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Abstract
Given two (di)graphs G, H and a cost function c : V (G)×V (H)→ Q≥0∪{+∞}, in the minimum cost
homomorphism problem, MinHOM(H), we are interested in finding a homomorphism f : V (G)→
V (H) (a.k.a H-coloring) that minimizes

∑
v∈V (G)

c(v, f(v)). The complexity of exact minimization of

this problem is well understood [35], and the class of digraphs H, for which the MinHOM(H) is
polynomial time solvable is a small subset of all digraphs.

In this paper, we consider the approximation of MinHOM within a constant factor. In terms of
digraphs, MinHOM(H) is not approximable if H contains a digraph asteroidal triple (DAT). We
take a major step toward a dichotomy classification of approximable cases. We give a dichotomy
classification for approximating the MinHOM(H) when H is a graph (i.e. symmetric digraph). For
digraphs, we provide constant factor approximation algorithms for two important classes of digraphs,
namely bi-arc digraphs (digraphs with a conservative semi-lattice polymorphism or min-ordering),
and k-arc digraphs (digraphs with an extended min-ordering). Specifically, we show that:

Dichotomy for Graphs: MinHOM(H) has a 2|V (H)|-approximation algorithm if graph
H admits a conservative majority polymorphims (i.e. H is a bi-arc graph), otherwise, it is
inapproximable;
MinHOM(H) has a |V (H)|2-approximation algorithm if H is a bi-arc digraph;
MinHOM(H) has a |V (H)|2-approximation algorithm if H is a k-arc digraph.

In conclusion, we show the importance of these results and provide insights for achieving a
dichotomy classification of approximable cases. Our constant factors depend on the size of H.
However, the implementation of our algorithms provides a much better approximation ratio. It
leaves open to investigate a classification of digraphs H, where MinHOM(H) admits a constant
factor approximation algorithm that is independent of |V (H)|.
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1 Introduction

For a digraph D, let V (D) denote the vertex set of D, and let A(D) denote the arcs of D. We
denote the number of vertices of D by |D|. Instead of (u, v) ∈ A(D), we use the shorthand
uv ∈ A(D) or simply uv ∈ D. A graph G is a symmetric digraph, that is, xy ∈ A(G) if and
only if (iff) yx ∈ A(G). An edge is just a symmetric arc.

A homomorphism of a digraph D to a digraph H (a.k.a H-coloring) is a mapping
f : V (D)→ V (H) such that for each arc xy of D, f(x)f(y) is an arc of H. We say mapping
f does not satisfy arc xy, if f(x)f(y) is not an arc of H. The homomorphism problem for
a fixed target digraph H, HOM(H), takes a digraph D as input and asks whether there is
a homomorphism from D to H. Therefore, by fixing the digraph H we obtain a class of
problems, one problem for each digraph D. For example, HOM(H), when H is an edge,
is exactly the problem of determining whether the input graph G is bipartite (i.e., the
2-Coloring problem). Similarly, if V (H) = {u, v, x}, A(H) = {uv, vu, vx, xv, ux, xu}, then
HOM(H) is exactly the classical 3-Coloring problem. More generally, if H is a clique
on k vertices, then HOM(H) is the k-Coloring problem. The H-Coloring problem
can be considered within a more general framework, the constraint satisfaction problem
(CSP). In the CSP associated with a finite relational structure H, CSP(H), the question
is whether there exists a homomorphism of a given finite relational structure to H. Thus,
the H-Coloring problem is a particular case of the CSP in which the involved relational
structures are digraphs. A celebrated result due to Hell and Nesetril [31], states that, for
graph H, HOM(H) is in P if H is bipartite or contains a looped vertex, and that it is
NP-complete for all other graphs H. See [9] for an algebraic proof of the same result,
and [12, 55] for a dichotomy for CSP(H).

There are several natural optimization versions of the HOM(H) problem. One is to find
a mapping f : V (D)→ V (H) that maximizes (minimizes) number of satisfied (unsatisfied)
arcs in D. This problem is known under the name of Max 2-Csp (Min 2-Csp). For example,
the most basic Boolean Max 2-Csp problem is Max Cut where the target graph H is
an edge. This line of research has received a lot of attention in the literature and there
are very strong results concerning various aspects of approximability Max 2-Csp and Min
2-Csp [2, 22, 28, 41, 45]. See [47] for a recent survey on this and approximation of Max
k-Csp and Min k-Csp. We consider another natural optimization version of the HOM(H)
problem, i.e., we are not only interested in the existence of a homomorphism, but want to
find the “best homomorphism”. The minimum cost homomorphism problem to H, denoted
by MinHOM(H), for a given input digraph D, and a cost function c(x, i), x ∈ V (D), i ∈
V (H), seeks a homomorphism f of D to H that minimizes the total cost

∑
x∈V (D)

c(x, f(x)).

The cost function c can take non-negative rational values and positive infinity, that is
c : V (D) × V (H) → Q≥0 ∪ {+∞}. The MinHOM was introduced in [25], where it was
motivated by a real-world problem in defence logistics. The MinHOM problem offers a
natural and practical way to model and generalizes many optimization problems.

