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Abstract
We obtain a streamlined proof of an important result by Alekhnovich and Razborov [2], showing that
it is hard to automatize both tree-like and general Resolution. Under a different assumption than
[2], our simplified proof gives improved bounds: we show under ETH that these proof systems are
not automatizable in time nf(n), whenever f(n) = o(log1/7−ε logn) for any ε > 0. Previously non-
automatizability was only known for f(n) = O(1). Our proof also extends fairly straightforwardly
to prove similar hardness results for PCR and Res(r).
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1 Introduction

Proof complexity first and foremost aims to understand, for a given propositional formula τ ,
how long of a proof is needed to verify that τ is unsatisfiable. To understand the expressiveness
of a proof system, we need to understand what formulas can and cannot be efficiently proven
in that system. However, for algorithmic applications where formulas often have fairly short
proofs, what is perhaps more important than knowing the worst-case proof length of a given
τ is actually finding proofs of τ . In particular, even if we’re promised that τ has proofs of
small size, say polynomial in the size of τ , can we hope to find one that’s not too much larger?

This question, of finding optimal proofs in a given system, is known as automatizability,
introduced by Bonet, Pitassi, and Raz [11]. A proof system Q is automatizable if there exists
an algorithm which, given an unsatisfiable formula τ on n variables, returns a Q-refutation of
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84:2 Short Proofs Are Hard to Find

τ in time poly(n, |τ |, S) where S := SQ(τ) is the size of the shortest Q-refutation of τ . Twenty
years later no reasonable proof systems are known to be polynomially automatizable, and
little is known even for the more general notion of f -automatizability, where the algorithm
can run in time f(n, |τ |, S).

Understanding the automatizability of various proof systems is a major tool in algorithm
design; two well known examples are SAT solvers, where the best algorithms are highly
optimized version of the Resolution (Res) proof system (see e.g. [32]) and celebrated
algorithmic versions of the Sum-of-Squares (SoS) proof system for approximation [37] and
learning (see e.g. [38] for a survey on recent developments in this very active field of research).
We especially draw attention to the question of automatizing Res. Resolution is a simple and
fairly weak proof system, and yet Res proofs are the objects at the heart of the best known
SAT solvers, with a long line of research connecting Res size to notions such as conflict driven
clause learning and restarts [29, 30, 35, 42]. Automatizing Res is also key to the best known
automated theorem provers for propositional and first order logics [17, 16]. Therefore, the
tractability of finding short Res proofs lies at the heart of understanding the frontiers and
limitations of SAT solving algorithms and automated theorem proving.

Despite the importance of automatizability for Res and other proof systems, our under-
standing of this question is limited at best. In terms of upper bounds, the best automatizing
algorithm for Res runs in slightly subexponential time. In terms of lower bounds, until
recently the main hardness result was the landmark paper of Alekhnovich and Razborov
[2], who prove that under the assumption FPT 6= W[P],1 Res (as well as tree-like Res, de-
noted TreeRes) is not polynomially-automatizable. Using similar ideas, Galesi and Lauria
[20] adapted Alekhnovich and Razborov’s proof in order to obtain the same result for the
Polynomial Calculus (PC) system, an extension of Res which is the proof complexity model
for the Groebner basis algorithm [15].2

For all other well-studied practical systems almost nothing is known. To give a short list
of other well-known proof systems used in algorithm design, we have Cutting Planes (CP),
widely used for optimization algorithms (see e.g. [28]); Sherali-Adams (SA), which underlies a
general family of linear programming algorithms [41]; and the aforementioned Sum-of-Squares
(SoS)-based semi-definite programming algorithms. For these systems we have no extension
of the argument of [2], and therefore no notable lower bounds on automatizability.

1.1 Our Contributions
Our motivation for this work is to adapt the techniques of [2], first to move past polynomial
automatizability lower bounds for Res (and PC), and second to hopefully shed light on
the automatizability of proof systems such as CP, SA, and SoS. The starting point of our
contribution is in switching to the exponential time hypothesis (ETH) as opposed to the
FPT 6= W[P] assumption in [2, 20]. A central limitation in starting from the assumption that
some problem has no FPT algorithm is that FPT algorithms run in time f(k)nO(1), and so
the best lower bound one can get from such an assumption, without a careful analysis of f
and the range of k, is nω(1). In the past decade a line of work by Chen and Lin [14] showed
how to obtain fixed parameter lower bounds beyond f(k)nO(1) for gap versions of NP-hard

1 The original result of [2] uses FPR, a randomized version of FPT, in place of FPT in the assumption.
This was improved to the stated assumption by [19].

2 While the most well-studied and widely used SAT solvers are based on Res, there have been some
implementations that use the Groebner basis algorithm to utilize the more expressive power of PC, see
e.g. [12].
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problems, such as dominating set and hitting set, by starting not from an assumption about
FPT but from ETH. Analyzing these reductions we can derive a hardness result for a fixed
f and k, which allows us to go beyond the nω(1) barrier in [2, 20], albeit starting from the
slightly stronger ETH assumption. We state our main theorem precisely now.

I Theorem 1 (Main Theorem). Let Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}. Assuming ETH
holds Q is not nf -automatizable for any f = o(log1/7−ε logn) (where ε > 0 is any constant).

