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—— Abstract

Dynamic time warping distance (DTW) is a widely used distance measure between time series, with
applications in areas such as speech recognition and bioinformatics. The best known algorithms for
computing DTW run in near quadratic time, and conditional lower bounds prohibit the existence of
significantly faster algorithms.

The lower bounds do not prevent a faster algorithm for the important special case in which
the DTW is small, however. For an arbitrary metric space ¥ with distances normalized so that
the smallest non-zero distance is one, we present an algorithm which computes dtw(z,y) for two
strings = and y over ¥ in time O(n - dtw(z,y)). When dtw(z, y) is small, this represents a significant
speedup over the standard quadratic-time algorithm.

Using our low-distance regime algorithm as a building block, we also present an approximation
algorithm which computes dtw(z, y) within a factor of O(n) in time O(n?~¢) for 0 < € < 1. The
algorithm allows for the strings x and y to be taken over an arbitrary well-separated tree metric
with logarithmic depth and at most exponential aspect ratio. Notably, any polynomial-size metric
space can be efficiently embedded into such a tree metric with logarithmic expected distortion.
Extending our techniques further, we also obtain the first approximation algorithm for edit distance
to work with characters taken from an arbitrary metric space, providing an n°-approximation in
time O(n?~°), with high probability.

Finally, we turn our attention to the relationship between edit distance and dynamic time
warping distance. We prove a reduction from computing edit distance over an arbitrary metric
space to computing DTW over the same metric space, except with an added null character (whose
distance to a letter I is defined to be the edit-distance insertion cost of [). Applying our reduction to
a conditional lower bound of Bringmann and Kiinnemann pertaining to edit distance over {0,1}, we
obtain a conditional lower bound for computing DTW over a three letter alphabet (with distances
of zero and one). This improves on a previous result of Abboud, Backurs, and Williams, who gave a
conditional lower bound for DTW over an alphabet of size five.

With a similar approach, we also prove a reduction from computing edit distance (over generalized
Hamming Space) to computing longest-common-subsequence length (LCS) over an alphabet with
an added null character. Surprisingly, this means that one can recover conditional lower bounds for
LCS directly from those for edit distance, which was not previously thought to be the case.
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Dynamic Time Warping in Strongly Subquadratic Time
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1 Introduction

Dynamic Time Warping distance (DTW) is a widely used distance measure between time
series. DTW is particularly flexible in dealing with temporal sequences that vary in speed.
To measure the distance between two sequences, portions of each sequence are allowed to
be warped (meaning that a character may be replaced with multiple consecutive copies of
itself), and then the warped sequences are compared by summing the distances between
corresponding pairs of characters. DTW’s many applications include phone authentication
[19], signature verification [35], speech recognition [34], bioinformatics [1], cardiac medicine
[15], and song identification [44].

The textbook dynamic-programming algorithm for DTW runs in time O(n?), which can
be prohibitively slow for large inputs. Moreover, conditional lower bounds [13, 3] prohibit the
existence of a strongly subquadratic-time algorithm®, unless the Strong Exponential Time
Hypothesis is false.

The difficulty of computing DTW directly has motivated the development of fast heuristics
[39, 28, 29, 27, 11, 38] which typically lack provable guarantees.

On the theoretical side, researchers have considered DTW in the contexts of locality
sensitive hashing [20] and nearest neighbor search [21], but very little additional progress has
been made on the general problem in which one is given two strings  and y with characters
from a metric space X, and one wishes to compute (or approximate) dtw(z,y).

To see the spectrum of results one might aim for, it is helpful to consider edit distance,
another string-similarity measure, defined to be the minimum number of insertions, deletions,
and substitutions needed to get between two strings. Like DTW, edit distance can be
computed in time O(n?) using dynamic programming [42, 37, 41], and conditional lower
bounds suggest that no algorithm can do significantly better [7, 13]. This has led to researchers
focusing on specialized versions of the problem, especially in two important directions:

Low-Distance Regime Algorithms: In the special case where the edit distance
between two strings is small (less than /n), the algorithm of Landau, Myers and Schmidt
[33] can be used to compute the exact distance in time O(n). In general, the algorithm
runs in time O(n + ed(z, y)?). Significant effort has also been made to design variants of
the algorithm which exhibit small constant overhead in practice [17].

Approximation Algorithms: Andoni, Krauthgamer and Onak introduced an al-
gorithm estimating edit distance within a factor of (logn)?(*/¢) in time O(n'**) [5],
culminating a long line of research on approximation algorithms that run in close to linear
time [6, 10, 9, 18]. Recently, Chakraborty et al. gave the first strongly subquadratic
algorithm to achieve a constant approximation, running time O(n'?/7) [16].