I Example 1 ((Weighted) Minimum Vertex Cover). This problem can be seen as
MinHOM(H) where V (H) = {0, 1}, E(H) = {11, 01} and c(u, 0) = 0, c(u, 1) > 0 for every
u ∈ V (G). Note that G and H are graphs.

I Example 2 (List Homomorphism (LHOM)). LHOM(H), seeks, for a given input
digraph D and lists L(x) ⊆ V (H), x ∈ V (D), a homomorphism f from D to H such that
f(x) ∈ L(x) for all x ∈ V (D). This is equivalent to MinHOM(H) with c(u, i) = 0 if i ∈ L(u),
otherwise c(u, i) = +∞. This problem is also known as List H-Coloring and its complexity
is fully understood due to series of results [5, 8, 10, 11, 18, 33].
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The MinHOM problem generalizes many other problems such as (Weighted) Min
Ones [1, 15, 40], Min Sol [39, 53], a large class of bounded integer linear programs,
retraction problems [19], Minimum Sum Coloring [4, 21, 44], and various optimum cost
chromatic partition problems [27, 37, 38, 43].

A special case of MinHOM problem is where the cost function c is choosen from a fixed
set ∆. This problem is denoted by MinHOM(H,∆) [14, 53, 54]. The Valued Constrained
Satisfaction Problems (VCSPs) is a generalization of this special case of the MinHOM
problem. An instance of the VCSP is given by a collection of variables that must be
assigned labels from a given domain with the goal to minimize the objective function that
is given by the sum of cost functions, each depending on some subset of the variables [13].
Interestingly, a recent work by Cohen et al. [14] proved that VCSPs over a fixed valued
constraint language are polynomial-time equivalent to MinHOM(H,∆) over a fixed digraph
and a proper choice of ∆.

Exact Minimization. The complexity of exact minimization of MinHOM(H) was studied
in a series of papers, and complete complexity classifications were given in [23] for undirected
graphs, in [35] for digraphs, and in [51] for more general structures. Certain minimum
cost homomorphism problems have polynomial time algorithms [23, 24, 25, 35], but most
are NP-hard. We remark that, the complexity of exact minimization of VCSPs is well
understood [42, 52].

Approximation. For a minimization problem, an α-approximation algorithm is a (ran-
domized) polynomial-time algorithm that finds an approximate solution of cost at most α
times the minimum cost. A constant ratio approximation algorithm is an α-approximation
algorithm for some constant α. We say a problem is not approximable if there is no poly-
nomial time approximation algorithm with a multiplicative guarantee unless P = NP. The
approximability of MinHOM is fairly understood when we restrict the cost function to a
fixed set ∆, and further, we restrict it to take only finite values (not ∞). This setting is a
special case of finite VCSPs, and there are strong approximation results on finite VCSPs.
For finite VCSPs, Raghavendra [50] showed how to use the basic SDP relaxation to obtain
a constant approximation. Moreover, he proved that the approximation ratio cannot be
improved under Unique Game Conjecture (UGC). This constant is not explicit, but
there is an algorithm that can compute it with any given accuracy in doubly exponential time.
In another line of research, the power of so-called basic linear program (BLP) concerning
constant factor approximation of finite VCSPs has been recently studied in [16, 17]. However,
the approximability of VCSPs for constraint languages that are not finite-valued remains
poorly understood, and [30, 39] are the only results on approximation of VCSP for languages
that have cost functions that can take infinite values.

Hell et al., [30] proved a dichotomy for approximating MinHOM(H) when H is a bipartite
graph by transforming the MinHOM(H) to a linear program, and rounding the fractional
values to get a homomorphism to H.

I Theorem 3 (Dichotomy for bipartite graphs [30]). For a fixed bipartite graph H,
MinHOM(H) admits a constant factor approximation algorithm if H admits a min-ordering
(complement of H is a circular arc graph), otherwise MinHOM(H) is not approximable
unless P = NP.

Beyond this, there is no result concerning the approximation of MinHOM(H). We go
beyond bipartite case and present a constant factor approximation algorithm for bi-arc
graphs (graphs with a conservative majority polymorphism). Designing an approximation
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algorithm for MinHOM(H) when H is a digraph is much more complex than when H is a
graph. We improve state-of-the-art by providing constant factor approximation algorithms
for MinHOM(H) where H belongs to these two important cases of digraphs, namely bi-arc
digraphs (digraphs with a conservative semi-lattice polymorphism a.k.a min-ordering), and
k-arc digraphs (digraphs with a k-min-ordering). To do so, we introduce new LPs that reflect
the structural properties of the target (di)graph H as well as new methods to round the
fractional solutions and obtain homomorphisms to H. We will show our randomized rounding
procedure can be de-randomized, and hence, we get a deterministic polynomial algorithm.
Furthermore, we argue that our techniques can be used towards finding a dichotomy for the
approximation of MinHOM(H).

1.1 Our Contributions
Most of the minimum cost homomorphism problems are NP-hard, therefore we investigate
the approximation of MinHoM(H).

