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Abstract
Minimum Circuit Size Problem (MCSP) asks to decide if a given truth table of an n-variate boolean
function has circuit complexity less than a given parameter s. We prove that MCSP is hard for
constant-depth circuits with mod p gates, for any prime p ≥ 2 (the circuit class AC0[p]). Namely,
we show that MCSP requires d-depth AC0[p] circuits of size at least exp(N0.49/d), where N = 2n is
the size of an input truth table of an n-variate boolean function. Our circuit lower bound proof
shows that MCSP can solve the coin problem: distinguish uniformly random N -bit strings from
those generated using independent samples from a biased random coin which is 1 with probability
1/2 + N−0.49, and 0 otherwise. Solving the coin problem with such parameters is known to require
exponentially large AC0[p] circuits. Moreover, this also implies that MAJORITY is computable by a
non-uniform AC0 circuit of polynomial size that also has MCSP-oracle gates. The latter has a few
other consequences for the complexity of MCSP, e.g., we get that any boolean function in NC1 (i.e.,
computable by a polynomial-size formula) can also be computed by a non-uniform polynomial-size
AC0 circuit with MCSP-oracle gates.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases Minimum Circuit Size Problem (MCSP), circuit lower bounds, AC0[p], coin
problem, hybrid argument, MKTP, biased random boolean functions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.66

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2019/018/.

Funding Alexander Golovnev: Supported by a Rabin Postdoctoral Fellowship.
Russell Impagliazzo: Work supported by a Simons Investigator Award from the Simons Foundation.
Valentine Kabanets: Supported in part by an NSERC Discovery grant.

EA
T

C
S

© Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets,
Antonina Kolokolova, and Avishay Tal;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 66; pp. 66:1–66:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alexgolovnev@gmail.com
mailto:rahul.ilango@rutgers.edu
mailto:russell@cs.ucsd.edu
mailto:kabanets@cs.sfu.ca
mailto:kol@mun.ca
mailto:avishay.tal@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://eccc.weizmann.ac.il/report/2019/018/
https://eccc.weizmann.ac.il/report/2019/018/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


66:2 AC0[p] Lower Bounds Against MCSP via the Coin Problem

Antonina Kolokolova: Supported in part by an NSERC Discovery grant.
Avishay Tal: Supported by a Motwani Postdoctoral Fellowship and by NSF grant CCF-1763299.
Part of this work was done while the last four authors were visiting Simons Institute for the Theory
of Computing.

Acknowledgements This work was partly carried out while many of the authors were visiting the
Simons Institute for the Theory of Computing in association with the DIMACS/Simons Collaboration
on Lower Bounds in Computational Complexity, which is conducted with support from the National
Science Foundation. We also thank Chris Umans and Ronen Shaltiel for helpful discussions in
the early stages of this project (during the Dagstuhl 2018 workshop on “Algebraic Methods in
Complexity”). We thank Eric Allender and Shuichi Hirahara for their comments, and special thanks
to Eric for pointing us to the paper of Dančik [9] and the discussion of various circuit and formula
complexity measures for constant-depth circuit models. We are grateful to our anonymous reviewers
for helpful comments on this paper.

1 Introduction

Minimum Circuit Size Problem (MCSP) asks to decide if a given boolean function f : {0, 1}n →
{0, 1} (presented by its truth table of length N = 2n) can be computed by a boolean circuit
of size at most s, for a given parameter 0 ≤ s ≤ 2n. There is no nontrivial algorithm currently
known for MCSP other than the “brute force” enumeration of all circuits of size up to s and
checking if any one of them computes f . On the other hand, while MCSP is obviously in NP,
it is a major open question to decide if MCSP is NP-complete (and there is a growing list of
research papers providing arguments for and against various NP-completeness reductions to
MCSP [17, 2, 4, 3, 6, 13, 12, 24]).

Another natural question is to prove circuit lower bounds (for restricted circuit models)
for MCSP. Here some results are known. Allender et al. [2] showed that MCSP requires
super-polynomial-size AC0 circuits (constant-depth circuits with AND, OR, and NOT gates).
Hirahara and Santhanam [11] proved that MCSP requires almost quadratic-size De Mor-
gan formulas.