This paper presents the first theoretical results in these directions for DTW.
L An algorithm is said to run in strongly subquadratic time if it runs in time O(n?~¢) for some constant

€ > 0. Although strongly subquadratic time algorithms are prohibited by conditional lower bounds,
runtime improvements by subpolynomial factors are not. Such improvements have been achieved [25].
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A Low-Distance Regime Algorithm for DTW (Section 3)

We present the first algorithm for computing DTW in the low-distance regime. Our algorithm
computes dtw(x,y) in time O(n - dtw(z,y)) for strings  and y with characters taken from
an arbitrary metric space in which the minimum non-zero distance is one. The key step in
our algorithm is the design of a new dynamic-programming algorithm for DTW, which lends
itself especially well to the low-distance setting.

Our dynamic program relies on a recursive structure in which the two strings = and
y are treated asymmetrically within each subproblem: One of the strings is considered as
a sequence of letters, while the other string is considered as a sequence of runs (of equal
letters). The subproblems build on one-another in a way so that at appropriate points in the
recursion, we toggle the role that the two strings play. The asymmetric treatment of the
strings limits the number of subproblems that can have return-values less than any given
threshold K to O(nkK), allowing for a fast algorithm in the low-distance setting.

We remark that the requirement of having the smallest distance between distinct characters
be 1 is necessary for the low-distance regime algorithm to be feasible, since otherwise distances
can simply be scaled down to make every DTW instance be low-distance.

Approximating DTW Over Well Separated Tree Metrics (Section 4)

We design the first approximation algorithm for DTW to run in strongly subquadratic
time. Our algorithm computes dtw(z,y) within an n-approximation in time O(n?~¢). The
algorithm allows for the strings = and y have characters taken from an arbitrary well-
separated tree metric of logarithmic depth and at most exponential aspect ratio.? These
metric spaces are universal in the sense that any finite metric space M of polynomial size can
be efficiently embedded into a well-separated tree metric with expected distortion O(log |M])
and logarithmic depth [22, 8].

An important consequence of our approximation algorithm is for the special case of
DTW over the reals. Exploiting a folklore embedding from R to a well-separated tree metric
metric, we are able to obtain with high probability an O(n¢)-approximation for dtw(z,y) in
time 0(712’6), for any strings x and y of length at most n over a subset of the reals with a
polynomial aspect ratio.

In the special case of DTW over the reals, previous work has been done to find approx-
imation algorithms under certain geometric assumptions about the inputs x and y [4, 43].
To the best of our knowledge, our approximation algorithm is the first to not rely on any
such assumptions.

It is interesting to note that our results on low-distance regime and approximation
algorithms for DTW have bounds very similar to the earliest results for edit distance in the
same directions. Indeed, the first algorithm to compute edit distance in the low-distance
regime [23] exploited properties of a (now standard) dynamic-programming algorithm in
order to compute ed(z,y) in time O(n - ed(z,y)). This implicitly resulted in the first
approximation algorithm for edit distance, allowing one to compute an O(n)-approximation
in time O(n?~¢). Until the work of [6] and [5], which culminated in an algorithm with a
polylogarithmic approximation ratio, the best known approximation ratio for edit distance
remained polynomial for roughly twenty years [33, 9, 10].

2 The aspect ratio of a metric space is the ratio between the largest and smallest non-zero distances in
the space.
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The O(n?~¢)-time O(n¢)-approximation tradeoff is also the current state-of-the-art for
another related distance measurement known as Fréchet distance [14], and is achieved using
an algorithm that differs significantly from its edit-distance and DTW counterparts.

Reduction from Edit Distance to DTW (Section 5)

We show that the similarity between our results for DTW and the earliest such results for edit
distance is not coincidental. In particular, we prove a simple reduction from computing edit
distance over an arbitrary metric space to computing DTW over the same metric space (with
an added null character). Consequently, any algorithmic result for computing DTW in the
low-distance regime or approximating DTW immediately implies the analogous result for edit
distance. The opposite direction is true for lower bounds. For example, the conditional lower
bound of Bringmann and Kiinnemann [13], which applies to edit distance over the alphabet
{0, 1}, now immediately implies a conditional lower bound for DTW over an alphabet of
size three (in which characters are compared with distances zero and one). This resolves
a direction of work posed by Abboud, Backurs, and Williams [3], who gave a conditional
lower bound for DTW over an alphabet of size five, and noted that if one could prove
the same lower bound for an alphabet of size three, then the runtime complexity of DTW
over generalized Hamming space would be settled (modulo the Strong Exponential Time
Hypothesis). Indeed, it is known that over an alphabet of size two, DTW can be computed
in strongly subquadratic time [3].

