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Abstract
Value iteration is a fundamental algorithm for solving Markov Decision Processes (MDPs). It
computes the maximal n-step payoff by iterating n times a recurrence equation which is naturally
associated to the MDP. At the same time, value iteration provides a policy for the MDP that is
optimal on a given finite horizon n. In this paper, we settle the computational complexity of value
iteration. We show that, given a horizon n in binary and an MDP, computing an optimal policy is
EXPTIME-complete, thus resolving an open problem that goes back to the seminal 1987 paper on
the complexity of MDPs by Papadimitriou and Tsitsiklis. To obtain this main result, we develop
several stepping stones that yield results of an independent interest. For instance, we show that
it is EXPTIME-complete to compute the n-fold iteration (with n in binary) of a function given
by a straight-line program over the integers with max and + as operators. We also provide new
complexity results for the bounded halting problem in linear-update counter machines.
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1 Introduction

Markov decision processes (MDP) are a fundamental formalism of decision making under
probabilistic uncertainty [29, 9]. As such, they play a prominent role in numerous domains,
including artificial intelligence and machine learning [34, 33], control theory [10, 1], operations
research and finance [11, 31], as well as formal verification [12, 5], to name a few. Informally,
an MDP represents a system which is, at every time step, in one of the states from a finite
set S. The system evolves in steps: in each step, we can perform an action (or decision) from
a finite set A. When using an action a ∈ A in state s ∈ S, we collect an immediate reward
R(s, a) and then transition stochastically to a successor state according to a rational-valued
distribution P (s, a), which is given as a part of the MDP. This interaction with an MDP
proceeds over either a finite or infinite horizon. In the finite-horizon case, we are given a
bound H ∈ N (a horizon) such that the interaction stops after H steps; in the infinite horizon
case the process goes on forever. To solve an MDP means to find an optimal policy; that is,
a blueprint for selecting actions that maximizes the expected reward accumulated over a
finite or infinite horizon. The accumulated rewards are typically discounted by some factor
0 < γ ≤ 1; for infinite horizon, we need γ < 1 to ensure that the infinite sum is well defined.

Value iteration. Given the importance of MDPs, it is hardly surprising that they have
attracted significant interest in the theory community. Past research on MDPs included the
study of complexity issues [27] as well as the design and analysis of algorithms for solving
MDPs [22, 24, 38, 39]. In this paper, we provide a fresh look on one of the most familiar
algorithms for MDPs: value iteration (VI). Introduced by Bellman in the 1950s [6], VI makes
use of the optimality principle: the maximal n-step reward achievable from a state s, which
we denote by ~vn(s), satisfies the recurrence

~vn(s) = max
a∈A

{
R(s, a) + γ ·

∑
s′∈S

P (s, a)(s′) · ~vn−1(s′)
}

, (1)

with ~v0(s) = 0. Consequently, a finite-horizon policy is optimal if and only if it chooses, in
a situation when the current state is s and n steps are remaining, an action maximizing
the right-hand side (RHS) of (1). Thus, to solve an MDP with a finite horizon H, the VI
algorithm computes the values ~vn(s) for all 0 ≤ n ≤ H and all states s, by iterating the
recurrence (1). Using these values, VI then outputs (using some tie-breaking rule) some
policy satisfying the aforementioned optimality characterization. VI can be deployed also
for infinite-horizon MDPs: one can effectively compute a horizon H such that action a is
optimal in state s for an infinite horizon1 if it maximizes the RHS of (1) for n = H [8]. This
H has a bit-size which is polynomial in the size of the original MDP, but the magnitude of
H can be exponential in the size of the MDP if the discount factor is given in binary [22].

VI is one of the most popular MDP-solving algorithms due to its versatility (as shown
above, it can be used for several MDP-related problems) and conceptual simplicity, which
makes it easy to implement within different programming paradigms [30, 37], including
implementation via neural nets [35]. Several variants of VI with improved performance were
developed [36, 14]. For instance, the recent paper by Sidford et al. [32] presented a new class
of randomized VI techniques with the best theoretical runtime bounds (for certain values

