S, CNot, the state |0〉, the projector 〈0|, and the
scalar 2 where:

H = 1√
2

(1 1
1 −1

)
S =

(1 0
0 i

)
CNot =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 |0〉 =
(1

0

)
〈0| = (1 0)
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Those are amongst the most commonly used gates in quantum computation (see [38] for
details). Clifford+T is the same as Stab but with the additional generator T =

( 1 0
0 ei

π
4

)
,

the morphisms of Clifford+T are exactly the matrices with entries in the ring Z[i, 1√
2 ]

[31]. Contrary to Stab, Clifford+T is approximately universal in the sense that ∀n,m∈N,
∀f∈Qubit[C2n ,C2m ] and ∀ε>0, there exists g ∈ Clifford+T[C2n ,C2m ] such that ||f−g||<ε.
FHilb, Qubit, Clifford+T, and Stab are all †-CC. Notice that Qubit, Clifford+T, and
Stab are props, but FHilb is not.

Probability distributions over pure quantum states as well as some quantum evolutions like
discarding a quantum system are not pure but can be represented, following the von Neumann
approach, by means of density matrices and completely positive maps. Let CPM be
the category of completely positive maps of finite dimension whose objects are Cn and
CPM[Cn,Cm] = {U : Cn×n → Cm×m | U is a completely positive linear map}. Similarly to
the pure case, one can define various subcategories of CPM. Notice that it can be achieved
by the CPM construction described in the next section.

Graphical languages. The second kind of categories we are considering in this paper are
graphical languages. They are props which come with interpretation functors defining their
semantics. A prop is in fact the equivalent of Lawvere theories for symmetric monoidal
theories. They can be presented by generators and relations as one would do for usual
theories, see [45] and [7] for a detailed discussion.

I Definition 2. A graphical language G is a prop presented by a set of generators Σ and a
set of equations E together with a function J.K : Σ→ hom(S) called the interpretation of G
in S. G is said to be sound if J.K defines an interpretation functor J.K : G → S, and universal
(resp. complete) when this functor is surjective (resp. faithful).

The ZX-, ZW- and ZH-calculi or the quantum circuits are examples of such categories
with semantics in Qubit.

2.3 Environment structures and CPM-construction
Connecting the Hilbert approach – for pure quantum mechanics – and the von Neumann
approach – for open systems – is a central question in categorical quantum mechanics. Selinger
pointed out that any †-CC for pure quantum mechanics can be turned into a category for
density matrices and completely positive maps via the CPM construction [40]:

I Definition 3. Given a †-CC C, let CPM(C) be the †-CC with the same objects as C such

that CPM(C)[A,B] =

 f

A

B

f∗
A∗

B∗C C∗

, f ∈ C[A,B ⊗ C]

, where g∗
A∗

B∗

g†
B

A

:= A∗

B∗
.

Applying it to FHilb one obtains the category CPM of completely positives maps. The
CPM construction can also be applied to Qubit, Clifford+T, and Stab. Notice that the
CPM-construction has been then extended to the non necessarily compact categories [12].

Another approach to relate pure quantum mechanics to the general one is the notion of
environment structure [10, 12, 15]. The notion of purification is central in the definition of
environment structure. Intuitively, it means that (1) there is a discard morphism for every
object; (2) any morphism can be purified, i.e. decomposed into a pure morphism followed by
a discarding map, and (3) this purification is essentially unique. More formally:

ICALP 2019
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I Definition 4. An environment structure for a †-CC C is a CC C with the same objects
as C, an i.o.o SMC-functor ι : C → C and for each object A a morphism A : A → I

such that:
(1)

I
= 1I , and for all A,B : C,

A
⊗

B
=
A⊗B

.

(2) For all f : A→ B in C, there is an f ′ : A→ B ⊗X in C such that: f = ι(f ′)

(3) For any f : A→ B ⊗X and g : A→ B ⊗ Y in C: f ∼cp g ⇔ ι(f) = ι(g)

where the relation ∼cp is defined as: f ∼cp g ⇔
f

f†
=

g

g†

Notice that ∼cp is technically not a relation on morphisms but on tuples (A,B,X, f) with
f ∈ C[A,B⊗X]: (A,B,X, f) ∼cp (C,D, Y, g) if A = C,B = D and f, g satisfy the graphical
condition represented above. By abuse of notation, we write f ∼cp g, as the other components
of the tuple will be usually obvious from context. We will do the same for our relation
∼iso below.