It was an open question [5, 25] to prove that MCSP requires super-polynomial AC0[p]
circuits (constant-depth circuits with AND, OR, NOT and mod p counting gates), for a
prime p > 0. We resolve this question in the present paper. Our main result is that MCSP
requires d-depth AC0[p] circuits of size at least exp(N0.49/d), where N = 2n is the size of an
input truth table of an n-variate boolean function.

Previous proof methods of circuit lower bounds for MCSP

The lack of NP-completeness reductions to MCSP and the scarcity of circuit lower bounds
for MCSP underscore the general phenomenon that there are very few known reductions to
MCSP. The main (if not the only one) use of MCSP inside known reductions is to “break”
pseudorandom function generators, an idea going back to the celebrated paper of Razborov
and Rudich [28] on “natural proofs”. The point is that known candidate constructions of
pseudorandom function generators produce pseudorandom functions that do have “small”
circuit complexity, whereas truly random functions are known to require “high” circuit
complexity. Thus, an assumed efficient MCSP algorithm can distinguish between the truth
tables of such pseudorandom functions and those of truly random functions, thereby “breaking”
the pseudorandom function generator.
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Both previously known circuit lower bounds for MCSP by Allender et al. [2] and by
Hirahara and Santhanam [11] used MCSP’s ability to break pseudorandom function generators
together with the existence of known pseudorandom (function) generators that are provably
secure against AC0 and quadratic-size De Morgan formulas, respectively. The same approach
cannot be applied to the case of AC0[p] circuits as we currently do not have any strong
enough pseudorandom generators secure against AC0[p]!

Our approach

Our approach instead is to reduce the Majority function to MCSP, and use the known AC0[p]
lower bounds against Majority [27, 31]. In fact, we give a reduction to MCSP from the coin
problem where one is asked to distinguish between an N -bit uniformly random string, and an
N -bit string sampled so that each bit is independently set to 1 with probability 1/2− ε (and
to 0 otherwise), for some parameter ε > 0. We then use the result of Shaltiel and Viola [29]
showing that any algorithm solving such a coin problem yields an efficient algorithm for
computing the Majority function on inputs of length 1/ε. To conclude super-polynomial-
size AC0[p] circuit lower bounds for MCSP from the known lower bounds for the Majority
function, we need to be able to solve the coin problem for N -bit strings with the parameter
ε < 1/poly(logN).

Here is some intuition why MCSP could be useful for solving the coin problem. For
N = 2n, an N -bit random string has binary entropy N . On the other hand, N -bit strings
sampled using a biased coin with probability p = 1/2− ε of being 1 would likely have close
to pN < N/2 ones only, and so come from a smaller set of about

(
N
pN

)
≈ 2H(p)·N strings of

size N , where H is the binary entropy function. Information-theoretically, we can describe
each string with at most pN ones using about H(p) · N bits. For p � 1/2, we have that
H(p) ·N � N , and so most biased functions have a description of bit complexity much less
than N . If somehow we could extend this information-theoretic argument to show that most
biased functions will have circuit complexity noticeably smaller than that of random functions,
we’d be done because MCSP would be able to distinguish between random functions (of
higher circuit complexity) and random biased functions (of lower circuit complexity).

Lupanov in 1965 [21] proved that, indeed, biased random functions have circuit complexity
smaller than that of random boolean functions. However, Lupanov’s result applies only to
the case of bias probability p = 1/2− ε for large (close to constant) ε only, and doesn’t give
anything useful for our case of ε < 1/poly(logN). To circumvent the lack of tighter circuit
upper bounds for slightly biased random functions, we employ two new ideas.

First, we show that the circuit complexity of q-random functions is very tightly concentrated
around its expectation, for every probability q. This can be proved using a simple martingale
argument (McDiarmid’s Inequality [22]). The point is that the circuit complexity of a
given n-variate boolean function f changes by at most O(n) when we change the value of
f on exactly one n-bit input (which can be simply hard-wired into the new circuit for the
modified function).