1 In infinite-horizon MDPs, there is always an optimal stationary policy, which makes decisions based
only on the current state. [29]
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of parameters) among all known MDP solvers. The paper also expresses hope that their
techniques “will be useful in the development of even faster MDP algorithms.” To get insight
into the underlying structure of VI, which might enable or limit further such accelerations, we
take a complexity-theoretic vantage point and study the theoretical complexity of computing
an outcome of a VI execution. That is, we consider the following decision problem ValIt:
given an MDP with a finite horizon H (encoded as a binary number), does a given action
a maximize the RHS of (1) for n = H? This problem is inspired by the paper of Fearnley
and Savani [16], where they show PSPACE-hardness (and thus also completeness) for the
problem of determining an outcome of policy iteration, another well-known algorithm for
MDP solving. To the best of our knowledge, VI has not yet been explicitly subjected to this
type of analysis. However, questions about the complexity of ValIt were implicitly raised by
previous work on the complexity of finite-horizon MDPs, as discussed in the next paragraph.

Finite-horizon MDPs. The complexity of finite-horizon MDPs is a long-standing open
problem. Since “finding an optimal policy” is a function problem, we can instead consider
the decision variant: “In a given finite-horizon MDP, is it optimal to use a given action in
the first step?” As discussed above, this is exactly the ValIt problem in disguise.

In the seminal 1987 paper on the complexity of MDPs [27], Papadimitriou and Tsitsiklis
showed P-completeness of a special case of finite-horizon optimization where the horizon H
has magnitude polynomial in the size of the MDP. At the same time, they noted that in the
general case of binary-encoded H, VI can be executed on an EXPTIME-bounded Turing
machine (since H is represented using log(H) bits, the number of iterations is exponential in
the size of the input). Hence ValIt is in EXPTIME. However, the exact complexity of
the general finite-horizon optimization remained open ever since, with the best lower bound
being the P-hardness inherited from the “polynomial H” sub-problem. Tseng [36] presented
a more efficient (though still exponential) algorithm for finite-horizon MDPs satisfying a
certain stability condition; in the same paper, he comments that “in view of the stability
assumptions needed to obtain an exact solution and the absence of negative results, we are
still far from a complete complexity theory for this problem.”

In this paper, we address this issue, provide the missing negative results, and provide
tight bounds on the computational complexity of ValIt and finite-horizon MDP optimization.

Our Results
The main result of the paper is that ValIt is EXPTIME-complete (Theorem 1). In the
rest of this section, we first explain some challenges we needed to overcome to obtain the
result. Then we sketch our main techniques and conclude with discussing the significance of
our results, which extends beyond MDPs to several areas of independent interest.

Challenges
Bitsize of numbers. One might be tempted to believe that ValIt is in PSPACE, since
the algorithm needs to store only polynomially many values at a time. However, the bitsize
of these values may become exponentially large during the computation (e.g., the quantity
~vn(s) may halve in every step). Hence, the algorithm cannot be directly implemented by
a polynomial-space Turing machine (TM). One could try to adapt the method of Allender
et al. [20, 2] based on an intricate use of the Chinese remainder representation (CRR) of
integers. However, there is no known way of computing the max operation directly and
efficiently on numbers in CRR.

ICALP 2019
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Figure 1 Chain of reductions.

Complex optimal policies. Another hope for PSPACE membership would be a possibly
special structure of optimal policies. Fixing any concrete policy turns an MDP into a
Markov chain, whose H-step behavior can be evaluated in polynomial space (using, e.g., the
aforementioned CRR technique of Allender et al.). If we could prove that (A) an optimal
policy can be represented in polynomial space and (B) that the Markov chain induced by
such a policy is polynomially large in the size of the MDP, we would get the following
PSPACE algorithm: cycle through all policies that satisfy (A) and (B), evaluate each of
them, and keep track of the best one found so far. Tseng [36] commented that optimal
policies in finite-horizon MDPs are “poorly understood”. Hence, there was still hope that
optimal Markovian deterministic policies may have a shape that satisfies both (A) and (B).
Unless PSPACE = EXPTIME, our results put such hopes to rest.

No hardness by succinctness. One might try to prove EXPTIME-hardness using a
succinctness argument. The results of [27] show that ValIt is P-hard when the horizon
is written in unary, and many optimization problems over discrete structures incur an
exponential blow-up in complexity when the discrete structure is encoded succinctly, e.g., by
a circuit [28]. Giving a horizonH in binary amounts to a succinct encoding of an exponentially
large MDP obtained by “unfolding” the original MDP into a DAG-like MDP of depth H.
This unfolded MDP is “narrow” in the sense that it consists of many polynomial-sized layers,
while standard EXPTIME-hardness-by-succinctness proofs, use succinct structures of an
exponential “width” and “depth”, accommodating the tape contents of an EXPTIME-
bounded TM. Hence, straightforward succinctness proofs do not apply here; e.g., there does
not seem to be a direct reduction from the succinct circuit value problem.