Approximating Minimum Cost Homomorphism to Digraph H.
Input: A digraph D and a vertex-mapping costs c(x, u), x ∈ V (D), u ∈ V (H),
Output: A homomorphism f of D to H with the total cost of

∑
x∈V (D)

c(x, f(x)) ≤

α ·OPT , where α is a constant.

Here, OPT denotes the cost of a minimum cost homomorphism of D to H. Moreover, we
assume size of H is constant. Recall that we approximate the cost over real homomorphisms,
rather than approximating the maximum weight of satisfied constraints, as in, say, Max
Csp. One can show that if LHOM(H) is not polynomial time solvable then there is no
approximation algorithm for MinHOM(H) [30, 48].

I Observation 4. If LHOM(H) is not polynomial time solvable, then there is no approxima-
tion algorithm for MinHOM(H).

The complexity of the LHOM problems for graphs, digraphs, and relational structures (with
arity two and higher) have been classified in [18, 33, 10] respectively. LHOM(H) is polynomial
time solvable if the digraph H does not contain a digraph asteroidal triple (DAT)1 as an
induced sub-digraph, and NP-complete when H contains a DAT [33].

MinHOM(H) is polynomial time solvable when digraph H admits a k-min-max-ordering,
a subclass of DAT-free digraphs, and otherwise, NP-complete [35, 34]. Here, in this paper,
we take an important step towards closing the gap between DAT-free digraphs and the one
that admit a k-min-max-ordering. First, we consider digraphs that admit a min-ordering.
Digraphs that admit a min-ordering have been studied under the name of bi-arc digraphs [36]
and signed interval digraphs [29]. Deciding if digraph H has a min-ordering and finding a
min-ordering of H is in P [36]. We provide a constant factor approximation algorithm for
MinHOM(H) where H admits a min-ordering.

I Theorem 5 (Digraphs with a min-ordering). If digraph H admits a min-ordering, then
MinHOM(H) has a constant factor approximation algorithm.

Sections 4,5 are dedicated to the proof of Theorem 5. In section 6, we turn our attention
to digraphs with k-min-orderings, for integer k > 1. They are also called digraphs with
extended X-underbar [3, 26, 46]. It was shown in [26] that if H has the X-underbar property,

1 The definition of DAT is rather technical and it is not necessary to fully understand it in this paper.
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then the HOM(H) problem is polynomial time solvable. In Lemma 21, we show that if H
admits a k-min-ordering, then H is a DAT-free digraph, and provide a simple proof that
LHOM(H) is polynomial time solvable. Finally, we have the following theorem.

I Theorem 6 (Digraphs with a k-min-ordering). If digraph H admits a k-min-ordering for
some integer k > 1, then MinHOM(H) has a constant factor approximation algorithm.

Considering graphs, Feder et al., [18] proved that LHOM(H) is polynomial time solvable
if H is a bi-arc graph, and is NP-complete otherwise. In the same paper, they showed graph
H is a bi-arc graph iff it admits a conservative majority polymorphism. In Section 7, we
show that the same dichotomy classification holds in terms of approximation.

I Theorem 7 (Dichotomy for graphs). There exists a constant factor approximation algorithm
for MinHOM(H) if H is a bi-arc graph, otherwise MinHOM(H) is inapproximable.

In section 8, we give a concrete plan of how to solve the general case. By combining the
approach for obtaining the dichotomy in the graph case, together with the idea of getting an
approximation algorithm for digraphs admitting a min-ordering, we might be able to achieve
a constant factor approximation algorithm for MinHOM(H) when H is DAT-free.

Our constant factors depend on the size of H. However, the implementation of the LP and
the ILP would yield a small integrality gap (details in the full version [49]). This indicates
perhaps a better analysis of the performance of our algorithm is possible.

I Open Problem 8. For which digraphs MinHOM(H) is approximable within a constant
factor independent of size of H?

2 Preliminaries and Definitions

Complexity and approximation of the minimum cost homomorphism problems, and in general
the constraint satisfaction problems, are often studied under the existence of polymorph-
isms [6]. A polymorphism of H of arity k is a mapping f from the set of k-tuples over V (H)
to V (H) such that if xiyi ∈ A(H) for i = 1, 2, . . . , k, then f(x1, x2, . . . , xk)f(y1, y2, . . . , yk) ∈
A(H). If f is a polymorphism of H we also say that H admits f . A polymorphism f

is idempotent if it satisfies f(x, x, . . . , x) = x for all x ∈ V (H), and is conservative if
f(x1, x2, . . . , xk) ∈ {x1, x2, . . . , xk}. A conservative semi-lattice polymorphism is a con-
servative binary polymorphism that is associative, idempotent, commutative. A conser-
vative majority polymorphism µ of H is a conservative ternary polymorphism such that
µ(x, x, y) = µ(x, y, x) = µ(y, x, x) = x for all x, y ∈ V (H).

A conservative semi-lattice polymorphism of H naturally defines a binary relation x ≤ y
on the vertices of H by x ≤ y iff f(x, y) = x; by associative, the relation ≤ is a linear order
on V (H), which we call a min-ordering of H.