Equally important as extending the results of [2, 20] is our second goal, namely simplifying
the presentation of the construction and proofs. Moving to the stronger ETH assumption
allows us to change the central formula in a way that, while still using the core machinery
of [2], leads to a conceptually simpler formula and proof. The basis of the formula in [2] is
the monotone minimum circuit satisfying assignment (MMCSA) problem, which takes as
input a poly-size monotone circuit. The natural encoding of their formula as a CNF formula
requires extra variables to represent the internal gates of the monotone circuit, leading to
many technicalities involved in proving a Res width lower bound, namely an indirect and
highly redundant encoding of the circuit. Our proof starts from the hitting set problem,
which is a special case of MMCSA where the circuit is a CNF. Since the formula is already a
CNF, the input can be encoded directly as the formula rather than indirectly having variables
for each of the gates, and as a result the upper and lower bound proofs in our paper are
highly streamlined.

While we do start from a stronger assumption than [2, 20], there are few additional
advantages to our new formula beyond presentation. First, going beyond superpolynomial
hardness for Res allows us to obtain hardness results on the automatizability of Res(r), a
proof system generalizing Res by allowing lines to be disjunctions of size r conjunctions.
Prior to our paper nothing was known for Res(r) for any r ≥ 2, and the formula from [2]
would not be able to go past Res(r) for constant r.

I Theorem 2 (Main Theorem for Res(r)). Let Q = Res(r). Assuming ETH holds then for
any ε > 0, Q is not nf/ exp(r2)-automatizable for any f = o(log

1
7−ε logn) if r ∈ O(

√
log f).

Second, our technique has a direct, and in our view achievable, path to further improve-
ment: if the reduction of [14] were to be improved to allow a lower bound against gap hitting
set for larger parameters, it would immediately translate to a stronger non-automatizability
result. We discuss this idea in detail in Section 6. Third, our results are also immediately
strengthened if, instead of using ETH, one uses a slightly stronger assumption known as the
gap exponential time hypothesis (GapETH), as introduced in [18, 27]. We formally define
GapETH along with ETH in Section 2, but these results require no change in our formula nor
our proofs. As with starting from [14] for our ETH results, the work required to use GapETH
is analyzing a reduction of Chalermsook et al. [13], so we defer the results and analysis to to
the full version of the paper.

1.2 Related Work
Table 1 lists the known results for Res and PC. An early result [1] shows that it is NP-hard
to find proofs whose size is a constant factor of optimal, and this holds for all standard
proof systems.

For stronger proof systems we have more lower bounds, although these bounds still only
rule out polynomial automatizability and require cryptographic assumptions. Krajíček and
Pudlák showed non-automatizability of the Extended Frege system under the hardness of

ICALP 2019
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Proof system Assumption Result Reference
all systems P 6= NP ω(1) · n [1]
Res, TreeRes W[P] 6= FPT nω(1) [2]
Nullsatz, PC, PCR W[P] 6= FPT nω(1) [20]
Res, TreeRes, Nullsatz, PC, PCR ETH nΩ(log1/7 logn) this work
Res(r) ETH nΩ(log1/7 logn/ exp(r2)) this work

Figure 1 Lower bounds on automatizabillity of weak proof systems.

discrete log [25], with subsequent works proving the same lower bounds for Frege and AC0-
Frege under similar assumptions [10, 11]. Conceptually these more expressive classes should
be harder to automatize because there exist many more short proofs than for say Res, but a
nice upshot of these results is that they hold for a much weaker notion of automatizability,
aptly named weak automatizability. Weak automatizability of a proof system Q only requires
that the automatizing algorithm return a proof of τ in some proof system, so long as it’s
close in length to the shortest Q-proof of τ .3 Clearly hardness of weak automatizability
implies hardness of automatizability, and hardness of weak automatizability is closely related
to feasible interpolation [36], which was the tool used in the results listed above.

Turning to upper bounds, there are a class of width/degree based automatizability
algorithms for Res, PC, SA, and SoS. The width of a Res refutation is the maximal number
of literals appearing in any line of the refutation, and the width of a CNF formula τ ,
denoted w(τ), is the minimum width of any Res refutation refuting τ . It is not hard to
see that exhaustive search allows us to find a Res refutation for τ in time nO(w(τ)) [8]. A
non-trivial fact is that the same upper bound holds for PC (due to the Groebner basis paper
of Clegg, Impagliazzo, and Edmonds [15]), SA [40], and SoS [34, 26], where the degree of the
polynomials appearing in the proofs is used in place of width. These algorithms are known
to be tight for width/degree based automatizability, as there exist tautologies τ with proof
size S(τ) = nΩ(d) for Res, PC, SA, and SoS4 [6].

A groundbreaking work of Ben-Sasson and Wigderson [9] showed that w(τ) ≤ logS(τ)
for the special case of TreeRes and w(τ) ≤

√
n logS(τ) for general Res. Combined with the

nO(w(τ)) upper bound for both systems gives automatizability for TreeRes and Res in time
nO(logS(τ)) and nO(

√
n logS(τ)), respectively. Perhaps even more surprisingly, a result of [15]

gives the same degree/size tradeoff for PC as [9] gave for Res; d(τ) ≤
√
n logS(τ) for the

case of PC, and d(τ) ≤ logS(τ) for a static version of PC called Nullstellensatz (Nullsatz).5
Combining these degree bounds with the degree based algorithms gives automatizability
for Nullsatz and PC in time nO(logS(τ)) and nO(

√
n logS(τ)), respectively. While these upper

bounds are very strong for TreeRes and Nullsatz, for Res and PC they are still weakly
exponential, and the results of [9, 15] are tight. Thus non-width/degree based techniques are
needed to improve these upper bounds.

3 This can be seen as analogous to the two notions of of learning, proper versus nonproper, where the
former is required to produce a hypothesis from the original concept class, whereas the latter may
produce any hypothesis.

4 The degree-automatizability of SoS is not established definitely due to the bit-complexity of the
underlying polynomials, which can be exponential [33].