Our Techniques
To obtain EXPTIME-hardness of ValIt, we proceed by a sequence of non-trivial reductions.
Below we outline these reductions in the order in which they appear in the sequence, see
Figure 1. In the main text, we present the reductions in a different order (indicated by
the numbering of propositions and theorems), so that we start with MDPs and gradually
introduce more technical notions.

We start from a canonical EXPTIME-complete problem: the halting problem for an
exponential-time TM. We then present a reduction to a halting problem for a class of counter
programs (CPs; simple imperative programs with integer variables) that allow for linear
variable updates. In this way, we encode the tape contents into numerical values (6). The
crucial feature of this reduction is that the produced CP possesses a special simplicity
property, which imposes certain restrictions on the use of tests during the computation.

Next, we introduce straight-line programs (SLPs) with max, +, and − operations. SLPs
are a standard model of arithmetic computation [3] and they can be equivalently viewed
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as arithmetic circuits consisting (in our case) of max, +, and − gates. We also consider
a sub-class of SLPs with only max,+ operations, so called monotone SLPs. We define
the following powering problem: given a function f : Qn → Qn represented as an SLP, a
horizon H, an initial argument ~x ∈ {0, 1}n, and two indices 1 ≤ i, j ≤ n, is it true that the
i-component of fH(~x), i.e. the image of ~x with respect to the H-fold composition of f , is
greater than the j-component of fH(~x)? Although VI in MDPs does not necessarily involve
integers, the powering problem for monotone SLPs captures the complexity inherent in
iterating the recurrence (1). To obtain a reduction from CPs to SLP powering, we construct
SLP gadgets with max, + and − (minus) operations to simulate the tests in CPs; the
simplicity of the input CP is crucial for this reduction to work (Theorem 7). To get rid of
the minus operation, we adapt a technique by Allender et al. [4], which introduces a new
“offset” counter and models subtraction by increasing the value of the offset (Theorem 5).

A final step is to show a reduction from monotone SLP powering to ValIt. The reduction
proceeds via an intermediate problem of synchronizing reachability in MDPs (maximize the
probability of being in a target set of states T after exactly H steps [15]). This divides a
rather technical reduction into more comprehensible parts. We present novel reductions
from monotone SLP powering to synchronizing reachability (Theorem 4), and from the
latter problem to ValIt (Theorem 2). As a by-product, we present a reduction proving
EXPTIME-hardness of finite-horizon reachability in MDPs, arguably the conceptually
simplest objective in probabilistic decision-making (Theorem 3).

Significance

As our main result, we characterize the complexity of computing an outcome of VI, one of the
fundamental algorithms for solving both finite- and infinite-horizon MDPs. As a consequence,
we resolve a long-standing complexity issue [27] of solving finite-horizon MDPs.

On our way to proving this result, we encounter non-trivial stepping stones which are of
an independent interest. First, we shed light on the complexity of succinctly represented
arithmetic circuits, showing that comparing two output wires of a given (max,+)-circuit
incurs an exponential blow-up in complexity already when employing a very rudimental form
of succinctness: composing a single (max,+)-circuit with H copies of itself, yielding a circuit
of exponential “height” but only polynomial “width.” Second, we obtain new hardness results
for the bounded reachability problem in linear-update counter programs. CPs are related
to several classical abstractions of computational machines, such as Minsky machines and
Petri nets [25], see [13] for a recent breakthrough in this area. Our work establishes a novel
connection between counter programs and MDPs.

Further Related Work

Our work is also related to a series of papers on finite-horizon planning [21, 17, 18, 23].
The survey paper [26] provides a comprehensive overview of these results. These papers
consider either MDPs with a polynomially large horizon, or succinctly represented MDPs
of possibly exponential “width” (the succinctness was achieved by circuit-encoding). The
aforementioned hardness-by-succinctness proofs are often used here. The arbitrary horizon
problem for standard MDPs, which we study, is left open in these papers, and our work
employs substantially different techniques. The complexity of finite-horizon decentralized
MDPs was studied in [7].