I Definition 9. The ordering v1 < v2 < · · · < vn of V (H) is a
min-ordering iff uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that uv′ ∈ A(H);
max-ordering iff uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that u′v ∈ A(H);
min-max-ordering iff uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that uv′, u′v ∈
A(H).

For bipartite graph H = (B,W ) let −→H be the digraph obtained by orienting all the edges
of H from B to W . If −→H admits a min-ordering then we say H admits a min-ordering. It
is worth mentioning that, a bipartite graph H admits a conservative majority, iff it admits
a min-ordering [30]. Moreover, the complement of H is a circular arc graphs with clique
cover two [18].

ICALP 2019
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I Definition 10. Let H = (V,E) be a digraph that admits a homomorphism f : V (H)→ −→Ck
(here −→Ck is the induced directed cycle on {0, 1, 2, . . . , k − 1}( i.e., arc set {(01, 12, 23, ..., (k −
2)(k − 1), (k − 1)0}). Let Vi = f−1(i), 0 ≤ i ≤ k − 1.

A k-min-ordering of H is a linear ordering < of the vertices of H, so that < is a min-
ordering on the subgraph induced by any two circularly consecutive Vi, Vi+1 (subscript
addition modulo k).
A k-min-max-ordering of H is a linear ordering < of the vertices of H, so that < is
a min-max-ordering on the subgraph induced by any two circularly consecutive Vi, Vi+1
(subscript addition modulo k).

3 LP for Digraphs with a min-max-ordering

Before presenting the LP, we give a procedure to modify lists associated to the vertices of D.
To each vertex x ∈ D, associate a list L(x) that initially contains V (H). Think of L(x) as
the set of possible images for x in a homomorphism from D to H. Apply the arc consistency
procedure as follows. Take an arbitrary arc xy ∈ A(D) (yx ∈ A(D)) and let a ∈ L(x). If
there is no out-neighbor (in-neighbor) of a in L(y) then remove a from L(x). Repeat this
until a list becomes empty or no more changes can be made. Note that if we end up with an
empty list after arc consistency then there is no homomorphism of D to H.

Let a1, a2, a3, . . . , ap be a min-max-ordering < of the target digraph H. Define `+(i) to
be the smallest subscript j such that aj is an out-neighbor of ai (and `−(i) to be the smallest
subscript j such that aj is an in-neighbor of ai).

Consider the following linear program. For every vertex v of D and every vertex ai of H
define variable vi. Moreover, define variable vp+1 for every v ∈ D whose value is set to zero.

min
∑
v,i

c(v, ai)(vi − vi+1)

subject to: vi ≥ 0 (C1)
v1 = 1 (C2)
vp+1 = 0 (C3)
vi+1 ≤ vi (C4)
vi+1 = vi if ai 6∈ L(v) (C5)
ui ≤ vl+(i) ∀uv ∈ A(D) (C6)
vi ≤ ul−(i) ∀uv ∈ A(D) (C7)

Let S denote the set of constraints of the above LP, then:

I Theorem 11. If digraph H admits a min-max-ordering, then there is a one-to-one corres-
pondence between homomorphisms of D to H and integer solutions of S.

Proof. For homomorphism f : D → H, if f(v) = at we set vi = 1 for all i ≤ t, otherwise
we set vi = 0. We set v1 = 1 and vp+1 = 0 for all v ∈ V (D). Now all the variables are
nonnegative and we have vi+1 ≤ vi. Note that if ai 6∈ L(v) then f(v) 6= ai and we have
vi − vi+1 = 0. It remains to show that ui ≤ vl+(i) for every uv arc in D. Suppose for
contradiction that ui = 1 and vl+(i) = 0 and let f(u) = ar and f(v) = as. This implies that
ur = 1, whence i ≤ r; and vs = 1, whence s < l+(i). Since aial+(i) and aras both are arcs of
H with i ≤ r and s < l+(i), the fact that H has a min-ordering implies that aias must also
be an arc of H, contradicting the definition of l+(i). The proof for vi ≤ ul−(i) is analogous.

Conversely, if there is an integer solution for S, we define a homomorphism f as follows:
we let f(v) = ai when i is the largest subscript with vi = 1. We prove that this is indeed a
homomorphism by showing that every arc of D is mapped to an arc of H. Let uv be an arc



A. Rafiey, A. Rafiey, and T. Santos 91:7

of D and assume f(u) = ar, f(v) = as. We show that aras is an arc in H. Observe that
1 = ur ≤ vl+(r) ≤ 1 and 1 = vs ≤ ul−(s) ≤ 1, therefore we must have vl+(r) = ul−(s) = 1.
Since r and s are the largest subscripts such that ur = vs = 1 then l+(r) ≤ s and l−(s) ≤ r.
Since aral+(r) and al−(s)as are arcs of H, we must have the arc aras, as H admits a max-
ordering. Furthermore, f(v) = ai iff vi = 1 and vi+1 = 0, so, c(v, ai) contributes to the sum
iff f(v) = ai. J

We have translated the minimum cost homomorphism problem to a linear program. In
fact, this linear program corresponds to a minimum cut problem in an auxiliary network,
and can be solved by network flow algorithms [23, 48]. In [30], a similar result to Theorem
11 was proved for the MinHOM(H) problem on undirected graphs when target graph H is
bipartite and admits a min-max-ordering. We shall enhance the above system S to obtain
an approximation algorithm for the case where H is only assumed to admit a min-ordering.