Secondly, we use a hybrid argument. By Lupanov’s result [21], one can show that for
p = 0.01, almost all p-biased random functions will have circuit complexity noticeably smaller
that 2n/n, and in particular, the expected circuit complexity of a p-biased random function
is at most 0.1 · 2n/n. On the other hand, for p′ = 1/2, well-known counting arguments show
that almost all such random functions have circuit complexity very close to 2n/n, and in
particular, the expected circuit complexity of a random function is at least 0.9 ·2n/n. Imagine
we have t equally spaced probabilities between p = 0.01 and p′ = 1/2, for some number t to
be chosen. Then by the hybrid argument, there will exist two successive probabilities q and
q′ ≈ q + 1/t, where the expected circuit sizes for q-random and q′-random functions differ by
at least Ω(2n/n)/t.

ICALP 2019
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By the “concentration around the expected circuit size” result mentioned above, we
conclude that MCSP is able to distinguish between most q-random boolean functions and
most q′ ≈ q + 1/t-random ones. By re-scaling, we conclude that MCSP is able to distinguish
between 1/2− 1/t-random function and 1/2-random ones, i.e., that MCSP solves the coin
problem for the bias ε = 1/t. Finally, our concentration result is strong enough to allow us to
choose t = 2Ω(n), which yields an exponential AC0[p] circuit lower bound for MCSP. (To get
the quantitatively strongest circuit lower bound for MCSP, we use the recent AC0[p] lower
bounds for the coin problem by [18], rather than apply the reduction from the Majority
function to the coin problem from [29].)

Other results

We are able to generalize our AC0[p] circuit lower bounds to several natural variants of MCSP.
For a circuit class C, let C-MCSP denote the MCSP problem asking about the C-type circuit
complexity of a given truth table. For example, C can be the class AC0, where we ask about
the gate complexity of a smallest AC0 circuit computing a given boolean function, or C can be
the class of boolean formulas, where we ask about the formula (leaf) complexity of a smallest
formula. We show that for both such cases of C, the problem C-MCSP requires exponential-
size AC0[p] circuits. This generalization requires us to re-visit Lupanov’s general circuit upper
bounds for biased random functions. We provide new “hashing-based” arguments for such
circuit constructions that apply to the case of formulas as well as constant-depth circuits
and formulas.

As a corollary of our reduction of the coin problem to MCSP and some previous results,
we obtain that every function in NC1 can be computed by a non-uniform AC0 circuit with
MCSP oracle gates. We also show that at least one of the following lower bounds must be
true: either NEXP 6⊂ P/poly, or MCSP 6∈ ACC0.

Finally, we give a new coin-problem based proof of AC0[p] circuit lower bounds for MKTP,
a Kolmogorov-complexity variant of MCSP, re-proving the result of [5].

The rest of the paper

We give the necessary definitions and facts in Section 2. We prove the aforementioned circuit
complexity concentration result for random biased functions in Section 3, and then prove
our AC0[p] circuit lower bound for MCSP in Section 4. In Section 5, we give corollaries of
our main result. The lower bound for MKTP is given in Section 7. We generalize our lower
bounds to the case of C-MCSP in Section 6. Section 8 lists some open questions.

2 Preliminaries

2.1 Complexity basics
For a boolean function f : {0, 1}n → {0, 1}, let size(f) denote the size of a smallest circuit
(using AND, OR, and NOT gates) that computes f . Let size(n) be the maximum of size(f),
over all n-variate boolean functions f . Finally, define sn = E[size(f)] to be the average of
circuit complexities over all n-variate boolean functions.

Below, all logarithms are base 2, unless stated otherwise.
Building on the work by Shannon [30], Lupanov [19] proved the following lower and upper

bounds for size(n).
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I Theorem 2.1 (Lupanov [19]). For all sufficiently large n ∈ N,

size(n) ≤ 2n

n
+O

(
2n logn
n2

)
.

Moreover, all but o(1) fraction of uniformly random n-variate boolean functions f require

size(f) ≥ 2n

n
+ Ω

(
2n logn
n2

)
.

For the case of n-variate functions with a fixed fraction of 1 inputs, Lupanov [21] proved
the following generalization of his earlier bounds.