ICALP 2019
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2 Markov Decision Processes and Finite-Horizon Problems

We start with some preliminaries. A probability distribution d : S → [0, 1] over a finite set S is
a function such that

∑
s∈S d(s) = 1. We denote by D(S) the set of all (rational) probability

distributions over S. The Dirac distribution on s ∈ S assigns probability 1 to s.
A Markov decision process (MDP) M = (S,A, P,R, γ) consists of a finite set S of

states, a finite set A of actions, a transition function P : S ×A→ D(S), a reward function
R : S ×A→ Q, and a discount factor γ ∈ (0, 1]. The transition function P assigns to each
state s and action a a distribution over the successor states, while the reward function assigns
to s and a a rational reward.

A path % is an alternating sequence s0a1s1 · · · ansn of visited states and played actions
inM (that starts and ends in a state); write |%| = n for the length of %. We may use s0

%→ sn
to denote that path % goes from s0 to sn. We extend the reward function R from single
state-action pairs to paths by R(%) =

∑
1≤i≤nR(si−1, ai)γi−1.

A policy for the controller is a function σ that assigns to each path a distribution over
actions. Let PM,s,σ(%) denote the probability of a path % starting in s when the controller
follows the policy σ. This probability is defined inductively by setting PM,s,σ(s0) = 1 if
s = s0, and PM,s,σ(s0) = 0 otherwise. For a path % = s0a1s1 · · · sn−1ansn, we set

PM,s,σ(%) = PM,s,σ(s0 · · · sn−1) · σ(s0 · · · sn−1)(an) · P (sn−1, an)(sn) .

We omit the subscripts from PM,s,σ(·) if they are clear from the context. Additionally, we
extend PM,s,σ(·) to sets of paths of the same length by summing the probabilities of all the
paths in the set.

In this paper, we focus on a special class of policies: A (deterministic) Markov policy is
a function σ : N× S → A. Intuitively, a controller following a Markov policy plays σ(n, s)
from s if it is the n-th visited state, irrespective of the other states in the path. Markov
policies suffice for the problems we consider.

2.1 Finite-Horizon Problems
Given an MDPM, the core problem of MDPs is computing the values of states with respect
to the maximum expected reward. Let ~vn ∈ QS denote the vector of n-step maximum expected
rewards obtainable from each state of the MDP. That is, for all s ∈ S we have that

~vn(s) = max
σ

∑
|%|=n

Ps,σ(%) ·R(%)

 .

Note that ~v0 = ~0 by this definition. The vector ~vn can be computed by value iteration, i.e.
by iterating the recurrence stated in Equation (1). From that recurrence, for each n ∈ N and
state s0, one can extract an (optimal) Markov policy σ that achieves the maximum value
~vn(s0) after n steps: for each s ∈ S and for 1 ≤ i ≤ n we have

σ(i− 1, s) = argmax
a∈A

{
R(s, a) + γ ·

∑
s′∈S

P (s, a)(s′) · ~vn−i(s′)
}

.

Papadimitriou and Tsitsiklis posed the finite-horizon reward problem which asks to
compute such an optimal policy for the controller [27]. Formally, given an MDP M, an
initial state s0 ∈ S, a distinguished action a ∈ A, and a horizon H ∈ N encoded in binary,
the finite-horizon reward problem asks whether there exists a policy achieving ~vH(s0) by
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MDP N

s

s1

s2

ts3

a, 0 : 1
2

b, 0 : 1
a, b, 2 : 1

a, 0 : 1
2 a, b, 2 : 1

a, b, 1 : 1a, b, 0 : 1

~vn(s) = max
(

1
4~vn−1(s1) + 1

4~vn−1(s2), 1
2~vn−1(s1)

)
~vn(s1) =2 + 1

2~vn−1(s)

~vn(s2) =2 + 1
2~vn−1(t)

~vn(t) =1 + 1
2~vn−1(s3)

~vn(s3) =1
2~vn−1(s)

Figure 2 The transitions are labelled with actions, rewards and their probabilities. For example,
the reward of the transition from s to s1 on action a is 0, and its probability is 1

2 .

choosing a as the first action from s0. Note that this problem is equivalent to the ValIt
problem defined in the introduction.