5 This result of [15] actually preceded [9].
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1.2.1 Recent Developments
In a recent breakthrough paper, Atserias and Müller [4] resolve the automatizability of
(general) Resolution. In particular they show that it is NP-hard to distinguish whether τ has
Res refutations of size n1+ε or none of size 2n1/(2+ε) for any ε > 0, which implies that assuming
ETH, Res is not 2nδ automatizable for any δ < 1

2 . Because of the quasipolynomial upper
bounds on automatizability for the other systems that we study here (tree-like Resolution,
and the Polynomial Calculus) our results as well as [2] are incomparable with [4]. Thus our
results (and technique) are still at the frontier for all other systems discussed.

2 Preliminaries

Let τ = {C1, C2, . . . , Cm} be an unsatisfiable CNF formula over X = {x1 . . . xn}. We denote
by |τ | the size of τ , and likewise for a proof π refuting τ let |π| denote the size of π. For
a proof system Q let S := SQ(τ) be the size of the shortest Q-proof refuting τ . A proof
system Q is said to be f(n, |τ |, S)-automatizable if there exists an algorithm A such that for
every unsatisfiable τ A runs in time f(n, |τ |, S) and outputs a valid Q-proof refuting τ . A
proof system Q′ p-simulates Q if for every Q-proof π refuting τ there is a corresponding
Q′-proof π′ refuting τ such that |π′| = |π|O(1).

A Resolution (Res) refutation of τ is a sequence of clauses π = {D1, D2, . . . , DS} such
that DS = ∅, and each line Di is either some initial clause Cj ∈ τ or is derived from two
previous lines using the resolution rule: from (E ∨ x), (F ∨ x) we derive (E ∨ F ), where
x ∈ X, E and F are clauses, and E ∨ F is their disjunction with repeated literals removed.
We can view a Res proof π as a directed acyclic graph with a unique clause Di at every
vertex, with initial clauses Cj ∈ τ at the leaves, ∅ at the root, and having an edge from Di

to Dj if Di was used to derive Dj . With this view, a TreeRes refutation requires that all
non-leaf vertices of the underlying graph have outdegree 1 (so the underlying graph of any
TreeRes proof is tree-like).

Given a Res or TreeRes refutation π = {D1, D2, . . . , DS}, the size of π is the number of
lines in π, in this case S. The width of a clause Di is the number of literals in it, and the
width of π is the maximum width of a clause in the proof. We denote the width of a clause
Di or proof π by w(Di) and w(π), respectively. Clearly Res can p-simulate TreeRes with
respect to size and width, as every TreeRes-proof is also a Res-proof.

An r-Resolution (Res(r)) refutation6 is similar to a Res refutation, but each line Di is
an r-DNF instead of a clause, and the resolution rule is adapted as follows: from (E ∨
(∨j∈Jxj)), (F ∨ (∧j∈Jxj)) we derive (E ∨ F ), where J ⊆ [n] such that |J | ≤ r, E and F

are r-DNFs, and E ∨ F is their disjunction with repeated conjunctions removed (note that
∨j∈Jxj is a DNF with |J | terms while ∧j∈Jxj is a single term). Note that Res(1) = Res.
The size of a Res(r) proof is the number of r-disjunctions in it. (See [39] for more details.)

An algebraic proof system for refuting CNF τ = {C1 . . . Cm′} over variable set X is a proof
system where each of the clauses Ci is converted into a polynomial equality or inequality
Pi over X, such that any assignment of all xj to {0, 1}n satisfies Ci iff it satisfies Pi. For
this paper the conversion is done is by sending every positive literal xj to (1− xj) and every
negative literal xj to xj , and Pi is satisfied if the product of all converted literals in Ci is
0. For example, the clause Ci = x1 ∨ x2 ∨ x3 is converted to Pi = (1− x1)(x2)(1− x3) = 0.

6 This class is more commonly called k-Resolution, or Res(k), in proof complexity literature, but the
parameter k already plays a central role in our paper.
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In addition, we add the equations x2
j − xj = 0 for all j ≤ n. Let the resulting m = m′ + n

equations corresponding to τ be denoted by P = {P1, . . . , Pm}. Since every Pi is of the form
pi = 0 we use Pi to refer to pi.

The Nullstellensatz (Nullsatz) refutation system [7] is an algebraic proof system that uses
Hilbert’s Nullstellensatz as a certificate of unsatisfiablility. A Nullsatz proof (over a field F) of
τ is a set of polynomials Q1, . . . , Qm such that

∑
i PiQi is the formal polynomial “1”. Note

that this contradicts the statement that there exists an assignment such that Pi = 0 for all i.
The size of a Nullsatz refutation π is the sum over all i ∈ [m] of the number of monomials in
the expansion of the term PiQi, while the degree of the refutation is the maximum degree
deg(PiQi) over all i ∈ [m]. It is known that Nullsatz p-simulates TreeRes.

The Polynomial Calculus (PC) system is a dynamic version of Nullsatz [15], where the
lines of a PC proof π are all polynomials Q1, Q2, . . . , QS . The lines Qi can be any of the
initial polynomial equations P or can be derived from previous lines by the following rules:
(1) from Qi we can derive xjQi or (1 − xj)Qi for any variable xj ; (2) from Qi, Qj we can
derive aQi+ bQj for any a, b ∈ R. As with Nullsatz the final line QS is the formal polynomial
“1”. Similarly to Nullsatz the degree of a PC proof π is the maximal degree of any line Qi, and
the size of π is the total number of monomials in the refutation, where multiple occurrences
of the same monomial are counted for each occurrence. PC trivially p-simulates Nullsatz and
the simulation is degree-preserving.