I Theorem 2.2 (Lupanov [21]). Let f : {0, 1}n → {0, 1} be any boolean function that has the
value 1 on k ≤ 2n−1 inputs, where k ∈ Ω(2n). Then, for all sufficiently large n ∈ N,

size(f) ≤
log
(2n

k

)
log log

(2n

k

) +O

(
2n logn
n2

)
.

Moreover, all but o(1) fraction of random such functions f require

size(f) ≥
log
(2n

k

)
log log

(2n

k

) + Ω
(

2n logn
n2

)
.

2.2 Probability basics
I Theorem 2.3 (McDiarmid’s Inequality [22]). Let X1, . . . , XN ∈ {0, 1} be independent
random variables. Let f : {0, 1}n → R be any function such that, for some function c = c(N),
for all 1 ≤ i ≤ N and for all b1, . . . , bN , b̃i ∈ {0, 1}, it holds that∣∣∣f(b1, . . . , bN )− f(b1, . . . , bi−1, b̃i, bi+1, . . . , bN )

∣∣∣ ≤ c.
Then, for any λ > 0,

Pr [|f(X1, . . . , XN )−E [f(X1, . . . , XN )]| ≥ λ] ≤ 2 · exp
(

2λ2

Nc2

)
.

Roughly speaking, the inequality states that with high probability the value of f will be
of distance at most O(

√
N · c) around its mean.

2.3 Coin problem
A coin problem is the problem to distinguish between two coins (boolean-valued random
variables), where one coin has probability p of being 1, and the other coin probability q > p.
Usually, p = 1/2 − ε and q = 1/2 + ε, for some ε > 0; or, p = 1/2 − ε and q = 1/2. By a
simple “translation argument”, it is possible to show that all of these problems are essentially
equivalent. For completeness, we state this argument next.

B Claim 2.4 (Translation Argument). Let 0 < p ≤ q < 1, ε > 0. Suppose C is a circuit of
size S that solves the p(1− ε) versus p coin problem on inputs of length N with advantage
α. Then, there exists a circuit C̃ of size at most S that solves the q(1 − ε) versus q coin
problem on inputs of length N with advantage at least α.

ICALP 2019
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Proof. For p ∈ (0, 1), we denote by µp the product distribution on {0, 1}N where each bit is
independently sampled to be 1 with probability p, and 0 otherwise. Let C be a circuit of
size S that solves the p(1− ε) versus p coin problem with advantage

α := Pr
x∼µp(1−ε)

[C(x)]− Pr
x∼µp

[C(x)].

We construct a distribution over circuits C ′ that achieves the same advantage on the q(1− ε)
versus q coin problem. The randomized circuit C ′ is defined as follows: “For each input bit xi,
let x′i = xi with probability p/q and x′i = 0 otherwise. Apply C on (x′1, . . . , x′N ).” Note that,
by design, if x is distributed according to a µq then x′ is distributed according to µp, and if
x is distributed according to µq(1−ε), then x′ is distributed according to µp(1−ε). We get a
distribution over circuits C ′ that solves the q(1− ε) versus q coin problem with advantage
at least α. By averaging, there must exist a deterministic circuit C̃ that solves the q(1− ε)
versus q coin problem with advantage at least α. Note that C̃ is obtained from C ′ by fixing
the internal randomness that C ′ used to decide for each 1 ≤ i ≤ N whether to set x′i = xi or
x′i = 0. With those choices fixed, C̃(x1, . . . , xN ) is just a restriction of C(x1, . . . , xN ) where
some xi’s are set to 0. Hence, the size of C̃ is at most that of C, as claimed. C

I Theorem 2.5 ([29]). Let A be an algorithm that distinguishes, with constant distinguishing
probability, between n-bit uniformly random strings, and n-bit strings sampled so that each
bit is independently set to 1 with probability 1/2− ε (and to 0 otherwise). Then there is a
non-uniform AC0 circuit of size poly(n/ε) that computes the majority function on binary
inputs of length 1/ε, using A-oracle gates.