4 LP for Digraphs with a min-ordering

In the rest of the paper assume lists are not empty. Moreover, non-empty lists guarantee a
homomorphism when H admits a min-ordering.

I Lemma 12. [32] Let H be a digraph that admits a min-ordering. If all the lists are
non-empty after arc consistency, then there exists a homomorphism from D to H.

Suppose a1, a2, . . . , ap is a min-ordering of H. Let E′ denote the set of all the pairs
(ai, aj) such that aiaj is not an arc of H, but there is an arc aiaj′ of H with j′ < j and an
arc ai′aj of H with i′ < i. Let E = A(H) and define H ′ to be the digraph with vertex set
V (H) and arc set E ∪ E′. Note that E and E′ are disjoint sets.

I Observation 13. The ordering a1, a2, · · · , ap is a min-max-ordering of H ′.

I Observation 14. Let e = aiaj ∈ E′. Then ai does not have any out-neighbor in H after
aj, or aj does not have any in-neighbor in H after ai.

Observation 14 easily follows from the fact that H has a min-ordering. Since H ′ has a
min-max-ordering, we can form system of linear inequalities S, for H ′ as described in Section
3. Homomorphisms of D to H ′ are in a one-to-one correspondence with integer solutions of S,
by Theorem 11. However, we are interested in homomorphisms of D to H, not H ′. Therefore,
we shall add further inequalities to S to ensure that we only admit homomorphisms from D

to H, i.e., avoid mapping arcs of D to the arcs in E′.
For every arc e = aiaj ∈ E′ and every arc uv ∈ A(D), by Observation 14, two of the

following set of inequalities will be added to S (i.e. either (C8), (C11) or (C9), (C10) or
(C9), (C11)).

vj ≤ us +
∑

t<i,ataj∈E,at∈L(u)
(ut − ut+1) if as ∈ L(u) is the first in-neighbour of aj after ai (C8)

vj ≤ vj+1 +
∑

t<i,ataj∈E,at∈L(u)
(ut − ut+1) if aj has no in-neighbour after ai (C9)

ui ≤ vs +
∑

t<j,aiat∈E,at∈L(v)
(vt − vt+1) if as ∈ L(v) is the first out-neighbour of ai after aj (C10)

ui ≤ ui+1 +
∑

t<j,aiat∈E,at∈L(v)
(vt − vt+1) if ai has no out-neighbour after aj (C11)

Additionally, for every pair (x, y) ∈ V (D)× V (D) consider a list L(x, y) of possible pairs
(a, b), a ∈ L(x) and b ∈ L(y). Perform pair consistency procedure as follows. Consider three
vertices x, y, z ∈ V (D). For (a, b) ∈ L(x, y) if there is no c ∈ L(z) such that (a, c) ∈ L(x, z)
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and (c, b) ∈ L(z, y) then remove (a, b) from L(x, y). Repeat this until a pair list becomes
empty or no more changes can be made. Here, we assume that after pair consistency
procedure no pair list is empty, as otherwise there is no homomorphism of D to H. Therefore,
by pair consistency, add the following constraints for every u, v in V (D) and ai ∈ L(u):

ui − ui+1 ≤
∑
j:

(ai,aj )∈L(u,v)

(vj − vj+1) (C12)

I Lemma 15. If H admits a min-ordering, then there is a one-to-one correspondence between
homomorphisms of D to H and integer solutions of the extended system S.

5 Approximation for Digraphs with a min-ordering

In what follows, we describe an overview of our approximation algorithm for MinHOM(H)
where the fixed digraph H has a min-ordering. We encourage the reader to see Algorithm 1
while reading this section. An overview of the proofs of the correctness and approximation
bound are postponed for the later subsections (further details in the full version [49]).

Let D be the input digraph together with a cost function c. Let a1, . . . , ap be a min
ordering of the vertices ofH. The algorithm, first constructs digraphH ′ fromH as in Section 4.
By Observation 13, a1, . . . , ap is a min-max-ordering for H ′. By Lemma 15, the integral
solutions of the extended LP are in one-to-one correspondence to homomorphisms from D to
H. At this point, our algorithm will minimize the cost function over extended S in polynomial
time using a linear programming algorithm. This will generally result in a fractional solution
(Even though the original system S is known to be totally unimodular [23, 48] and hence
have integral optima, we have added inequalities, and hence lost this advantage). We will
obtain an integer solution by a randomized procedure called rounding. Choose, uniformly at
random, a random variable X ∈ [0, 1], and define the rounded values u′i = 1 when ui ≥ X (ui
is the returned value by the LP), and u′i = 0 otherwise. It is easy to check that the rounded
values satisfy the original inequalities, i.e., correspond to a homomorphism f of D to H ′.