The PCR system is a simple modification to the PC proof system so that it can p-simulate
Res proofs with respect to size. For PCR, polynomials are allowed to use additional variables
x1, . . . , xn and axioms of the form 1 − xj − xj = 0 for all j ∈ [n]. Furthermore all terms
(1− xj) in the input polynomials in P are replaced by the variables xj . Intuitively although
the variables xj and xj are distinct they stand for the negations of one another, which is
enforced by the new axiom corresponding to xj . It is not hard to see that PCR can now
p-simulate Res with respect to size.

Let S = {S1, . . . , Sn} be a collection of non-empty sets Sj over [n]. A hitting set H ⊆ [n]
is a set of elements such that H ∩ Sj 6= ∅ for all j ∈ [n]. Let γ(S) be the size of the smallest
hitting set for S. The gap hitting set problem is the task of distinguishing, on input (S, k, hk),
the following two cases: (1) γ(S) ≤ k; (2) γ(S) > hk.

I Definition 3. The Exponential Time Hypothesis (ETH) states [23] that for sufficiently large
m and n, no algorithm running in time 2o(n) can decide, for given CNF τ with m clauses
and n variables, whether all m clauses of τ are satisfiable or not. The Gap Exponential
Time Hypothesis (GapETH) states [18, 27] that for sufficiently large m and n, no algorithm
running in time 2o(n) can decide, for given CNF τ with m clauses and n variables and any
constant ε ∈ (0, 1), whether all m clauses of τ are satisfiable or if at most (1− ε)m of the
clauses are satisfiable.

We state the following hardness results for the hitting set problem under ETH, which can
be deduced from a construction by Chen and Lin [14]. The actual lemma we prove is slightly
more technical but actually slightly stronger than the one we state here. A full discussion
and proof of the lemma is included in the full version of the paper7.

I Lemma 4 (ETH-Hardness of Hitting Set). Assuming ETH, for sufficiently large n and
k=O(log1/7−ε logn) no algorithm can solve the gap hitting set problem (S, k, k2) in time no(k).

7 A similar result holds for GapETH, which can be deduced from recent work of Chalermsook et al [13].
See the full version for more details.
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Consider a set A ⊆ {0, 1}m of m-bit strings such that |A| = m. We say that A is
(m, k)-universal if for every subset J ⊆ [m] of up to k distinct positions in [m], the projection
A|J (restricting the strings in A to these positions) contains all possible 2|J| binary strings
of length |J |. Observe that we can take the dual of the set A in the following sense: if
A = {a1, . . . , am}, and let B ⊆ {0, 1}m be the set of all strings bj for j ∈ [m] such that the
ith bit of bj is the jth bit of ai. Another way to think about B is taking the strings of
A to be the columns of an m ×m matrix and letting B be the columns of that matrix’s
transpose. We say A is (m, k)-dual-universal if B is (m, k)-universal. Equivalently A is
(m, k)-dual-universal if for every ordered subset I ⊆ A of up to k distinct strings in A and
for every string s ∈ {0, 1}|I|, there exists some position j ∈ [m] such that s is the string
formed by concatenating the jth bit of all strings in I in order. The existence of efficiently
constructible (m, logm/4)-universal sets is known. It is also known that there exist efficiently
constructible sets that are both (m, logm/4)-universal and (m, logm/4)-dual-universal. For
a concrete example, [2] uses the Paley graph Gm on m vertices 8 For the rest of the paper
we will fix an arbitrary A that is efficiently computable and is both (m, logm/4)-universal
and (m, logm/4)-dual-universal.

3 Main reduction

We first state our main lemma from which Theorem 1 is easily proven.

I Lemma 5. Let Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}. For sufficiently large n and
k = O(log1/3 n), let (S, k, k2) be an instance of the gap hitting set problem over [n]. Then
there exists an unsatisfiable CNF τS which can be computed in time nO(1) such that the
following two properties hold
(i) if γ(S) ≤ k then SQ(τS) ≤ nO(1);
(ii) if γ(S) > k2 then SQ(τS) ≥ nΩ(k).

Proof of Theorem 1. Assuming thatQ is nf automatizable for some f(n) = o(log1/7−ε logn)
for ε > 0, we describe an efficient algorithm for the gap hitting set problem. Given an
instance (S, k, k2) of the gap hitting set problem over [n], with n sufficiently large and
k = O(log1/7−ε logn), we generate the CNF τS , and simulate the automatizing algorithm
on τS for nO(f) timesteps. If the automatizing algorithm outputs a legal Q refutation of
τS within the allotted time, then we output “γ(S) ≤ k” and otherwise output “γ(S) > k2”.
Because f = o(k) the correctness is guaranteed by Lemma 5. Thus we can decide the gap
hitting set problem in time nO(f) = no(k), which by Lemma 4, contradicts ETH. J

The rest of the paper is devoted to the proof of Lemma 5. In this section we give the
reduction τS , and prove the upper and lower bounds needed for the case of Res in Sections 4
and 5. This also gives the upper bound for PC and Res(r); the lower bounds are deferred
to the full paper. We briefly note that the strength of the result in Theorem 1 relies solely
on the largest value we can set k to. We choose k = O(log1/7−ε logn) because this is the
largest value we can use and still get a contradiction with Lemma 4, but for Lemma 5 to
hold we can tolerate up to k = O(log1/3 logn), meaning that if the reduction in [14] were

8 Many examples of universal sets (including the Paley graph construction) are discussed in [24], as well as
[31, 3]. Alternate constructions use properties such as k-wise independent sample spaces and linear codes,
and counting arguments for different parameter regimes exist. Notably the Paley construction fulfills
our four essential properties of being small (of size m), polytime constructible, (m, logm/4)-universal,
and (m, logm/4)-dual-universal.
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improved, a stronger version of Theorem 1 would immediately follow. Likewise, starting from
the GapETH assumption we could use a stronger version of Lemma 4 and immediately get
the stronger result claimed in Section 1 (see the full version of the paper).