Using a similar approach we also prove a simple reduction from computing edit distance
(over generalized Hamming space) to computing the longest-common-subsequence length
(LCS) between two strings. Thus conditional lower bounds for computing edit distance
directly imply conditional lower bounds for computing LCS (over an alphabet with one
additional character). This was not previously though to be the case. Indeed, the first
known conditional lower bounds for LCS came after those for edit distance [2, 7], and it was
noted by Abboud et al. [2] that “A simple observation is that the computation of the LCS is
equivalent to the computation of the Edit-Distance when only deletions and insertions are
allowed, but no substitutions. Thus, intuitively, LCS seems like an easier version of Edit
Distance, since a solution has fewer degrees of freedom, and the lower bound for Edit-Distance
does not immediately imply any hardness for LCS.” Our reduction violates this intuition
by showing that edit distance without substitutions can be used to efficiently simulate edit
distance without substitutions.

Approximating Edit Distance Over an Arbitrary Metric (Section 6)

The aforementioned results for approximating edit distance [23, 9, 10, 33, 6, 5, 16, 32] consider
only the case in which insertion, deletion, and substitution costs are all constant. To the
best of our knowledge, no approximation algorithm is known for the more general case in
which characters are taken from an arbitrary metric space and edit costs are assigned based
on metric distances between characters. This variant of edit distance is sometimes referred
to as general edit distance [36]. The study of general edit distance dates back to the first
papers on edit distance [42, 40], and allowing for nonuniform costs is important in many
applications, including in computational biology [26].

We present an approximation algorithm for edit distance over an an arbitrary metric.
Our algorithm runs in time O(n?~¢) and computes an O(n¢)-approximation for ed(z, y) with
high probability. Note that for the case where characters are taken from a well-separated
tree metric with logarithmic depth and at most exponential aspect ratio, the result already
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follows from our approximation algorithm for DTW, and our reduction from edit distance
to DTW. The approach taken in Section 6 is particularly interesting in that it places no
restrictions on the underlying metric space.

Both our approximation algorithm for DTW and our approximation algorithm for edit dis-
tance exhibit relatively weak runtime/approximation tradeoffs. To the best of our knowledge,
however, they are the first such algorithms to run in strongly subquadratic time.

2 Preliminaries

In this section, we present preliminary definitions and background on dynamic time warping
distance (DTW) and edit distance.

Dynamic Time Warping Distance

For a metric space X, the dynamic time warping distance (DTW) between two strings
x,y € X" is a natural measure of similarity between the strings.
Before fully defining DTW, we first introduce the notion of an expansion of a string.

» Definition 2.1. The runs of a string x € X" are the maximal subsequences of consecutive
letters with the same value. One can extend a run by replacing it with a longer run of the
same letter. An expansion of the string x is any string which can be obtained from x by
extending runs.

As an example, consider x = aaaccbbd. Then the runs of = are aaa, cc, bb, and d. The
string T = aaacccccbbdd is an expansion of x and extends the runs containing ¢ and d.
Using the terminology of expansions, we now define DTW.

» Definition 2.2. Consider strings x andy of length n over a metric (X, d). A correspondence
(T,7) between x and y is a pair of equal-length expansions T of x and G of y. The cost of a
correspondence is given by Y. d(T;, ;).

The dynamic time warping distance dtw(x,y) is defined to be the minimum cost of a
correspondence between x and y.

When referring to a run r in one of z or y, and when talking about a correspondence
(Z,7), we will often use r to implicitly refer to the extended run corresponding with = in the
correspondence. Whether we are referring to the original run or the extended version of the
run should be clear from context.

Note that any minimum-length optimal correspondence between strings =,y € X" will
be of length at most 2n. This is because if a run 71 in x overlaps a run ro in y in the
correspondence, then we may assume without loss of generality that at most one of the two
runs is extended by the correspondence. (Otherwise, we could un-extend each run by one
and arrive at a shorter correspondence with no added cost.)

Edit Distance Over an Arbitrary Metric

The simple edit distance between two strings x and y is the minimum number of insertions,
deletions, and substitutions needed to transform z into y. In this paper we will mostly
focus on a more general variant of edit distance, in which characters are taken from an
arbitrary metric:
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» Definition 2.3. Let x and y be strings over an alphabet ¥, where (X U {0}, d) is a metric
space. We say that the magnitude |I| of a letter | € ¥ is d(0,1). We define the edit distance
between x and y to be the minimum cost of a sequence of edits from x to y, where the insertion
or deletion of a letter | costs d(,1), and the substitution of a letter 1 to a letter ' costs d(1,1’).

3 Computing DTW in the Low-Distance Regime

In this section, we present a low-distance regime algorithm for DTW (with characters from
an arbitrary metric in which all non-zero distances are at least one). Given that dtw(z,y)
is bounded above by a parameter K, our algorithm can compute dtw(z,y) in time O(nkK).
Moreover, if dtw(z,y) > K, then the algorithm will conclude as much. Consequently, by
doubling our guess for K repeatedly, one can compute dtw(z,y) in time O(n - dtw(z,y)).