Now the algorithm will once more modify the solution f to become a homomorphism from
D to H, i.e., to avoid mapping the arcs of D to the arcs in E′. This will be accomplished
by another randomized procedure, which we call Shift. We choose, uniformly at random,
another random variable Y ∈ [0, 1], which will guide the shifting. Let F denote the set of all
arcs in E′ to which some arcs of D are mapped by f . If F is empty, we need no shifting.
Otherwise, let aiaj be an arc of F . Since F ⊆ E′, Observation 14 implies that either aj has
no in-neighbor after ai or ai has no out-neighbor after aj . Suppose the first case happens
(the shifting process is similar in the other case).

Consider a vertex v in D such that f(v) = aj (i.e. v′j = 1 and v′j+1 = 0) and v has
an in-neighbor u in D with f(u) = ai (i.e. u′i = 1 and u′i+1 = 0). For such a vertex v,
let Sv = {at1 , at2 , . . . , atk} be the set of all vertices at with t < j such that aiat ∈ E and
at ∈ L(v). Suppose Sv consists of at with subscripts t ordered as t1 < t2 < · · · < tk.

I Lemma 16. During procedure Shift, the set of indices t1 < · · · < tk considered in Line 6
of the Algorithm 1 is non-empty.

By Lemma 16, Sv is not empty. The algorithm now selects one vertex from this set as follows.
Let Pv,t = vt−vt+1

Pv
, where Pv =

∑
t<j

aiat∈E,at∈L(v)

(vt − vt+1).

Note that Pv > 0 because of constraints (C9) and (C10). Then atq is selected if
q∑
p=1

Pv,tp < Y ≤
q+1∑
p=1

Pv,tp . Thus a concrete at is selected with probability Pv,t, which is



A. Rafiey, A. Rafiey, and T. Santos 91:9

proportional to the difference of the fractional values vt − vt+1. When the selected vertex is
at, we shift the image of the vertex v from aj to at, and set v′r = 1 if r ≤ t, else set v′r = 0.
Note that at is before aj in the min-ordering. Now we might need to shift images of the
neighbors of v. In this case, repeat the shifting procedure for neighbors of v. This processes
continues in a Breadth-first search (BFS) like manner, until no more shift is required (Figure
1 gives an illustration). Note that a vertex might be visited multiple times in procedure shift
while a pair (v, ai) ∈ V (D)× V (H) is considered at most one time.

1
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8

x

y

z

w

uv

In D

In H

1

2

3

4

5

6

7

In H1

In D1

x

y

z

w

Figure 1 Two examples. In the right example, the target digraph is H1 and input is D1. Digraphs
D1 and H1 both can be view as bipartite graphs and 1, 2, 3, 4, 5, 6, 7 is a min-ordering of H. When
x, y are mapped to 3 and w is mapped to 6 then the algorithm should shift the image of w from 6
to 5 and since 35 is an arc there is no need to shift the image of y. In the left example, the target
digraph is H and the input is D. 1, 2, 3, 4, 5, 6, 7, 8 is a min-ordering of H and 24 is a missing arc.
Suppose x is mapped to 2, y to 4, w to 7, z to 8, u to 5 and v to 2. Then we should shift the image
of y to 3 and then w to 6 and z to 6 and then u to 3 and v to one of the 1, 2.

We remark that the images of vertices in D are always shifted towards smaller elements in
their lists. Lemma 17 shows that this shifting modifies the homomorphism f , and hence, the
corresponding values of the variables. Namely, v′t+1, . . . , v

′
j are reset to 0, keeping all other

values the same. Note that these modified values still satisfy the original set of constraints S,
i.e., the modified mapping is still a homomorphism.

I Lemma 17. Procedure shift, in polynomial time, returns a homomorphism of D to H ′.

We repeat the same process for the next v with these properties, until no edge of D is
mapped to an edge in E′. Each iteration involves at most |V (H)| · |V (D)| shifts. After at
most |E′| iterations, no edge of D is mapped to an edge in F and we no longer need to shift.
Next theorem follows from Lemma 16 and 17.

I Theorem 18. Our algorithm, in polynomial time, returns a homomorphism of D to H.

5.1 Analyzing the Approximation Ratio
We now claim that the cost of this homomorphism is at most |V (H)|2 times the minimum
cost of a homomorphism. Let w denote the value of the objective function with the fractional
optimum ui, vj , and w′ denote the value of the objective function with the final values u′i, v′j ,
after the rounding and all the shifting. Also, let w∗ be the minimum cost of a homomorphism
of D to H. Obviously, w ≤ w∗ ≤ w′.