Hereafter, fix k = O(log1/7−ε logn) and define m := n1/k. Observe that k logm = logn
and k2 < logm for large enough n. In what follows we will abuse notation and xi, yj will
denote a tuple of Boolean variables (rather than a single Boolean variable). The tuple size of
xi, yj will be clear from context, but generally xi will be a O(logm)-tuple and yj will be a
O(logn)-tuple. Additionally ~x = x1, . . . , xn, ~y = y1, . . . , ym will denote vectors of the tuples
xi and yj . αi and βj will denote a 0/1 assignment to the tuples xi and yj respectively, and
~α, ~β will each denote a 0/1 assignment to the vector of tuples ~x, ~y respectively.

3.1 The Formula ψS

Given a hitting set instance S we will define an unsatisfiable formula ψS . Recall that A
is a set of m-bit strings such that |A| = m and A is both (m, (logm)/4)-universal and
(m, (logm)/4)-dual-universal. We also define the characteristic vector of a set S ⊆ [n] to be
the binary vector s ∈ {0, 1}n such that si = 0 for all i /∈ S and si = 1 for all i ∈ S.

The formula ψS will have variables ~x and ~y that will respectively encode n-by-m matrices
M and N . The variables of ~x will define M such that each of the n rows of M is some
vector in A, and the variables ~y will define N such that each of the m columns of N is the
characteristic vector for some set S from the hitting set instance S. In particular, xi will
indicate a vector in A to serve as the ith row of M , while yj will indicate a set in S whose
characteristic vector will serve as the jth column of N , with each xi and yj being chosen
separately. For the remainder of the section, we restrict our attention to matrices M and N
defined this way. We say that M and N intersect if M [i, j] = N [i, j] = 1 for some pair (i, j).
ψS will be defined so that it is falsified whenever M and N intersect and satisfied otherwise.

Notice that when some column of M is the characteristic vector of a hitting set, ψS is
falsified because there is no way to pick the corresponding column in N so that the two
columns do not intersect. Conversely, if none of the columns in M represent a hitting set,
then there is always a way to pick N so that ψS is satisfied (for each column we simply pick
the set that was not hit). Therefore proving that ψS is unsatisfiable boils down to proving
that for any choice of M , some column of M represents a hitting set.

B Claim 6. ψS is unsatisfiable when γ(S) ≤ logm
4 .

Proof sketch. Let H be any hitting set of size at most logm
4 , which we interpret of as a set

of row indices into M . By the (m, (logm)/4)-dual-universality of A, any set I of at most
(logm)/4 strings from A has a location such that all the strings in I contain a 1 at that
location.9 Since rows of M are strings in A, taking I = H there must exist a column j∗ such
that M [i, j∗] = 1 for every i ∈ H. Because H is a hitting set and the jth column of N is the
indicator vector of a set S ∈ S, there must be some i∗ ∈ H such that N [i∗, j∗] = 1, and so
M and N intersect at (i∗, j∗). C

Next, we define the formula more formally. The variables of ψS are ~x = {xi | i ∈ [n]}
where xi is a tuple of logm boolean variables, and ~y = {yj | j ∈ [m]} where yj is a tuple
of logn boolean variables. Given an assignment ~α = {αi | i ∈ [n]} to the ~x-variables, ~α

9 We do not require that the rows of M are distinct rows of A, but because we are only looking for a
location with a 1 for every row this does not pose an issue. In fact we only ever use the universal and
dual universal properties to search for a location with either all 0 or all 1, where repetition doesn’t
break the universal properties we need.
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encodes an n-by-m matrix M~α where the i-th row of M~α equals aαi ∈ A (interpreting αi
as an index in [m]). Similarly given an assignment ~β = {βj | j ∈ [m]} to the ~y-variables, ~β
encodes an n-by-m matrix N~β , where column j is the characteristic vector of the set Sβj ∈ S
(interpreting βj as an index in [n]). We will sometimes write M~α[i, j] as Mαi [i, j] to stress
that the ith row of M~α is determined by αi. Similarly, we will sometimes write N~β [i, j]
as Nβj [i, j].

Lastly, we formally define the clauses in ψS so that it is falsified whenever M~α and N~β

intersect and satisfied otherwise.

I Definition 7. For every i ∈ [n] and j ∈ [m], and for every pair of values αi ∈ {0, 1}logm,
βj ∈ {0, 1}logn such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we have the clause xαii ∧ y

βj
j where

xαii = ∧t∈[n](xi)
(αi)t
t is the conjunction of all variables in xi, each of which occurs positively

when the corresponding bit of αi is 1 and negatively when the corresponding bit of αi is 0
(we define yβjj in the same way). This axiom is falsified iff xi is assigned value αi and yj is
assigned value βj.

This formula has the property we want because if M~α and N~β intersect at some location

i, j, then the axiom xαii ∧ y
βj
j exists in ψS and would be falsified. Conversely, if ψS is falsified,

then some axiom xαii ∧ y
βj
j is falsified, which means M~α[i, j] = N~β [i, j] = 1.

It is easy to check that the number of variables in ψS is n logm+m logn. The number
of clauses is at most n2m2, since for each i ∈ [n] and j ∈ [m], each of the mn possible
assignments to (xi, yj) adds at most one clause to ψS .