Consider the MDP N depicted in Figure 2 with γ = 1
2 . By iterating the indicated

recurrence, we have that ~v5(s) = max( 1
4~v4(s1) + 1

4~v4(s2), 1
2~v4(s1)) = 41

32 . The value of
~v5(s) is due to the second argument of max (corresponding to action b), hence a policy to
maximize ~v5(s) starts with b in s.

The finite-horizon reward problem can be decided by value iteration in exponential
time by unfolding recurrence (1) for H steps [29], while the best known lower bound is
P-hardness [27]. Our main result closes this long-standing complexity gap:

I Theorem 1. The finite-horizon reward problem (and thus also the ValIt problem) is
EXPTIME-complete.

To prove EXPTIME-completeness of the finite-horizon reward problem, we introduce a
variant of reachability, which we call synchronized reachability [15]. Let t ∈ S be a target
state. For reachability, the objective is to maximize the probability of taking a path from s

to t, whereas in synchronized reachability only a subset of such paths with the same length
are considered.

LetM be an MDP, s0 an initial state, and a an action. Define ~p≤n ∈ QS as the vector of
maximum probabilities of taking a path to t within n steps. Similarly, define ~p=n ∈ QS to be
the vector of maximum probabilities of taking such a path with length exactly n. Formally,
for all s ∈ S we have that

~p≤n(s) = max
σ

(
Ps,σ({s %→ t : |%| ≤ n})

)
and ~p=n(s) = max

σ

(
Ps,σ({s %→ t : |%| = n})

)
.

Given a horizon H, encoded in binary, the finite-horizon reachability problem asks
whether an optimal policy achieving ~p≤H(s0) chooses action a as the first action from s0;
the finite-horizon synchronized-reachability problem asks whether an optimal policy
achieving ~p=H(s0) chooses action a as the first action from s0.

2.2 Connections Among Finite-Horizon Problems
We now prove the following theorem.

I Theorem 2. The finite-horizon synchronized-reachability problem reduces, in polynomial
time, to the finite-horizon reward problem.

Consider an MDPM, an initial state s0, an action a and a target state t. The following
recurrence can be used to compute ~p=n(s):

~p=n(s) = max
a∈A

{∑
s′∈S

P (s, a)(s′) · ~p=n−1(s′)
}

, (2)

ICALP 2019
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where ~p0(t) = 1 and ~p0(s) = 0 for all s 6= t. We construct a new MDP N obtained fromM
by replacing all transitions by two consecutive transitions. The construction is such that
the probability of going from s to t with a path of length n inM is equal to the probability
of going from s to t with a path of length 2n in N . More formally, for all s, s′ and a with
P (s, a)(s′) = p, the transition s s′

− : p is replaced with s s′
1 : p 0 : 1 if

s = t and with s s′
0 : p 1

γ : 1
otherwise; where 0 < γ ≤ 1 is an arbitrary chosen

discount factor for N , and the intermediate state in both cases is a new state. The MDP N
in Figure 2 is the result of applying the construction toM in Figure 3 with γ = 1

2 .
For the constructed MDP N , one can show that for all states s, an action is optimal to

maximize ~p=2H(s) if and only if it is optimal to maximize ~v2H+1(s). Consider the MDPs
from Figure 2 as an example. We have previously argued that a policy maximizing ~v5(s)
in N starts with action b. Observe that the optimal first choice to maximize ~p4(s) is also b.
This implies that an optimal policy ofM for synchronized-reachability with H = 2 starts
with b, too. By the above argument, the finite-horizon synchronized-reachability problem
reduces to the finite-horizon reward problem.

Hence, to obtain Theorem 1, it remains to determine the complexity of the finite-horizon
synchronized-reachability problem. To this aim, we show a close connection between MDPs
and a class of piecewise-affine functions represented by straight line programs (SLPs). Section 3
provides the details.

Finite-horizon reachability. We also show the finite-horizon synchronized-reachability prob-
lem reduces to the finite-horizon reachability problem. We remark that the natural probability-
1 variants of these problems have different complexities: specifically, the problem of reaching t
from s within H steps with probability 1 is in P; however, the analogous problem of reaching
t from s in exactly H steps with probability 1 is PSPACE-complete [15].

I Theorem 3. The finite-horizon synchronized reachability problem reduces, in polynomial
time, to the finite-horizon reachability problem.