Using the theorem above as well as the well-known lower bound for the majority function
against AC0[p] circuits, for any constant prime p, we can deduce that any algorithm solving
the coin problem with bias ε on n-bit inputs requires AC0[p] depth d circuits of size at least
exp((1/ε)1/O(d)). This lower bound has been recently sharpened.

I Theorem 2.6 ([18]). Let A be a boolean function that distinguishes, with constant distin-
guishing probability, between n-bit uniformly random strings, and n-bit strings sampled so
that each bit is independently set to 1 with probability 1/2− ε (and to 0 otherwise). Then
any depth d AC0[p] circuit computing A must have size at least exp(Ω((1/ε)1/(d−1))).

3 Concentration of Circuit Complexity

For every n ≥ 1, let µ be any product distribution over {0, 1}N , where N = 2n. Recall that
size(f) is the size of a smallest circuit computing a boolean function f . For each integer
n ≥ 1, define

sµn = Ef∼µ [size(f)] ,

the expectation of size(f) over n-variate boolean functions f whose N -bit truth tables are
sampled according to µ. We show that a random n-variate boolean function sampled from µ

is likely to have its circuit complexity very close to the expected circuit complexity sµn.

I Theorem 3.1. For µ and sµn as defined above, if a boolean function f : {0, 1}n → {0, 1} is
chosen at random according to distribution µ, then, with probability at least 1− 2−n,

|size(f)− sµn| ≤
√
N · n2.
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Proof. Observe that for any two n-variate boolean functions f and g that differ on exactly
one input a ∈ {0, 1}n, we have that |size(f)−size(g)| ≤ O(n). Indeed, suppose, without loss
of generality, that size(f) ≤ size(g). Then we can compute g as follows: “Given z ∈ {0, 1}n,
check if z = a. If so, then output the bit b = g(a). Otherwise, use the circuit for f to
output f(z).” More precisely, if C is a circuit computing f , then the circuit D for g can be
described as

D(z) := (b ∧ (∧ni=1(zi = ai))) ∨ (C(z) ∧ (∨ni=1(zi 6= ai))) , (1)

where (zi = ai) is defined to be zi for ai = 1, and the negation zi for ai = 0; and (zi 6= ai) is
the negation of (zi = ai). Clearly, the size of D is that of C plus O(n).

LetX1, . . . , XN ∈ {0, 1} be independent random variables sampled from the product distri-
bution µ. We apply McDiarmid’s Inequality of Theorem 2.3 to the function size : {0, 1}N → N,
which, as we just argued, differs by at most c = O(n) on any two truth tables that agree in
all but one coordinate. We get the desired concentration result by choosing λ =

√
N · n2.

That is, all but exp(−n) fraction of µ-random n-variate boolean functions f have their circuit
size size(f) within

√
N · n2 of the expected circuit size sµn. J

4 Main theorem

I Theorem 4.1. Let p ≥ 2 be any prime. For any depth d > 0 and large enough in-
put size N = 2n, MCSP on N-bit truth tables requires depth d AC0[p] circuits of size
exp(Ω(N0.49/(d−1))).

Proof. Let t = d20.49ne. Consider an arithmetic sequence of probabilities (p0, p1, p2, ...., pt)
with p0 = 0.01, pt = 0.5 and pi = p0 + i · 0.49/t. For each i = 0, . . . , t, let µi be the product
distribution on {0, 1}N , where each bit is independently sampled to be 1 with probability pi,
and 0 with probability 1− pi. Let

si = sµ
i

n = Ef∼µi [size(f)] .

By Lupanov’s estimates of Theorem 2.1, we have

st ≥ (1− o(1)) · 2n

n
≥ 0.9 · 2n

n
.

By the Chernoff bound, almost all n-variate boolean functions sampled according to µt will
assume the value 1 on at most k = 0.011 ·N inputs. By Theorem 2.2, we have

s0 ≤ H(0.011) · 2n

n
+ o

(
2n

n

)
≤ 0.1 · 2n

n
,

where H() is the binary entropy function. It follows that

st − s0 ≥ 0.8 · 2n

n
.