CPM is actually an environment structure for the category FHilb, and more generally
for any †-CC C, CPM(C) is an environment structure for C and conversely any environment
structure for C is equivalent to CPM(C) [12]. Actually one can notice that CPM(C)[A,B]
is nothing but the set of equivalent classes of ∼cp.

The notion of environment structures has also been generalised to the non compact case
[12]. We chose here to focus on the compact case.

3 The Discard Construction

We introduce a new construction, the discard construction, which consists in adding a discard
map for every object of a †-SMC, and thus intuitively transforming a category for pure
quantum mechanics into a category for general quantum evolutions.

Causality is a central notion in quantum mechanics which has been axiomatised using a
discard map as follows [35]: f : A→ B is causal if and only if f = . Amongst the pure

quantum evolutions, the isometries are causal evolutions. The discard construction essentially
consists in making any isometry causal. Thus, whereas the CPM construction relies on
completely positive maps and the environment structures on the concept of purification, the
discard construction relies on causality.

3.1 Definition
We introduce the new construction in three steps. First, given a †-SMC, one can consider its
subcategory of isometries:

I Definition 5. Given a †-SMC C, Ciso is the subcategory with the same objects as C and
isometries as morphisms, i.e. for all A,B : C, Ciso[A,B] = {f : C[A,B], f† ◦ f = 1A}.

Notice that Ciso is an SMC but usually not a †-SMC. Any †-SMC-functor F : C→ D
between two †-SMC can be restricted to their subcategories of isometries leading to an
SMC-functor Fiso : Ciso → Diso. Thus there is a restriction functor iso : †-SMC→ SMC.
Remark that this functor preserves fullness and faithfulness. One always has an inclusion
i.o.o. faithful SMC-functor: iiso : Ciso → C.
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In quantum mechanics, isometries are causal evolutions, i.e. applying an isometry and
then discarding all outputs is equivalent to discarding the inputs straight away. As pointed
out in [30], adding discard maps to the category of isometries would make I a terminal object.
Such a category is said to be affine symmetric monoidal category (ASMC). We define the
affine completion of an SMC:

IDefinition 6. Given an SMC C, we define C! as C with an additional morphism !A : A→ I

for each object A : C. We denote the inclusion functor i! : C→ C! which is strict monoidal
and i.o.o. We further impose that 1I = !I , and that for all f : C[A,B], !B ◦ i!(f) = !A.
This makes I a terminal object in C!, and thus C! is an ASMC.

Notice by the way that !A⊗ !B = 1I ◦ ( !A⊗ !B) = !I ◦ ( !A⊗ !B) = !A⊗B . Again given
a functor F : C → D, one can define a functor F ! : C! → D! by F !( !A) = !i!(F (A)) and
F !(f) = i!(F (f)) for the other morphisms. In [30], Huot and Staton show that CPTPM,
the category of completely positive trace preserving maps, is equivalent to FHilb !

iso, thus
giving a caracterisation of it via a universal property. We extend this idea to non-trace
preserving maps by proceeding to a local affine completion of the subcategory of isometries.

We define the category C as the pushout of C and C !
iso:

I Definition 7. Given a †-SMC C, C is defined as the pushout in the category of symmetric
monoidal categories:

Ciso

C !
iso

C

C

iiso

i!

ιC !
iso

ιC

The existence of this pushout follows from the fact that the forgetful functor from
strict symmetric monoidal categories to categories StrictSymMonCat → Cat preserves
coequalizers, and from [8, Theorem 9.3.9]. As all our functors are i.o.o., we can also describe
it simply combinatorially. The objects of C are the same as C. Its morphisms are
equivalence classes generated by formal composition and tensoring of morphisms in C !

iso and
C. The equivalence relation is generated by the equations of both categories augmented
with equations i!(f) = iiso(f) for all f in Ciso. The functors ιC and ιC !

iso
are the natural

ways to embed C and C !
iso. We will see those formal compositions as string diagrams whose

components are morphisms of C and C !
iso wired to each others. Two diagrams represent the

same morphism if we can rewrite one into the other applying the equations of both categories
and i!(f) = iiso(f) for all f in Ciso. This forms a well defined SMC.