3.2 Redundantly Encoding ψS

In order to prove our result we will need a way of proving both upper and lower bounds
on SQ(ψS), but it turns out that the lower bounds are difficult to prove if we use ψS as is.
Thus, we will employ a standard trick in proof complexity, which is to redundantly encode
the variables in the formula; more specifically we follow [2] and redundantly code blocks of
variables, namely each row and column, using error-correcting codes. It is interesting to
note that for our formulas, we are unable to prove even width lower bounds without the
redundant encoding. In contrast, most proof complexity applications use this trick solely for
the purpose of reducing size lower bounds to width lower bounds.

I Definition 8. For q, r, s ∈ N, a (q, r, s)-code is a total function f from {0, 1}q to {0, 1}r
with the property that for any ρ ∈ {0, 1, ∗}q such that ρ fixes at most s values to {0, 1}, f |ρ
is surjective on {0, 1}r. Efficiently computable constructions using linear codes are known
for any r, q = 6r, s = 2r (see e.g. [2]). We say that f is r-surjective.

Let fx : {0, 1}6 logm → [m] be a (6 logm, logm, 2 logm)-code and let fy : {0, 1}6 logn → [n]
be a (6 logn, logn, 2 logn)-code. We will have a vector xi ∈ {0, 1}6 logm for each i ∈ [n] and
a vector yj ∈ {0, 1}6 logn for each j ∈ [m]. Given an assignment ~α to all of the ~x-variables,
we will associate with ~α an n-by-m matrix M~α, where the ith row of M~α will be the vector
afx(αi) ∈ A. Similarly given an assignment ~β to all of the ~y-variables, we will associate with
~β an n-by-m matrix N~β , where column j is the characteristic vector corresponding to the set
Sfy(βj) ∈ S In other words, N~β [i, j] is 1 if and only if set Sfy(βj) contains element i.

We now define our unsatisfiable CNF τS in the same way as ψS using these redundant
encodings. Note that it is unsatisfiable for exactly the same reason as stated before.
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I Definition 9. The clauses of τS are defined as follows. For every i ∈ [n], j ∈ [m] and for
every pair of assignments (αi, βj) to (xi, yj) such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we
have the clause xαii ∧ y

βj
j .

In the redundant encoding we have n · 6 logm x-variables and m · 6 logn y-variables, for
a total of O(n logm) variables when m = n1/k � n. The number of clauses in τS is at most
n7m7, since for each i ∈ [n] and j ∈ [m], each of the m6n6 possible assignments to (xi, yj)
adds at most one clause to τS .

The following two lemmas, which will be the focus of the rest of the paper, give tight
upper and lower bounds on SQ(τS) as a function of γ(S). Since we can clearly construct τS
in time polynomial in n, proving these two lemmas is all we need to finish Lemma 5.

I Lemma 10. For sufficiently large n and k = O(log1/3 n), let (S, k, k2) be an instance
of the gap hitting set problem over [n] such that γ(S) ≤ k. Then SQ(τS) ≤ nO(1) for any
Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}.

I Lemma 11. For sufficiently large n and k = O(log1/3 n), let (S, k, k2) be an instance of
the gap hitting set problem over [n] such that γ(S) > k2. Then SQ(τS) ≥ nΩ(k) for any
Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}.

It may be instructive to note that both the upper and lower bounds are exactly
nΘ(γ(S)/k) = mΘ(γ(S)), which is polynomial in the number of distinct assignments to
α1 . . . αγ(S), assuming without loss of generality that the minimum hitting set of S is
the first γ(S) elements {1 . . . γ(S)} ⊆ [n]. In Sections 4 and 5 we show how these assignments
exactly characterize the shortest proof of τ .

4 Upper bound in TreeRes

In this section we prove Lemma 10. Note that it suffices to give an upper bound in TreeRes
since all of the other proof systems can p-simulate TreeRes.

Proof of Lemma 10. The proof is just a formalization of the argument given in the proof
of Claim 6. Using the well-known equivalence between TreeRes proofs and decision trees,
it suffices to give a decision tree solving the search problem for τS ; that is, a decision tree
(over the underlying variables of τS), where every leaf l is labelled with a clause of τS that is
falsified by the partial assignment that labels the path to l.

We will first show that if γ(S) ≤ k, then there is a height 2 logn decision tree (and
therefore size n2) for the unencoded formula ψS . Since γ(S) ≤ k, assume without loss of
generality that H = {1, . . . , k} is a valid hitting set for S. The decision tree for ψS consists of
two phases. First, the decision tree will branch on all of the Boolean variables in x1, . . . , xk.
This will result in a full binary tree, call it T , of depth k logm. In the second phase, at each
leaf vertex of T we will query all of the variables of some yj variable, where the choice of yj
will be a function of the path taken in T .

Consider some path in T leading to leaf l~α, corresponding to the assignment ~α = α1, . . . αk
for x1, . . . , xk. The assignment ~α corresponds to an ordered set of strings I ⊆ A, where
|I| ≤ k. Since k ∈ O(log1/3 n) and m = n1/k, k ≤ logm

4 for large n. By the (m, logm/4)-
dual-universal property of A there is some j ∈ [m] such that I restricted to position j is
all 1’s, and thus M~α[i, j] = 1 for all i ∈ [k]. In the second phase, at this leaf vertex l~α of T
we will then query all of the Boolean variables in yj . Let βj be one partial assignment to
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these variables and consider the path labelled by ~αβj leading to the leaf vertex l~αβj . Since
{1, . . . , k} is a hitting set for S we are guaranteed that N~βj

[i, j] = 1 for at least one i ∈ [k],
and since M~α[i, j] = 1 for all i ∈ [k], one of the clauses in τS must be violated by the partial
assignment ~α, βj , so we label l~αβj with any such clause. The resulting decision tree thus
solves the search problem associated with ψS and has height k logm+ logn = 2 logn.