This means that there must be an i such that si+1 ≥ si + Ω(20.51n/n). Let s∗ =
(si + si+1)/2. By circuit complexity concentration given in Theorem 3.1, we get that, with
high probability, n-variate random boolean functions sampled from µi have circuit size smaller
than s∗, and those sampled from µi+1 have circuit size larger than s∗. Hence, MCSP(x, s∗)
can distinguish between µi and µi+1, with a constant distinguishing probability.

ICALP 2019
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Finally, assume by contradiction that MCSP ∈ AC0[p] of size S and depth d. Let n be
large enough, and let N = 2n. Then, by fixing the second input of MCSP to s∗, we get an
AC0[p] circuit that on N -bit inputs solves the coin problem distinguishing between pi and
pi+1. By Claim 2.4, there exists a circuit of size at most S and depth at most d that solves
the (1− ε)/2 versus 1/2 coin problem for ε = 1− pi/pi+1 = Θ(1/t) = Θ(N−0.49). However,
the latter implies by Theorem 2.6 that S ≥ exp(Ω(ε−1/(d−1))) = exp(Ω(N0.49/(d−1))). J

5 Consequences

Below, whenever we talk about circuit classes such as AC0, ACC0, and TC0, we mean
non-uniform circuit classes.

Using Theorem 2.5, we get the following corollary to Theorem 4.1 regarding the MAJOR-
ITY function, denoted MAJ.

I Corollary 5.1. MAJ ∈ (AC0)MCSP.

Combined with the inclusion NC1 ⊆ (TC0)MCSP of [25], Corollary 5.1 yields the following.

I Corollary 5.2. NC1 ⊆ (AC0)MCSP.

In fact, using the same techniques, we can prove something more general.

I Theorem 5.3. Let C ⊆ P/poly be any complexity class that has a complete problem under
TC0-computable reductions that is also random-self-reducible via a TC0-computable reduction.
Then we have

C ⊆ (AC0)MCSP.

Proof sketch. It follows from [7] that any function f ∈ P/poly has a non-uniform (TC0)MCSP

circuit C of polynomial size that agrees with f on all but an inverse polynomial fraction
of inputs. If f is random-self-reducible via a TC0 reduction, we can recover from C a new
polynomial-size (TC0)MCSP circuit computing f exactly (on all inputs). Applying Corollary 5.1
concludes the proof. J

As the class GapL has Determinant as a complete problem under AC0 reductions (see [1]
for a survey on logspace counting complexity classes), we get the following.

I Corollary 5.4. GapL ⊆ (AC0)MCSP.1

The following is a non-uniform version of a similar “Karp-Lipton”-style “collapse” theorem
from [14], which we state just for the class EXP.

I Theorem 5.5. If EXP ⊆ P/poly, then EXP ⊆ (AC0)MCSP.

Proof. Using TC0-computable locally list-decodable binary codes of [10], we get that EXP
contains a complete language that is random-self-reducible via a TC0-computable reduction.
We then appeal to Theorem 5.3. J

1 The potentially bigger class DET is the class of languages that are NC1-Turing reducible to computing
the determinant of an integer matrix [8]. It is not immediately clear if DET ⊆ (AC0)MCSP. Perhaps, one
can use the techniques of [5] who showed such a result for MKTP.
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We do not know if MCSP is NP-complete. There is a line of research showing that MCSP
(or its variants) can’t be NP-complete under very restricted kinds of reductions (e.g., “local”
reductions of [24]). One corollary of Theorem 5.5 is that it will be difficult to rule out
non-uniform Turing AC0 reductions from SAT to MCSP.

I Corollary 5.6. If SAT 6∈ (AC0)MCSP, then EXP 6⊆ P/poly.

Finally, while we don’t know how to disprove that MCSP ∈ ACC0, we get that at least
some lower bound must be true.

I Corollary 5.7. Either NEXP 6⊆ P/poly, or MCSP 6∈ ACC0.