Consider x and y of length n with characters taken from a metric space ¥ in which all
non-zero distances are at least one. In the textbook dynamic program for DTW [30], each
pair of indices i, j € [n] represents a subproblem T'(i, j) whose value is dtw(z[1 : ], y[1 : 7]).
Since T'(i,j) can be determined using T'(¢ — 1,5),T(¢,5 — 1), T(i — 1,4 — 1), and knowledge
of z; and yj, this leads to an O(n?) algorithm for DTW. A common heuristic in practice
is to construct only a small band around the main diagonal of the dynamic programming
grid; by computing only entries T'(i,j) with |i — j| < 2K, and treating other subproblems
as having infinite return values, one can obtain a correct computation for DTW as long as
there is an optimal correspondence which matches only letters which are within K of each
other in position. This heuristic is known as the Sakoe-Chiba Band [39] and is employed, for
example, in the commonly used library of Giorgino [24].

The Sakoe-Chiba Band heuristic can perform badly even when dtw(z,y) is very small,
however. Consider = abbb---b and y = aaa - - - ab. Although dtw(z,y) = 0, if we restrict
ourselves to matching letters within K positions of each other for some small K, then the
resulting correspondence will cost Q(n).

In order to obtain an algorithm which performs well in the low-distance regime, we
introduce a new dynamic program for DTW. The new dynamic program treats x and y
asymmetrically within each subproblem. Loosely speaking, for indices ¢ and j, there are
two subproblems SP(x,y,1,j) and SP(y, z,%,7). The first of these subproblems evaluates to
the DTW between the first ¢ runs of  and the first j letters of y, with the added condition
that the final run of y[1 : j] is not extended. The second of the subproblems is analogously
defined as the DTW between the first ¢ runs of y and the first j letters of x with the added
condition that the final run of z[1 : j] is not extended.

The recursion connecting the new subproblems is somewhat more intricate than for the
textbook dynamic program. By matching the ¢-th run with the j-th letter, however, we limit
the number of subproblems which can evaluate to less than K. In particular, if the j-th
letter of y is in y’s t-th run, then any correspondence which matches the i-th run of x to
the j-th letter of y must cost at least Q(|¢ — ¢|). (This is formally shown in the extended
paper [31].) Thus for a given j, there are only O(K) options for i such that SP(z,y, 1, j)
can possibly be at most K, and similarly for SP(y, z,4,j). Since we are interested in the
case of dtw(z,y) < K, we can restrict ourselves to the O(nK) subproblems which have
the potential to evaluate to at most O(K). Notice that, in fact, our algorithm will work
even when dtw(z,y) > K as long as there is an optimal correspondence between x and y
which only matches letters from z from the r,-th run with letters from y from the r,-th run
if |ry —ry| < O(K).
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Formally we define our recursive problems in a manner slightly different from that
described above. Let x and y be strings of length at most n and let K be a parameter which
we assume is greater than dtw(xz,y). Our subproblems will be the form SP(x,y, 75,7y, 0y),
which is defined as follows. Let 2’ consist of the first r, runs of x and y’ consist of the first
ry runs of y until the oy-th letter in the ry-th run. Then SP(z,y, 74,1y, 0,) is the value of
the optimal correspondence between z’ and y’ such that the 7,-th run in 3’ is not extended.?
If no such correspondence exists (which can only happen if 7, <1 or r, = 0), then the value
of the subproblem is co. Note that we allow 7,7, 0, to be zero, and if r, is zero, then o,
must be zero as well. We also consider the symmetrically defined subproblems of the form
SP(y,x,ry,Ts, 04). We will focus on the subproblems of the first types, implicitly treating
subproblems of the second type symmetrically.

» Example 3.1. Suppose characters are taken from generalized Hamming space, with distances
of 0 and 1. The subproblem SP(efabbcceed, f faabeeeddd, 5,4, 2) takes the value of the optimal
correspondence between e fabbcecce and f faabee such that the final cc run in the latter is not
extended. The subproblem’s value turns out to be 3, due to the correspondence:

f a a b b ¢ ¢ ¢ ¢
f f a a b b b b ¢ c

The next lemma presents the key recursive relationship between subproblems. The lemma
focuses on the case where r,,7,,0, > 1.

» Lemma 3.2. Suppose that v, and r, are both between 1 and the number of runs in x and
y respectively; and that o, is between 1 and the length of the ry-th run in y. Let I be the
length of the ry-th run in x and l, be the length of the r,-th run in y. Let d be the distance
between the letter populating the r,-th run in x and the letter populating the ry-th run in y.
Then SP(xz,y,ry, Ty, 04) is given by

min (SP(z,y, 75,7y, 0y — 1) + d,SP(z,y, 7 — L,ry,0y — o) +d- 1) ifly <o,
min (SP(z,y,rz, 7y, 0y — 1) + d, SP(y, , 7y — 1, 75,0z —0y) +d-0y)  if Iz > 0y.