The decision tree for the redundant version τS is essentially the same but instead we query
the redundant encodings of the variables. First, we query x1, . . . , xk, resulting in a full binary
tree of height k · 6 logm, and then, we query a particular yj (depending on the path taken in
T ), which is 6 logn variables, and thus the height is k · 6 logm+ 6 logn = 12 logn. J

5 Nonautomatizability of Res and TreeRes

In this section we prove Lemma 11 for the case of Q = Res, which implies the result for
TreeRes as well. We begin by proving a wide clause lemma for τS , which alone is enough
to prove lower bounds for TreeRes (using the size-width relationship for TreeRes due to
Ben-Sasson and Wigderson [9]); for general Res, we apply a standard application of random
restrictions to reduce to width.

Our notion of “wide” will be a bit richer than the usual definition. For a clause D, let
I0(D) be the set of all i ∈ [n] for which there are at least logm literals in D that correspond
to variables from xi. Likewise let J0(D) be the set of all j ∈ [m] for which there are at least
logn literals in D that correspond to variables from yj .

I Lemma 12 (Wide Clause Lemma). For sufficiently large n, if γ(S) > k2 and fx (fy) is
logm-surjective (logn-surjective, respectively), then for any Res refutation π refuting τS
there exists a clause D ∈ π such that |I0(D)| ≥ k2 or |J0(D)| ≥ k.

Proof. We follow the prover-delayer game of [36, 5] in the style of [6]. The width-w game
on an unsatisfiable formula τ is played between a Delayer, who is asserting that she has
a satisfying assignment for τ , and a Prover, who is trying to force the Delayer into a
contradiction by asking her values of the underlying variables. However, the Prover has
limited memory and can only remember the values of up to w of the variables at a time.

Both players know τ and the contents of the Prover’s memory, which is initially empty.
At the start of each round there are at most w − 1 values in memory. The Prover asks the
Delayer the value of some variable whose value is not currently in memory. The Delayer
responds with an answer (either 0 or 1), and upon receiving the answer, the Prover adds this
assignment to his memory (increasing the number of stored values by 1). He can then erase
(forget) any existing values from memory, possibly decreasing the number of stored values.
The Prover declares victory if at some point, the partial assignment written in his memory
falsifies one of the clauses of τ . The Delayer has a winning strategy for the width-w game
on τ if no matter how the Prover plays the game, he cannot win. It was shown [36, 5] that
the Delayer has a winning strategy for the width-w game if and only if the Res width of τ is
at least w − 1.

For our formula τS , the game proceeds as above, but now let D be the set of literals in
the Prover’s memory, and we demand instead of only holding w variables total in memory
that |I0(D)| ≤ k2 and |J0(D)| ≤ k. By the transformation from [36], the Prover has a
winning strategy for this game if there is a Res refutation such that |I0(D)| ≤ k2 − 1 and
|J0(D)| ≤ k − 1 for every clause D. Therefore the Delayer has a winning strategy for this
game if and only if the lemma holds. The Delayer’s winning strategy is as follows.
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If the Prover asks about a variable in xi:
If i /∈ I0(D) and after adding this bit there are still less than logm variables from xi
in memory, the Delayer can answer with either 0 or 1 arbitrarily.
If i /∈ I0(D) but after adding this bit to memory there are now logm variables from xi
in memory, the Delayer uses the fact that |J0(D)| ≤ k ≤ logm/4 and the (m, logm/4)-
universal property of A to find a string a0 ∈ A such that a0|J0(D) is the all-zeros string,
and uses the surjective property of fx to find an assignment αi consistent with the
assignment to the xi variables in memory such that fx(αi) = a0. The Delayer will
remember the assignment αi for xi from now on, and note that I0(D) now contains i.
Finally if i ∈ I0(D) then the Delayer is maintaining an assignment αi for xi, so she
answers according to αi.

If the Prover asks about a variable in yj :
If j /∈ J0(D) and after adding this bit there are still less than logn variables from yj
in memory, the Delayer can answer with either 0 or 1 arbitrarily.
If j /∈ J0(D) but there are now logn variables from yj in memory, the Delayer uses
the fact that |I0(D)| ≤ k2 < γ(S) and finds a set S0 that doesn’t contain any element
i ∈ I0(D), and uses the surjective property of fy to find an assignment βj consistent
with the assignment to the yj variables in memory such that fy(βj) = S0. The Delayer
will remember the assignment βj for xj , and note that J0(D) now contains j.
Finally if j ∈ J0(D) then the Delayer is already maintaining an assignment βj for yj ,
so she answers according to βj .