Since the only morphisms in Ciso which are not identified with the morphisms of C
are those that contain !A, we can see C as C augmented with discard maps which
delete isometries.

I Definition 8. The discard map on an object A is defined in C by
A

:= ιC !
iso

( !A).

Notice, that for any isometry f : A→ B in C , f = , thus any isometry is causal.

3.2 Relation to environment structures and CPM
In order to compare the C construction with environment structures and the CPM con-
struction we need to study in details the purification process in C . First notice that any
morphism of C admits a purification:

ICALP 2019
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I Lemma 9. Let C be a †-SMC. For all f : C [A,B], there is an X : C and an f ′ :

C[A,B ⊗X] such that f = ιC(f ′) .

The purification needs not be unique, however it satisfies an essential uniqueness condition.
To state it we define the relation ∼iso.:

I Definition 10. Let C be a †-SMC, and two morphisms f : A→ B ⊗X, g : A→ B ⊗ Y .

f ∼iso g if there are two isometries u : X → Z and v : Y → Z, such that
f

u =
g

v .

Notice that the relation ∼iso is not transitive, thus we consider ∼+
iso its transitive closure

to make it an equivalence relation. It is easy to show that if f ∼+
iso g then f and g purify the

same morphism of C . The converse is also true:

I Lemma 11. For all f : A→ B ⊗X and g : A→ B ⊗ Y : f ∼+
iso g ⇔ ιC(f) = ιC(g)

So the purification is unique up to ∼+
iso. Lemma 11 also gives an alternative definition of

C which relates more easily to the CPM construction. It is the same construction as CPM
with ∼cp replaced by ∼+

iso. In other words C [A,B] is the set of equivalent classes of ∼+
iso.

As we have introduced a new discard construction, a natural question is whether C
is an environment structure for C. To be an environment structure, three conditions are
required. The first two are satisfied: C has a discard morphism for every object, and every
morphism can be purified. The third one is the uniqueness of the purification: according to
the definition of the environment structures, f and g purify the same morphism if and only
if f ∼cp g whereas according to Lemma 11, f and g purify the same morphism if and only if
f ∼+

iso g. As a consequence C is an environment structure for C if and only if ∼cp=∼+
iso.

It turns out that one of the inclusions is always true:

I Lemma 12. For any †-SMC category C, we have ∼+
iso⊆∼cp.

As a consequence, if ∼cp 6=∼+
iso, it means that there are some morphisms f, g that are

equal in ∼cp but cannot be proved equal in ∼+
iso. Intuitively it means the category has not

enough isometries to prove those terms equal, which leads to the following definition:

I Definition 13. A †-SMC category C has enough isometries if the equivalences relations
∼cp and ∼+

iso of C are equal.

I Lemma 14. Given a †-SMC C, the following properties are equivalent:
1. C has enough isometries;
2. C is an environment structure for C;
3. C ' CPM(C).

Notice that if C has enough isometries, the discard construction provides a definition of
CPM(C) via a universal property. This gives a more direct way to build the environment,
avoiding to deal with the equivalence classes of the CPM construction.
I Remark 15. Let’s focus for a moment on the category Causal CPM(C) of causal maps,
that is the subcategory of maps cancelled by the discards in CPM(C). We have that:
∼cp⊆∼+

iso⇒ C !
iso ' Causal CPM(C). In fact by Lemma 14, CPM(C) ' C , and then

the subcategory Causal CPM(C) is equivalent to the subcategory of maps cancelled by the
discards in C which is equivalent to C !

iso. Causal CPM(FHilb) being exactly CPTPM,
we have recovered the result of [30].
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3.3 Examples
We consider the usual subcategories of FHilb used for pure quantum mechnanics and show
in each case whether the discard construction produces an environment structure or not.
First of all, thanks to the Stinespring dilation theorem, FHilb is not only an environment
structure for FHilb, but the relation ∼iso is also transitive in this case:

I Proposition 16. FHilb is an environment structure for FHilb. Furthermore ∼+
iso=∼iso.

When dealing with graphical languages we will be more interested in the full subcategory
Qubit of FHilb:

I Proposition 17. Qubit is an environment structure for Qubit.