Proof. Consider a minimum-cost correspondence A between the first 7, runs of z and the
portion of y up until the oy-th letter in the ry-th run, such that the r,-th run in y is not
extended.

If the r,-th run in A is extended, then the cost of A will be SP(z,y, 7y, 7y,0y — 1) +d. If
the r,-th run in A is not extended, then we consider two cases.

In the first case, I; < o,. In this case, the entirety of the r,-th run of z is engulfed by
the ry-th run of y in the correspondence A. Since the r,-th run is not extended, the cost of
the overlap is I, - d. Thus the cost of A must be SP(z,y, 7, — 1,7y,0y —lz) +d - 5.

Moreover, since A is minimum-cost, as long as I, < oy, the cost of A is at most the above
expression, regardless of whether the r,-th run in x is extended in A.

In the second case, I, > oy. In this case, the first o, letters in the 7,-th run of y all
overlap the r,-th run of = in A. Since the ry-th run is not extended, the cost of the overlap
is d - 0,. Thus, since the r,-th run in x is also not extended in A, the cost of A must be
SP(y,z,ry —1,ry,l; —o0y) +d - 0,. Moreover, since A is minimal, as long as I, > oy, the cost
of A is at most the above expression, regardless of whether the r,-th run in z is extended. <«

3If oy = 0, then the ry-th run in ¢ is empty and thus trivially cannot be extended.
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The above lemma handles cases where ., 1y, 0, > 0. In the case where r, > 0, ry, > 0, and
oy =0, SP(x,y,ry, 7y, 0y) is just the dynamic time warping distance between the first 7, runs
of x and the first r, —1 runs of y, given by min (SP(z, y, 75,y — 1,t1),SP(y, z, 1y — 1,74,12)),
where t; is the length of the (ry — 1)-th run in y and ¢, is the length of the r,-th run
in z. The remaining cases are edge-cases with SP(x,y,7s,7y,0,) € {0,00}. (See the
extended paper [31].)

One can show that any correspondence A in which a letter from the r,-th run of x is
matched with a letter from the r,-th run of y must contain must contain at least %
instances of unequal letters being matched. It follows that if dtw(z,y) < K, then we can
limit ourselves to subproblems in which |ry — ry| < O(K). For each of the n options of
(ry,0y), there are only O(K) options of r, that must be considered. This limits the total
number of subproblems to O(nK). The resulting dynamic program yields the following
theorem, the full proof of which appears in the extended paper [31].

» Theorem 3.3. Let x and y be strings of length n taken from a metric space ¥ with
minimum non-zero distance at least one, and let K be parameter such that dtw(z,y) < K.
Then there exists a dynamic program for computing dtw(x,y) in time O(nK). Moreover, if
dtw(z,y) > K, then the dynamic program will return a value greater than K.

By repeatedly doubling one’s guess for K until the computed value of dtw(z,y) evaluates
to less than K, one can therefore compute dtw(z,y) in time O(n - dtw(z,y)).

4 Approximating DTW Over Well-Separated Tree Metrics

In this section, we present an O(n2~¢)-time O(n¢)-approximation algorithm for DTW over a
well-separated tree metric with logarithmic depth. We begin by presenting a brief background
on well-separated tree metrics.

» Definition 4.1. Consider a tree T whose vertices form an alphabet ¥, and whose edges
have positive weights. T is said to be a well-separated tree metric if every root-to-leaf path
consists of edges ordered by nonincreasing weight. The distance between two nodes u,v € 3
is defined as the mazximum weight of any edge in the shortest path from u to v.

Well-separated tree metrics are universal in the sense that any metric ¥ can be efficiently
embedded (in time O(]X]?)) into a well-separated tree metric T' with expected distortion
O(log |X|) [22]. Moreover, the tree metric may be made to have logarithmic depth using
Theorem 8 of [8]. For strings z,y € X", let dtwr(x,y) denote the dynamic time warping
distance after embedding ¥ into 7. Then the tree-metric embedding guarantees that
dtw(z,y) < dtwp(z,y) and that E[dtwr(z,y)] < O(logn) - dtw(z,y). (The latter fact may
be slightly nonobvious and is further explained in the extended paper [31].)

It follows that any approximation algorithm for DTW over well-separated tree metrics
will immediately yield an approximation algorithm over an arbitrary polynomial-size metric
Y, with two caveats: the new algorithm will have its multiplicative error increased by
O(logn); and O(logn) instances of ¥ embedded into a well-separated tree metric must be
precomputed for use by the algorithm (requiring, in general, O(|%|? log n) preprocessing time).
In particular, given O(logn) tree embeddings of 3, T1,...,To(10g n), With high probability
min; (dtwr, (z,y)) will be within a logarithmic factor of dtw(z,y).