We now show that the expected value of w′ is at most a constant times w. Let us focus
on the contribution of one summand, say v′t − v′t+1, to the calculation of the cost. In any
integer solution, v′t − v′t+1 is either 0 or 1. The probability that v′t − v′t+1 contributes to w′ is
the probability of the event that v′t = 1 and v′t+1 = 0. This can happen in the following:
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Algorithm 1 Approximation MinHOM(H).
1: procedure Approx–MinHOM(D,H)
2: Construct H ′ from H (as in Section 3)
3: Let uis be the (fractional) values returned by the extended LP
4: Choose a random variable X ∈ [0, 1], and ∀uis : if X ≤ ui let u′i = 1, else let u′i = 0
5: Let f(u) = ai where i is the largest subscript with u′i = 1 . f is a homomorphism

from D to H ′
6: Choose a random variable Y ∈ [0, 1]
7: while ∃uv ∈ A(D) such that f(u)f(v) ∈ A(H ′) \A(H) do
8: if f(v) does not have an in-neighbor after f(u) then Shift(f, v)
9: else if f(u) does not have an out-neighbor after f(v) then Shift(f, u)

10: return f . f is a homomorphism from D to H

Algorithm 2 The Shifting Procedure.
1: procedure Shift(f, x)
2: Let Q be a Queue, Q.enqueue(x)
3: while Q is not empty do
4: v ← Q.dequeue()
5: for uv ∈ A(D) with f(u)f(v) 6∈ A(H) or vu ∈ A(D) with f(v)f(u) 6∈ A(H) do

. Here we assume the first condition holds, the other case is similar
. Further, we assume f(v) does not have an in-neighbor after f(u)

6: Let t1 < · · · < tk be indices so that atj < f(v), atj ∈ L(v), f(u)atj ∈ A(H)

7: Let Pv ←
j=k∑
j=1

(vtj − vtj+1) and Pv,t ← (vt − vt+1) / Pv

8: if
q∑
p=1

Pv,tp < Y ≤
q+1∑
p=1

Pv,tp then

9: f(v)← atq , set v′i = 1 for 1 ≤ i ≤ tq, and set v′i = 0 for tp < i

10: for vz ∈ A(D) (zv ∈ A(D)) with f(v)f(z) 6∈ A(H) (f(z)f(v) 6∈ A(H)) do
11: Q.enqueue(z)
12: return f . f is a homomorphism from D to H ′

1. v is mapped to at by rounding, and is not shifted away. In other words, we have v′t = 1
and v′t+1 = 0 after rounding, and these values don’t change by procedure Shift.

2. v is first mapped to some aj , j > t, by rounding, and then re-mapped to at by procedure
Shift.

I Lemma 19. The expected contribution of one summand, say v′t − v′t+1, to the expected
cost of w′ is at most |V (H)|2c(v, at)(vt − vt+1).

I Theorem 20. Algorithm 1 returns a homomorphism with expected cost |V (H)|2 ·OPT . The
algorithm can be de-randomized to obtain a deterministic |V (H)|2-approximation algorithm.
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6 Approximation for Digraphs with a k-min-ordering

Digraphs admitting k-min-ordering (k > 1) do not admit a min-ordering or a conservative
majority polymorphism. However, this does not rule out the possibility of a constant factor
approximation algorithm. We show that they are in fact DAT-free digraphs, and they admit
a nice geometric representation (see the full version [49]).

I Lemma 21. Let H be a digraph that admits a k-min-ordering. Then H is DAT-free, and
LHOM(H) is polynomial time solvable.

Let H be a digraph with a k-min-ordering (k > 1) and partition V0, V1, . . . , Vk−1 of its
vertices, and let < be a k-min-ordering of V (H). It is easy to argue that the input digraph D
must be homomorphic to −→Ck otherwise there is no homomorphism from D to H. Therefore,
we assume (for some 0 ≤ ` ≤ k − 1), L(u) ⊆ Vi for every u ∈ Ui+`, 0 ≤ i ≤ k − 1. Now the
LP is designed according to the lists L. Since < is a min-ordering of Vi∪Vi+1, the constraints
are very similar to the ones in Section 3. The conclusion of this section is the following:

I Theorem 22. There is a (deterministic) |V (H)|2-approximation algorithm for
MinHOM(H) when the target digraph H admits a k-min-ordering, k > 1.

7 A Dichotomy for Graphs

Feder and Vardi [20] proved that if a graph H admits a conservative majority polymorphism,
then LHOM(H) is polynomial time solvable. Later, Feder et al., [18] showed that LHOM(H)
is polynomial time solvable iff H is a bi-arc graph. Hence, by Observation 4, the problem is
inapproximable beyond bi-arc graphs. A bi-arc graph is represented by a pair of families
of arcs on a circle with specific conditions (exact definition is given in the full version [49]).
Note that in a bi-arc graph a vertex may have a self-loop.

I Theorem 23 ([7, 18]). A graph admits a conservative majority polymorphism iff it is a
bi-arc graph.

I Definition 24 (G∗). Let G = (V,E) be a graph. Let G∗ be a bipartite graph with partite
sets V, V ′ where V ′ is a copy of V . Two vertices u ∈ V , and v′ ∈ V ′ of G∗ are adjacent in
G∗ iff uv is an edge of G.

A circular arc graph is a graph that is the intersection graph of a family of arcs on a
circle. A bipartite graph whose complement is a circular arc graph, is called a co-circular arc
graph. Note that co-circular arc graphs are irreflexive, meaning no vertex has a loop.

I Lemma 25. Let H∗ be the bipartite graph constructed from a bi-arc graph H. Then H∗ is
a co-circular arc graph and H∗ admits a min-ordering.