Notice that in general, the property of having enough isometries does not transfer to full
subcategories: If D is a full subcategory of C, we might have f ∼+

iso g on C but f 6∼+
iso g on

D. This could happen for two reasons: First the chain of intermediate morphisms that prove
that f ∼+

iso g might live outside of D. Second, the isometries that “prove” that f ∼+
iso g on

C might have codomain outside of D.
If our category is not a full subcategory, then everything falls apart, and finding conditions

that guarantee that C is an environment structure for C is not easy.
For subcategories of Qubit, necessary conditions can be given. This category has the

peculiarity that ·∗ is the identity on objects and that f∗∗ = f for all morphisms (·∗ maps a
matrix to its conjugate matrix). In particular, for any state φ : I → I ⊗X, we have φ∗ ∼cp φ.
Indeed φ φ∗ = φ∗ φ .

So a necessary condition for a subcategory of Qubit to behave nicely is that for all states
φ, we have φ∗ ∼+

iso φ. This is the case in Stab: Given a stabilizer state φ, there always exists
a stabilizable unitary U s.t. Uφ = φ∗. In fact:

I Proposition 18. Stab is an environment structure for Stab.

The main idea of the proof is to use the map/state duality, and structural results about
bipartite stabilizer states [2].

No such unitary exists in general in Clifford+T: For almost all states φ, there is no
unitary U (and actually no morphism at all) s.t. Uφ = φ∗. Clifford+T therefore has not
got enough isometries:

I Proposition 19. (Clifford+T) is not an environment structure for Clifford+T. More
precisely, there exists a state φ s.t. φ ∼cp φ∗ but φ 6∼+

iso φ
∗. One can take for example

φ = 1 + 2i (in this case φ is a state with no input and outputs, hence a scalar).

Note that for all categories above, we have ∼+
iso=∼iso. That it holds in Qubit and FHilb

is a consequence of the Witt extension theorem: Every isometry f : A → B is equal to a
unitary g : B → B precomposed with a canonical embedding from A to B. It it well known
in Stab and it is true in Clifford + T by [25, Lemma 5].

4 Application to the ZX-Calculus and other graphical languages

We now focus on the behavior of interpretation functors with respect to the discard construc-
tion. The discard construction defines a functor (_) : †−SMC→ SMC. Indeed, given a
†-SMC functor F , Fiso and F !

iso uniquely define a functor F by pushout.
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Diso

D !
iso

D

D

Ciso

C !
iso

C

C

F is
o

F
!
iso

F

F

The following lemma and theorem are the main tools to apply the discard construction to
graphical languages:

I Lemma 20. If F is faithful and if Fiso : Ciso → Diso is surjective, then F (f) ∼+
iso F (g)⇒

f ∼+
iso g.

I Theorem 21. Let C and D be two †-SMCs and F : C → D a †-SMC-functor. If F is
faithful and if Fiso : Ciso → Diso is surjective, then F : C → D is faithful. If furthermore
F is surjective then F is surjective and faithful.

Notice that the hypothesis on Fiso is very strong, as it makes it an isomorphism: We
want it to be surjective as we do not want to lose even one isometry. In particular we do not
know if the theorem still applies if F is merely an equivalence of categories.

Reformulating for graphical languages this gives:

I Corollary 22 (of Theorem 21). Given a †-CC C with enough isometries, if G is a †-
CC universal complete graphical language for C then G is a universal complete language
for CPM(C).

This provides a general recipe. We start with a universal complete graphical language
G. We build G , by Theorem 21, J.K : G → C is full and faithful. Furthermore
C ' CPM(C). G as a prop can be presented by adding one new generator to the
signature Σ and one equation for each isometry of G. In general, if one is provided with
a spanning set of the isometries, the number of equations can be drastically reduced. We
just need one equation for each element of this set. We then obtain a universal complete
graphical language.

We will now briefly review the ZX-calculus and some of its twin languages. They are
all universal and complete for subcategories of Qubit. Each time we will apply the recipe
with a well chosen spanning set and provide the additional axioms involving . We will not
discuss minimality, i.e. if adding these new axioms can help to simplify others.

4.1 The ZX-calculus
The ZX-Calculus was introduced in [11] by Coecke and Duncan for pure quantum evolutions.
It is a †-compact prop generated by:

R
(n,m)
Z (α) : n→ m :: α

...

...

n

m

R
(n,m)
X (α) : n→ m :: α

...