The remainder of the section will be devoted to designing an approximation algorithm
for DTW over a well-separated tree metric. We will prove the following theorem:
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» Theorem 4.2. Consider 0 < ¢ < 1. Suppose that ¥ is a well-separated tree metric of
polynomial size and at most logarithmic depth. Moreover, suppose that the aspect ratio of ¥ is
at most exponential inn (i.e., the ratio between the largest distance and the smallest non-zero
distance). Then in time O(n?>=) we can obtain an O(n®)-approzimation for dtw(z,y) for
any x,y € X".

An important consequence of the theorem occurs for DTW over the reals. When X is an
O(n)-point subset of the reals with a polynomial aspect ratio, there exists an O(n logn)-time
embedding with O(logn) expected distortion from ¥ to a well-separated tree metric of size
O(n) with logarithmic depth. (This is further discussed in the extended paper [31].). This
gives the following corollary:

» Corollary 4.3. Consider 0 < € < 1. Suppose that ¥ = [0,n°|NZ for some constant c. Then
in time O(n?¢)

for any x,y € ™.

we can obtain an O(n®)-approximation for dtw(x,y) with high probability

In proving Theorem 4.2, our approximation algorithm will take advantage of what we
refer to as the r-simplification of a string over a well-separated tree metric.

» Definition 4.4. Let T be a well-separated tree metric whose nodes form an alphabet 3.
For a string x € ¥, and for any r > 1, the r-simplification s,(x) is constructed by replacing
each letter | € x with its highest ancestor I in T that can be reached from 1 using only edges
of weight at most r/4.

Our approximation algorithm will apply the low-distance regime algorithm from the
previous section to s.(z) and s,.(y) for various r in order to extract information about
dtw(z,y). Notice that using our low-distance regime algorithm for DTW, we get the
following useful lemma for free:

» Lemma 4.5. Consider 0 < e < 1. Suppose that for all pairs ly,ls of distinct letters in 3,
d(l1,12) > . Then for x,y € X" there is an O(n>~¢) time algorithm which either computes
dtw(z,y) exactly, or concludes that dtw(x,y) > yn!~¢.

The next lemma states three important properties of r-simplifications. We remark that
the same lemma appears in our concurrent work on the communication complexity of DTW,
in which we use the lemma in designing an efficient one-way communication protocol [12].

» Lemma 4.6. Let T be a well-separated tree metric with distance function d and whose
nodes form the alphabet X. Consider strings x and y in X™.
Then the following three properties of s,(x) and s.(y) hold:
For every letter l; € s,.(x) and every letter Iy € s.(y), if Iy # la, then d(ly,13) > r/4.
For all o, if dtw(z,y) < nr/a then dtw(s,(z), s-(y)) < nr/a.
If dtw(z,y) > nr, then dtw(s,(z), s-(y)) > nr/2.

The first and second parts of Lemma 4.6 are straightforward from the definitions of s, (z)
and s, (y). The third part follows from the observation that a correspondence C' between
x and y can cost at most |C| - 7 more than the corresponding correspondence between
sr(z) and s,(y), where |C| denotes the length of the correspondence. Since there exists an
optimal correspondence between s,.(x) and s,.(y) of length no more than 2n, it follows that

dtw(z,y) < dtw(s,(x), s,(y)) + nr/2, which implies the third part of the lemma.

A full proof of Lemma 4.6 appears in the extended paper [31]. Next we prove Theorem 4.2.
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Proof of Theorem 4.2. Without loss of generality, the minimum non-zero distance in 3 is 1
and the largest distance is some value m, which is at most exponential in n.

We begin by defining the (r,n¢)-DTW gap problem for r > 1, in which for two strings
x and y a return value of 0 indicates that dtw(z,y) < nr and a return value of 1 indicates
that dtw(z,y) > n'~“r. By Lemma 4.6, in order to solve the (r,n¢)-DTW gap problem for
x and y, it suffices to determine whether dtw(s, (), s,(y)) < n'~¢r. Moreover, because the
minimum distance between distinct letters in s,.(x) and s,(y) is at least /4, this can be
done in time O(n?~€logn) using Lemma 4.5.%

In order to obtain an nf-approximation for dtw(z,y), we begin by using Lemma 4.5 to
either determine dtw(z,y) or to determine that dtw(x,y) > n!~¢. For the rest of the proof,
suppose we are in the latter case, meaning that we know dtw(z,y) > n!~¢.