3 Straight-Line Programs and The Powering Problem

We now establish the connection between MDPs and SLP powering. We start with prelimin-
aries.

For all n ∈ N, define the set varn := {x1, . . . , xn} of variables and the collection of terms

Tn := {a1xj1 + · · ·+ anxjn + b | ai, b ∈ {−1, 0, 1} and 1 ≤ ji ≤ n, for all 1 ≤ i ≤ n}.

A straight-line program (SLP) of order n is a sequence c1, . . . , cm of commands of the form
x ← max(T ), where x ∈ varn and T ⊆ Tn is non-empty. We refer to commands x ← b as
initializations. Recall that min(x, y) = −max(−x,−y).

For complexity analyses we shall assume that T , for every command, is given explicitly
as a list of terms. Each term is also assumed to be explicitly represented as a constant, a
list of coefficients ai, and a list of indices ji, both lists having length n (i.e. the number of
variables). The size of T , and also that of the command, corresponds to the length of its list
of terms; the size of the SLP, the sum of the sizes of its commands.

A valuation ν is a vector in Zn, where the i-th coordinate gives the value of xi. The
semantics of a command c is a function JcK : Zn → Zn, transforming a valuation into another.
An SLP S = c1, . . . , cm defines the function JSK : Zn → Zn obtained by composing the
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constituent commands: JSK = JcmK ◦ · · · ◦ Jc1K. Clearly this is a piecewise-affine function.
Given a function f : Zn → Zn, we define its m-th power as fm : Zn → Zn where

fm = f ◦ · · · ◦ f︸ ︷︷ ︸
m times

is the m-fold composition of f .
We denote by T +

n the set of terms a1xj1 +· · ·+anxjn +b where the coefficients a1, · · · , an, b
are in {0, 1}. An SLP that only uses terms in T +

n is called monotone. Note that monotone
SLPs induce monotone functions from Zn to Zn (subtraction and min are not allowed).

3.1 The Powering Problem
For an SLP S of order n, a valuation ν ∈ Nn and m ∈ N (encoded in binary), let ν′ =
JSKm(ν). Given two variables x, y ∈ varn of the SLP, the powering problem asks whether
ν′(x) ≥ ν′(y). Since the initial valuations ν are always non-negative, all valuations obtained
by powering monotone SLPs are non-negative. The above problem is P-complete if the
exponent m is written in unary [19].

Observe that all numbers generated by powering an SLP can be represented using
exponentially-many bits in the bitsize of the exponent. It follows that the powered SLP can
be explicitly evaluated in exponential time. We provide a matching lower bound in Section 4.
Before that, we show the connection of SLP powering to MDPs.

3.2 Synchronized Reachability and SLP Powering
The connection is stated in the following Theorem.

I Theorem 4. The powering problem for monotone SLPs reduces, in polynomial time, to
the finite-horizon synchronized reachability problem in MDPs.

To illustrate this reduction, let us consider the SLP S of order 2:

x1 ← max(x1 + x2, x2 + x2); x2 ← max(x1 + x1, x1 + x1).

This SLP is normalized, that is to say all its max commands have exactly two arguments
t1, t2 ∈ T +

n and furthermore t1, t2 have exactly two summands. (Note that focusing on
normalized SLPs is no loss of generality.) We are interested in the 2-nd power of S with
initial valuation ν(x1) = 0 and ν(x2) = 1. In Figure 3, two copies of S are shown on the
right to visualize the concept of powering it. To obtain an MDP, we consider a set of actions
A = {a, b} and have each variable xi become a state. In the example, s and t are the
corresponding states for x1 and x2. The t1, t2 arguments of max commands determine the
successors of actions a, b, respectively, where each successor has probability 1

2 . The command
x1 ← max(x1 + x2, x2 + x2) translates to P (s, a)(s) = P (s, a)(t) = 1

2 and P (s, b)(s) = 1, as
shown in the MDP in Figure 3. Since ν(x2) = 1, we make t a target state. Now the i-th
iteration of value iteration of (2) (corresponding to the i-th step before the horizon) is tightly
connected to the i-th power of the SLP. Indeed, letting νi = JSKi(ν), one can prove that
~p=i(s) = 1

2i νi(s) and ~p=i(t) = 1
2i νi(t).