...

n

m

H : 1→ 1 ::

and the two compositions: spacial (.⊗ .) and sequential (. ◦ .). The symmetric and compact
structure are provided by σ : 2→ 2 :: , ε : 2→ 0 :: and η : 0→ 2 :: .

To simplify, the red and green nodes are represented empty when holding a 0 angle:
...

0:=... ...
...

and 0:=... ...
... ...
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The language is universal [11]. So far, it has two complete axiomatisations [28, 33]. Some
of the main axioms are:

... = α+β
β

...
α
...

......

...

...
= α

...
= α

...

...

...

ZX-diagrams represent quantum evolutions, so there exists a functor J.K : ZX→ Qubit,
called the standard interpretation, which associates to any diagram D : n→ m a linear map
JDK : C2n → C2m inductively defined as follows:

J.K

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K
r z

:= (1)
r z

:=
(1 0

0 1
) r z

:= 1√
2

(1 1
1 −1

)

J K := (1 0 0 1)
r z

:=

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 q y
:=

1
0
0
1



Jα K := (1 + eiα)
t

α
...

...

n

m

|

:= 2m



2n︷ ︸︸ ︷
1 0 · · · 0 0
0 0 · · · 0 0
...
...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 eiα

 (n+m > 0)

For any n,m ≥ 0 and α ∈ R:
t

α
...

...

n

m

|

=
r z⊗m

◦

t

α
...

...

n

m

|

◦
r z⊗n

(
where M⊗0 = (1) and M⊗k = M ⊗M⊗k−1 for k ∈ N∗

)
.

Theorem 21 provides a recipe for transforming the language for mixed states and CPMs.
The resulting language ZX can be seen as a prop with the generators of the ZX-Calculus,
augmented with and with the axiomatisation enriched with { ◦D = | D† ◦D = I}.
We actually do not need an infinite axiomatisation. Indeed, the set of isometries of the
ZX-Calculus can be finitely generated.

Using (eiα, |0〉, H, RZ(α), CNot) as spanning set of the isometries [38], we obtain only
five axioms:

α
=

π
= =

=α =

4.2 The π
2 fragment of ZX-calculus

The ZXπ
2
is obtained from ZX by restricting phases α to {0, π2 , π,

3π
2 }. It is universal and

complete for Stab [3] with the adequate axiomatisation. Moreover according to Lemma 18
Stab is an environment structure for Stab.
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The set (eiπ4 , |0〉, H, RZ(α), CNot), with α restricted to multiples of π2 , is a spanning
set of isometries in Stab (notice that eiπ4 = 2 〈0|HSH |0〉〈0|H |0〉 is in Stab), so adding
the same set of equations than in ZX with additional rule π

2 = will provide a

complete axiomatisation for ZXπ
2
.

4.3 The Clifford+T fragment of ZX-calculus

Restricting ZX to angles multiples of π/4, we obtain a language which is known to be
universal and complete for Clifford+T [31]. However, as shown by Lemma 19, the semantic
category Clifford+T does not have enough isometries. The discard construction is strictly
coarser than CPM for this fragment. So we leave open the complete axiomatisation of
quantum operations for this fragment.

4.4 The ZW-calculus

The ZW-Calculus was introduced in [26], deriving from the GHZ/W-Calculus [13], where the
main two generators are two non-equivalent ways to entangle three qubits, the so-called GHZ
and W states. The language was made complete for pure quantum mechanics in [28]. Since
CNot is hard to express in this calculus, we choose another set of universal diagrams, more
suited to ZW, namely (eiα, |1〉, RZ(α), H, CZ ◦ SWAP). The resulting rules for ZW are:

eiα = = =eiα

=
1√
2 =

4.5 The ZH-Calculus

The ZH-Calculus was introduced and proved to be complete in [6]. The point of this language
is to easily represent hypergraph-states, a generalisation of graph-states, a useful resource
for quantum computing. This language has been specifically designed to easily represent
the multi-controlled Z (which constitute the hyperedges in the hypergraph-states). So in
particular, CZ and RZ(α) are easily representable. Up to a scalar, H is also easily doable,
and

q
X(0,1)y = |0〉. Hence, choosing (eiα, |0〉, H, RZ(α), CZ) as spanning set, we only need

the axioms:

=eiα = =
1√
2

=eiα =
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