We will now consider the (2¢,n¢/2)-DTW gap problem for i € {0,1,2,...,[logm]}.
(Recall that m is the largest distance in X.) If the (2°,n¢/2)-DTW gap problem returned 0,
then we would know that dtw(z, y) < n, and thus we could return n' ~¢ as an n¢-approximation
for dtw(z,y). Therefore, we need only consider the case where the (2°,7¢/2)-DTW gap
returns 1. Moreover we may assume without computing it that (2“0g ml pe /2)-DTW gap
returns 0 since trivially dtw(z,y) cannot exceed nm. Because (2¢,n¢/2)-DTW gap returns 1
for i = 0 and returns 0 for i = [logm], there must be some i such that (2°=%,n¢/2)-DTW
gap returns 1 and (2%,n¢/2)-DTW gap returns 0. Moreover, we can find such an i by
performing a binary search on i in the range R = {0, ..., [logm]}. We begin by computing
(2¢,n/2)-DTW gap for i in the middle of the range R. If the result is a one, then we can
recurse on the second half of the range; otherwise we recurse on the first half of the range.
Continuing like this, we can find in time O(n?~¢loglogm) = O(n?~¢) some value i for which
(2°71,n°/2)-DTW gap returns 1 and (2°,n¢/2)-DTW gap returns 0. Given such an i, we
know that dtw(z,y) > 2n_/12” = 2in'=¢ and that dtw(x,y) < 2°n. Thus we can return 2n!~¢
as an n¢ approximation of dtw(zx,y). <

5 Reducing Edit Distance to DTW and LCS

In this section we present a simple reduction from edit distance over an arbitrary metric to
DTW over the same metric.At the end of the section, we prove as a corollary a conditional
lower bound for DTW over three-letter Hamming space, prohibiting any algorithm from
running in strongly subquadratic time.

Surprisingly, the exact same reduction, although with a different analysis, can be used to
reduce the computation of edit distance (over generalized Hamming space) to the computa-
tion of longest-common-subsequence length (LCS). Since computing LCS is equivalent to
computing edit distance without substitutions, this reduction can be interpreted as proving
that edit distance without substitutions can be used to efficiently simulate edit distance with
substitutions, also known as simple edit distance.

Recall that for a metric X U {0}, we define the edit distance between two strings z,y € X"
such that the cost of a substitution from a letter 1 to I3 is d(l1,l2), and the cost of a deletion
or insertion of a letter [ is d(l, (). Additionally, define the simple edit distance edg(z,y) to
be the edit distance using only insertions and deletions.

For a string € X", define the padded string p(x) of length 2n + 1 to be the string
Dx10x203 - - - 2,0. In particular, for i < 2n+ 1, p(x); = @ when i is odd, and p(z); = x;/,
when i is even. The following theorem proves that dtw(p(z),p(y)) = ed(z, y).

4 The logarithmic factor comes from the fact that evaluating distances between points may take logarithmic
time in our well-separated tree metric.
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» Theorem 5.1. Let XU{D} be a metric. Then for any x,y € £, dtw(p(z), p(y)) = ed(x, y).

Proof sketch. A key observation is that when constructing an optimal correspondence
between p(z) and p(y), one may w.l.o.g. extend only runs consisting of () characters. In
particular, suppose that one extends a non-) character a in p(z) to match a non-§) character
b in p(y). Then the extended run of a’s must not only overlap b, but also the (-character
preceding b. The total cost of extending a to overlap b is therefore d(a,?) 4 d(a,b), which by
the triangle inequality is at least d((),b). Thus instead of extending the run containing a, one
could have instead extend a run of ()-characters to overlap b at the same cost.

The fact that optimal correspondences arise by simply extending runs of (-characters
can then be used to prove Theorem 5.1; in particular, given such a correspondence, one
can obtain a sequence of edits from x to y by performing a substitution every time the
correspondence matches two non-{) characters and a insertion or deletion every time the
correspondence matches a non-{) character and a (-character. |

Theorem 5.2 proves an analogous reduction from edit distance to LCS.

» Theorem 5.2. Let ¥ be a generalized Hamming metric. Then for any x,y € X",

Proof sketch. Each edit in  can be simulated in s(z) using exactly two insertions/deletions.

In particular, the substitution of a character in x corresponds with the deletion and insertion
of the same character in s(z); and the insertion/deletion of a character in  corresponds with
the insertion/deletion of that character and an additional (-character in s(x).

This establishes that eds(p(x),p(y)) < 2ed(x,y). The other direction of inequality is
somewhat more subtle, and is differed to the extended paper [31]. |

Whereas Theorem 5.2 embeds edit distance into simple edit distance with no distortion,
Theorem 5.3 shows that no nontrivial embedding in the other direction exists.

» Theorem 5.3. Consider edit distance over generalized Hamming space. Any embedding
from edit distance to simple edit distance must have distortion at least 2.

Combining Theorem 5.1 with known conditional lower bounds for computing edit distance
[13] yields a new conditional lower bound for computing DTW over a three-letter alphabet
(in which character distances are zero or one). This concludes a direction of work initiated
by Abboud, Backurs, and Williams [3], who proved the same result over five-letter alphabet.

» Corollary 5.4. Let ¥ = {a,b, c} with distance function d(a,b) = d(a,c) = d(b,c) = 1. If
we assume the Strong FExponential Time Hypothesis, then for all € > 1, no algorithm can
compute dtw(z,y) for z,y € X" in time less than O(n?~¢).