SLP vs. monotone SLP powering. It thus remains to provide a lower bound for the
Monotone SLP powering problem. The crucial step, which we cover in Section 4, is providing
lower bounds for the non-monotone variant. The remaining step from non-monotone to
monotone powering can be made by adapting the techniques of Allender et al. [4].
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initialization
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Figure 3 An example for the translation from SLPs to MDPs.

I Theorem 5. The powering problem for arbitrary SLPs reduces, in polynomial time, to the
powering problem for monotone SLPs.

4 Main Reductions

To show EXPTIME-hardness of all the problems introduced so far, we introduce a class of
counter programs that allow linear updates on counters and show that a (time-)bounded
version of the termination problem for these programs is EXPTIME-complete. Finally, we
reduce this bounded termination problem to the powering problem.

A deterministic linear-update counter program (CP) consists of n counters {ci | 1 ≤ i ≤ n},
ranging over Z, and a sequence of m instructions. We consider instructions of the form

p : c1 ← c2 + c3 p : if c1 ≥ c2 goto t p : c1 ← c2 − c3

where 1 ≤ p < m and 1 ≤ t ≤ m, and the final instruction is always m : halt. More precisely,
the instructions allow
(i) adding or subtracting two counters, assigning the result to a third one, and continuing

to the next instruction;
(ii) testing two counters against each other, and jumping to some given instruction if the

result of the test is positive, continuing to the next instruction otherwise.
The halt instruction only loops to itself.

A configuration of a CP is a tuple (p, v1, . . . , vn) ∈ {1, . . . ,m} × Zn consisting of an
instruction p and values of the counters (e.g., v1 is the value for the counter c1). We equip
CPs with a fixed initial configuration lying in {1}×Nn. Given a CP, the termination prob-
lem asks whether the halt instruction is reached. The bounded termination problem
additionally takes as input an integer N ∈ N, encoded in binary, and asks whether the halt
instruction is reached within N steps.

The bounded termination problem is in EXPTIME: in a computation with N steps,
the magnitude of the counters is bounded by 2N , so each step can be simulated in time
exponential in the bitsize of N . We will now show that the problem is EXPTIME-hard
already for a certain subclass of CPs which facilitates the reductions to the powering problem.

Simple counter programs. A CP is simple if it satisfies the following conditions. First,
all values in all reachable configurations (p, v1, . . . , vn) are non-negative: vi ∈ N for all
1 ≤ i ≤ n (one may “guard” subtractions by test instructions to achieve this). Second, all test
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instructions q : if ci ≥ cj goto r use counters c1 and c2 exclusively. Moreover, for each such
instruction q, there are counters cq̄1 , cq̄2 such that in all reachable configurations (q, v1, . . . , vn)
we have that
1. v1 = a1vq̄1 and v2 = a2vq̄2 with a1, a2 ∈ {64, 64 · 10, 64 · 12}. That is, the values of tested

counters are “scaled-up” versions of the values of other counters.
2. Additionally, the absolute difference of the values of the tested counters is larger than the

values of all other counters, in symbols |v1 − v2| ≥ max{vk | 3 ≤ k ≤ n}.
Note that the class of simple CPs is a semantically defined subclass of all CPs. Further
observe that for every test instruction we necessarily have that q̄1, q̄2 ≥ 3.

The following proposition kick-starts our sequence of reductions.

I Proposition 6. The bounded termination problem for simple CPs is EXPTIME-complete.

To prove the proposition, we follow the classical recipe of first simulating a Turing machine
using a machine with two stacks, and then simulating the two-stack machine by a CP. We
note two key differences between our construction and the classical reduction: (1) We use
the expressiveness of linear updates in CPs to simulate pushing and popping on the stack in
a linear number of steps of the CP. (2) We instrument the two-stack machine to ensure that
the height of the two stacks differs by at most 1 along any computation. This is crucial to
allow us to simulate the two-stack machine by a simple linear-update counter program.

4.1 From the Termination Problem to the Powering Problem
We now sketch the main ideas behind the last (and most technically involved) missing link
in our sequence of reductions.

I Theorem 7. The bounded termination problem for simple CPs reduces, in polynomial
time, to the powering problem for SLPs.

The encoding. Given a CP C we construct an SLP S of order ≥ 2n with variables including
{x1, . . . , x2n}. Let us denote xn+i by Qi for 1 ≤ i ≤ n. The reduction is such that a
configuration (p, v1, . . . , vn) of C is encoded as a valuation ν : var2n → Z of the SLP with
the property that ν(xi) = vi and ν(Qi) = pν(xi) = pvi for all 1 ≤ i ≤ n. In this way, the
instruction p of the CP is encoded in the variables of the SLP (recall that SLPs are stateless).