Whenever the Prover erases a variable from xi from his memory, if i ∈ I0 and now there
are less than logm variables from xi in memory, the Delayer forgets αi. (note that i is no
longer in I0) Similarly, whenever the Prover erases a variable from yj from his memory,
if j ∈ J0 and now there are less than logn variables from yj in memory, the Delayer
removes βj from J0. (note that j is no longer in J0)

Assume for contradiction the game ends with the Prover winning. Consider when the
game ends, and say the Prover claims the axiom xαii ∧ y

βj
j was falsified, and thus that

M~α[i, j] = N~β [i, j] = 1. First, consider the case when either i /∈ I0 or j /∈ J0. In either case
there are is at least one variable in the axiom that is not in memory, which means that it has
not been falsified, which is a contradiction. So assume that i ∈ I0 and j ∈ J0, and consider
the last time that i was added to I0 and the last time that j was added to J0. Assume that
i was added after j. Since j was in J0 at the time we defined αi, Mαi [i, j] = 0 by our choice
of αi, which is a contradiction. Finally assume that j was added after i. Then since i was in
I0 at the time we defined βj , fy(βj) does not contain i, and so Nβj [i, j] = 0, which is also
a contradiction. J

Before proceeding on to the proof of Lemma 11, we need to change Lemma 12 slightly,
in order to be able to apply a restriction argument to turn width lower bounds into size
lower bounds for τS . We use the notation f |ρ to denote the restriction of the function f
over x1 . . . xs by ρ ∈ {0, 1, ∗}s, which is the function f over the variables xi for all i ∈ ρ−1(∗)
obtained by setting all other variables xj to ρ(j). Likewise we use the notation τ |ρ to denote
the restriction of the tautology τ by ρ.

I Definition 13. Let ρxi ∈ {0, 1, ∗}xi and let ρyj ∈ {0, 1, ∗}yj . Furthermore, let R be the set
of all ~ρ = {ρx1 . . . ρxn , ρy1 . . . ρym}, such that for all i ∈ [n] and j ∈ [m], |ρ−1

xi (∗)| = 5 logm
and |ρ−1

yj (∗)| = 5 logn. Let f ix be the function fx on the variables ρ−1
xi (∗) after restricting all

other inputs to ρxi , and likewise for f jy .
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I Lemma 14 (Wide Clause Lemma under restrictions). For sufficiently large n and ρ ∈ R, if
γ(S) > k2 then for any Res refutation π refuting τS |~ρ there exists a clause D ∈ π such that
|I0(D)| ≥ k2 or |J0(D)| ≥ k.

We omit the proof of Lemma 14, as it is essentially identical to Lemma 12. The only difference
is that in each row i the Delayer chooses αi based on f ix instead of fx, and likewise for the
columns. Note that fx was 2 logm surjective before the restriction, and since only logm
variables are fixed in every row f ix is still logm surjective (and similarly for f jy ).

Proof of Lemma 11. Let π be a Res refutation of τS and assume for contradiction that
|π| < nk/16. First, consider a clause D ∈ π such that |I0(D)| ≥ k2. For each i ∈ I0(D),
the chance that a randomly chosen ~ρ ∈ R doesn’t set one of the xi literals in D to 1 is
less than (1− ( 1

6 ·
1
2 ))logm. Thus the probability that no i ∈ I0(D) sets D to 1 is at most

( 11
12 )k2 logm = ( 11

12 )k logn < 1
nk/8 . By a union bound the probability that some clause D in

π satisfying |I0(D)| ≥ k2 is not set to 1 is less than nk/16

nk/8 = 1
nk/16 , using the fact that

|π| < nk/16.
Similarly the probability that some clause D ∈ π satisfying |J0(D)| ≥ k is not set to 1 is

at most 1
nk/16 . Thus with probability at least 1− 2

nk/16 , all clauses D satisfying |I0(D)| ≥ k2

or |J0(D)| ≥ k are set to 1 by a random restriction, and thus there exists a restriction
~ρ = {ρx1 . . . ρxn , ρy1 . . . ρym} setting all such clauses to 1. However, this contradicts Lemma
14, as τS |~ρ must still have at least one such clause. Thus SQ(τS) ≥ nclk for cl = 1

16 . J

6 Conclusions

In terms of optimality of our results, the constructions in [14, 13] are not known to be optimal,
and any hardness results against approximating the gap hitting set problem in time no(k)

for a larger value of k immediately gives a lower bound of no(k) against automatizability.
While their results are “optimal” in terms of fixed-parameter tractability guarantees, there is
nothing limiting a different reduction from getting the same (or even a weaker) result that
works for larger values of the fixed parameter.10

On the flip side, all of our hardness results also work for TreeRes and Nullsatz, and
therefore this reduction is limited to quasipolynomial hardness. This is in line with the
details of the reduction; by the crucial fact that k2 ≤ logm

4 = logn
4k , this technique can’t be

strengthened past the k = o(log1/3 n) threshold.11 Thus, the upper limit of improving the
reductions of [14, 13] coincides almost exactly with the upper limit of our argument, and by
extension any argument using the machinery of [2].

A central motivation of this work was to make the techniques clear and simple in hopes
that they can be made to work for stronger systems such as SA and SoS, where no lower
bounds are known. A degree lower bound matching our results for Res and PC would shed
light on the limitations of our current approximation algorithms. Similarly it’s possible

10Classically the hitting set problem has no o(logn) approximations; the obstacle to using this classical
hardness is that it only rules out algorithms that get o(logn) approximation for all hitting set sizes,
whereas [14] rules out algorithms for any fixed hitting set size. Nevertheless it’s believed that Ω(logn)
hardness holds even for fixed hitting set sizes, and getting a reduction that achieves this result would
strengthen our argument.

11 If we allow the formula to be satisfiable in the case where γ(S) > k2 we only need k ≤ logm
4 since

we only ever allow the proof to query k columns. This can also be made to work in the base setting
where the formula must always be unsatisfiable by standard tricks. However this still yields a barrier of
k = o(log1/2 n).
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that this proof can be made to work for the case of TreeCP or CP, where instead of arguing
lower bounds directly we can hope to leverage the power of lifting theorems [22, 21]; in
particular a constant-sized lifting gadget would immediately give results for TreeCP matching
our other results.
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