Let H be a bi-arc graph, with vertex set I, and let H∗ = (I, I ′) be the bipartite graph
constructed from H. Let a1, a2, . . . , ap be an ordering of the vertices in I and b1, b2, . . . , bp be
an ordering of the vertices of I ′. Note that each ai has a copy bπ(i) in {b1, b2, . . . , bn} where π
is a permutation on {1, 2, 3, . . . , p}. By Lemma 25, let us assume a1, a2, . . . , ap, b1, b2, . . . , bp
is a min-ordering for H∗.

Let G be the input graph with vertex set V and a cost function c. Construct G∗ from G

with vertex set V ∪ V ′ as in Definition 24. Now construct an instance of the MinHOM(H∗)
for the input graph G∗ and set c(v′, bπ(i)) = c(v, ai) for v ∈ V and v′ ∈ V ′. Further, make
H∗ a digraph by orienting all its edges from I to I ′, and similarly make G∗ a digraph by
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orienting all its edges from V to V ′. Note that, by construction of H∗ and G∗, there exists a
homomorphism f : G→ H with cost C iff there exists homomorphism f∗ : G∗ → H∗ with
cost 2C such that, if f∗(v) = ai then f∗(v′) = bj with j = π(i).

We first perform the arc consistency and pair consistency procedures for the vertices in
G∗. Note that if L(u) contains element ai then L(u′) contains bπ(i) and when L(u′) contains
some bj then L(u) contains aπ−1(j). Next, we define the system of linear equations Ŝ∗ with
the same construction as in Sections 3, 4. Further, we add the following constraint to Ŝ∗.
The full set of constraints in Ŝ∗ is presented in the extended version.

ui − ui+1 = u′π(i) − u′π(i)+1 ∀u, u′ ∈ G∗, ∀ai, bπ(i) ∈ H∗

I Lemma 26. If H is a bi-arc graph, then there is a one-to-one correspondence between
homomorphisms from G to H and integer solutions of Ŝ∗.

Once again we round an optimal fractional solution of Ŝ∗, using random variable X ∈ [0, 1].
Let F be a mapping form V (G∗) to V (H∗) obtained after rounding using X. We give an
algorithm that modifies F and achieves a homomorphism f : G→ H (i.e. an integral solution
that satisfies Ŝ∗). The algorithm deploys a shifting procedure that first uses a random variable
Y to shift the images of some of the vertices of V (G∗) to obtain a homomorphism f from
G∗ to H∗. Second, it applies a breadth-first search function to make f consistent on V and
V ′; meaning that f(u) = ai, u ∈ V iff f(u′) = bπ(i), u′ ∈ V ′. The proof of the following
theorems and de-randomization of the algorithm appear in the full version [49].

I Theorem 27. There exists a randomized algorithm that modifies F and obtain a homo-
morphism f : G→ H. Moreover, the expected cost of the homomorphism returned by this
algorithm is at most 2|V (H)| ·OPT .

I Theorem 28. If H admits a conservative majority polymorphism, then MinHOM(H) has
a (deterministic) 2|V (H)|-approximation algorithm, otherwise it is inapproximable.

8 Beyond majority and min-ordering (DAT-free cases)

This section offers a view of moving forward to get a dichotomy classification for constant
approximability of MinHOM(H). We believe the class of DAT-free digraphs is the right
boundary between the approximable cases, and the ones that do not admit any approximation.

I Conjecture 29. MinHOM(H) admits a constant approximation polynomial time algorithm
when H is a DAT-free digraph, otherwise, MinHOM(H) is not approximable.

For digraph D = (V,A), let D∗ be a bipartite digraph with partite sets V, V ′ where V ′
is a copy of V . There is an arc in D∗ from u ∈ V to v′ ∈ V ′ iff uv is an arc of D. In
what follows, we give a road map for solving the conjecture. Let us start off by making
a connection between homomorphisms from D to a DAT-free target digraph H, and the
homomorphisms from D∗ to H∗.

I Proposition 30. Let D,H be two digraphs and let D,H,L (here L are the lists) be an
instance of the LHOM(H). Suppose H is DAT-free. Then H∗ admits a min-ordering, and
LHOM(H∗) is polynomial time solvable for instance D∗, H∗ where L∗(v′) = {a′|a ∈ L(v)}
and L∗(v) = L(v) for every v ∈ V (D).

Similar to Lemmas 15 and 26, we can obtain set of constraints Ŝ∗ such that there is
a one-to-one correspondence between homomorphisms from D to H and integer solutions
of Ŝ∗ (details in the full version [49]). Our primary challenge would be finding a rounding
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procedure to obtain a homomorphism from D to H. We believe there is a need to deploy
the shift procedure in min-ordering case (Section 3), as well as, the shifting procedure in
the majority case (Section 7). This essentially means obtaining a new way of solving a list
homomorphism from D to H when H is a DAT-free, using the bi-partition method. The
calculation should work out; yielding a constant bound between the fractional value of the LP
and the integral value obtained by rounding. Notice that in the majority case the symmetry
of the arcs is heavily used in our argument, whereas in the digraph case we no longer have
this property in hand.
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