Given this encoding, the main challenge is to realize the transition function of the CP
as a function computed by an SLP. Once this is accomplished, for every m ∈ N, the m-th
power of the SLP S represents the m-step transition function of the CP.

Conditional commands. Intuitively, to encode the transition function we would like to equip
the SLP with conditional commands, whose execution depends on a conditional. Specifically,
we want to implement the following two kinds of conditional updates

(y ← y ± xk if Qk = pxk) and (Qk ← p · xk if xi ≥ xj)

in terms of primitive commands of an SLP. In both commands, if the condition is not satisfied,
the command is not executed, and the value of y or Qk remains unchanged. For example,
one can simulate the first type of conditional commands by executing y ← y±max(0, xk + t),
where t is an expression that is 0 if the test is passed and less than −xk otherwise. Intuitively,
we think of t as “masking” the assignment if the test fails.

For the following result, which formalizes how we implement conditional commands, we
call a valuation ν valid if there exists q ∈ {1, . . . ,m} with ν(xi) ≥ 0 and ν(Qi) = qν(xi) for
all 1 ≤ i ≤ n.
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I Lemma 8. Let p ∈ {1, . . . ,m} and i, j, k ∈ {1, . . . , n} be distinct. The following equation
holds for all valid valuations ν:

max(0, ν(xk) + min(ν(Qk)− pν(xk), pν(xk)− ν(Qk))) =
{
ν(xk) if ν(Qk) = pν(xk)
0 otherwise.

(3)

Moreover, if |ν(xi)− ν(xj)| ≥ ν(xk), then the following holds:

max(0, ν(xk) + min(0, ν(xi)− ν(xj))) =
{
ν(xk) if ν(xi) ≥ ν(xj)
0 otherwise.

(4)

Proof. The equations follow directly from the assumption that ν is valid, since if ν(Qj) 6=
pν(xj) then we also have |ν(Qj) − pν(xj)| ≥ ν(xj). In addition, if |ν(xi) − ν(xj)| ≥ ν(xk)
and ν(xi) < ν(xj), we will have ν(xk) + ν(xi)− ν(xj) ≤ 0. J

Using the property that the simulated program is simple, Equation (3) can be used to
simulate the conditional update (y ← y±xk if Qk = pxk) where t = min(Qk−pxk, pxk−Qk)
masks the update. Likewise, Equation (4) can be used to simulate the second type of
conditional update (Qk ← p·xk if xi ≥ xj) where the masking expression is t = min(0, xi−xj).
Finally, the multiplication-by-a-constant required for the second type of the conditional
update is achieved via repeated addition.

Encoding the instructions. We recall that we encode being at the instruction p of the CP
by a valuation ν such that ν(Qi) = pν(xi) for all 1 ≤ i ≤ n.

Using the aforementioned conditional commands, we can construct the SLP S as the
composition of m smaller SLPs. Each sub-SLP πp simulates an instruction p from the given
CP C. Hence S, when applied upon a valid valuation ν (i.e., a properly-encoded configuration
of C), simulates all of its instructions at once. By using conditional commands, we make
sure that only one sub-SLP results in a non-zero update: executing πp has no effect on the
valuation unless pν(xi) = ν(Qi) for all 1 ≤ i ≤ n.

In this way, powering S allows us to simulate consecutive steps of C. In particular, for all
N ∈ N we have that JSKN (ν)(Q1) ≥ m · JSKN (ν)(x1), where m is the halt instruction, holds
if and only if C halts after at most N steps.

5 Conclusion

By the virtue of our chain of reductions (see Figure 1), we get the following theorem.

I Theorem 9. All the following problems are EXPTIME-complete:
The finite-horizon reward problem for MDPs, and thus also the ValIt problem.
The finite-horizon reachability and synchronized reachability problems for MDPs.
The powering problem for SLPs and for monotone SLPs.
The bounded termination problem for simple counter programs.

The exact complexity of the following variant of the problem remains open: given an
MDP and a horizon encoded in binary, determine whether there exists a policy achieving
some given expected-reward threshold (with no restriction on the actions used to do so).
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