The full proofs of Theorems 5.1, 5.2, and 5.3, as well as Corollary 5.4 are differed to the
extended paper [31].

6 Approximating Edit Distance Over an Arbitrary Metric

In this section we present an approximation algorithm for edit distance over an arbitrary
metric space. Our algorithm achieves approximation ratio at most n¢ (with high probability)
and runtime O(n?~¢). Note that when the metric is a well-separated tree metric, such an
algorithm can be obtained by combining the approximation algorithm for DTW from Section
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4 with the reduction in Section 5. Indeed the algorithm in this section is structurally quite
similar to the one in Section 4, but uses a probability argument exploiting properties of edit
distance in order to hold over an arbitrary metric.

» Theorem 6.1. Let (XU {0}, d) be an arbitrary metric space such that |l| > 1 for alll € X.
For all 0 < € < 1, and for strings x,y € X", there is an algorithm which computes an
O(n®)-approzimation for ed(x,y) (with high probability) in time O(n~¢).

Using the standard dynamic-programming algorithm for computing ed(z,y) [42, 37, 41],
one can easily obtain the following observation, analogous to Lemma 4.5 in Section 4:

» Observation 6.2. Consider x,y € X", and let R be the smallest magnitude of the letters
in x and y. There is an O(n?~¢)-time algorithm which returns a value at least as large as
ed(z,y); and which returns exactly ed(x,y) when ed(z,y) < R-n'¢.

In order to prove Theorem 6.1, we present a new definition of the r-simplification of a
string. The difference between this definition and the one in the preceding section allows the
new definition to be useful when studying edit distance rather than dynamic time warping.

» Definition 6.3. For a string x € X" and for r > 1, we construct the r-simplification s,.(x)
by removing any letter | satisfying || < r.

In the proof of Theorem 6.1 we use randomization in the selection of r in order to ensure
that s,.(z) satisfies desirable properties in expectation. The key proposition follows:

» Proposition 6.4. Consider strings x and y in X™. Consider 0 < e <1 and R > 1. Select
r to be a random real between R and 2R. Then the following three properties hold:

Every letter | in s, (x) or s,(y) satisfies |l| > R.

If ed(z,y) < 2 then Eled(s, (), s, (y))] < 2.

If ed(x,y) > 5nR, then ed(s.(x), s, (y)) > nR.

The full proofs of Proposition 6.4 and of Theorem 6.1 appear in the extended paper [31].
Structurally, both proofs are similar to the analogous results in Section 4. The key difference
appears in the proof of the second part of Proposition 6.4, which uses the random selection
of r in order to probabilistically upper-bound ed(s,(x), s,-(y). This is presented below.

» Lemma 6.5. Consider strings x and y in 3". Consider R > 1 and select r to be a random
real between R and 2R. Then Eled(s,(z), s-(y))] < bed(x,y).

Proof. Consider an optimal sequence S of edits from x to y. We will consider the cost of
simulating this sequence of edits to transform s,.(x) to s,(y). Insertions and deletions are
easily simulated by either performing the same operation to s,.(x) or performing no operation
at all (if the operation involves a letter of magnitude less than or equal to r). Substitutions
are slightly more complicated as they may originally be between letters I; € x and ls € y of
different magnitudes. By symmetry, we may assume without loss of generality that |I1| < [I2].
We will show that the expected cost of simulating the substitution of {; to Iy in s,.(x) is
at most 5d(l1,l2). Because insertions and deletions can be simulated with no overhead, it
follows that Eled(s,(z), sr(v))] < 5ed(x, y).

If |l;| < r < |lz] then I; does not appear in s,(x) but Iy remains in s,(y). Thus what was
previously a substitution of I3 with lo becomes an insertion of I at cost |l3|. On the other
hand, if we do not have |l;| < r < |l2|, then either both {1 and ls are removed from s, (z) and
sr(y) respectively, in which the substitution operation no longer needs to be performed, or
both I and [ are still present, in which case the substitution operation can still be performed
at cost d(ly,l2). Therefore, the expected cost of simulating the substitution of [ to I3 in
sr(x) is at most

Pr{ll| <r <2l - [l2| + d(l1, I2). (1)
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Because r is selected at random from the range [R, 2R)], the probability that |I;| < r < |I5]
is at most w. By the triangle inequality, this is at most ‘1([171;@. If we suppose that
|la] < 4R, then it follows by (1) that the expected cost of simulating the substitution of I; to
lo in s,(x) is at most d(lliR’l’“) AR+ d(l1,12) < 5d(ly,12).

If, on the other hand, |lz] > 4R, then in order for |l;| < r to be true, we must have
[l1] < 2R, meaning by the triangle inequality that d(l1,l2) > |l2|/2. Thus in this case
[la] < 2d(ly,13), meaning by (1) that the expected cost of simulating the substitution of I; to
l2 in s,(x) is at most three times as expensive as the original substitution. <
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