Proof. Towards a contradiction, suppose that both (1) NEXP ⊆ P/poly, and (2) MCSP ∈
ACC0. By the Easy Witness Lemma of [15], (1) implies that NEXP = EXP. Then by
Theorem 5.5, we get that NEXP ⊆ (AC0)MCSP. Combining this with (2) yields that NEXP ⊆
ACC0. But the latter contradicts the known lower bound of [32]. J

6 Generalizations

Here we show that, for a number of typical circuit classes C, our lower bound proof (and a
reduction from MAJORITY) works also for C-MCSP. In particular, we will show that both
AC0-MCSP and Formula-MCSP require exponential AC0[p] circuit lower bounds.

Our lower bound for MCSP used two main ingredients: (1) circuit size concentration
for random (biased) boolean functions, and (2) a noticeable difference between most likely
circuit sizes for uniformly random and biased boolean functions (where each bit of the truth
table is 1 with a small constant probability, say 0.01).

For property (1), we note that the concentration argument only needs the Lipschitz
property of a given circuit size measure, which comes from the fact that changing a boolean
function on a single n-bit input may change the circuit size of the function by at most
O(n) additive term. This holds for virtually every reasonable circuit model, as the proof of
Theorem 3.1 shows; there is a potential increase in depth for constant-depth circuits, but
this can be avoided for the case where the circuit size is defined to be the total number of
gates in the constant-depth circuit (see the proof of Corollary 6.2).

For property (2), we need a Shannon-style counting argument to show that most random
n-variate functions have at least certain size S in a given circuit model C, as well as a
Lupanov-style argument that (most) boolean functions with very few (a small constant
fraction α of) 1s have C-circuit complexity at most some constant fraction δ of S, for some
0 < δ < 1 (dependent on α).

Property (2) is known for the case of boolean circuits, as implied by Lupanov’s Theorem 2.2,
and is known for formulas, by the work of Pippenger [26]. Moreover, it is possible to use the
celebrated constructions of Lupanov, giving tight upper bounds for circuit complexity [19]
and formula complexity [20] for all boolean functions, to show that biased random functions
have relatively small circuits as well as small formulas (see the full version of this paper on
ECCC for more details). However, we give a different argument (based on some hashing
ideas) that will allow us to reduce the problem of showing small circuit complexity of a
random biased boolean function to the known worst-case upper bounds for boolean function
on fewer variables. Using such known worst-case upper bounds for the classes of circuits,
formulas, and constant-depth circuits (counting the number of gates), we then obtain the
required upper bounds for the circuit complexity of constant-biased random functions in
these circuit models.
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I Theorem 6.1. Let 0 < α < 1/2 be any constant. For all but o(1) fraction of α-biased
n-variate random functions f , we have
1. circuit-size(f) ≤ O(α · log 1/α) · 2n

n ,
2. (AC0)-formula-size(f) ≤ O(α · log 1/α) · 2n

logn , and
3. AC0-circuit-size(f) ≤ O(α · log 1/α) · 2n/2 (where consider the gate complexity of a

given constant-depth circuit); moreover, the upper bound is for some fixed depth d0 > 0
(independent of f).

We omit the proof of Theorem 6.1 due to space constraints (see the full version of this
paper on ECCC for more details).

Using Theorem 6.1, we conclude the following.

I Corollary 6.2. Let C be the class of general circuits, or formulas, or constant-depth
AC0 circuits. For any prime p ≥ 2 and any depth d > 0 and large enough input size
N = 2n, C-MCSP on N-bit truth tables requires depth d AC0[p] circuits of size at least
exp(Ω(N0.49/(d−1))).

Proof. As observed earlier, our lower bound proof for MCSP requires three ingredients: the
Lipschitz property of the circuit complexity measure, a Shannon-style lower bound on the
complexity measure for random n-variate boolean functions, and a O(α log(1/α)) factor
smaller upper bound on the complexity measure for random α-biased boolean functions (which
can be made an arbitrary constant factor ε smaller than the corresponding Shannon-style
upper bound by choosing the constant bias α > 0 to be sufficiently small).

The Lipschitz property is easily seen to hold for both general circuits and formulas. For
constant-depth circuits, where we count the number of gates, it also holds, provided the
depth of our circuits is at least 3. We sketch the argument next.

We may assume that the circuit has alternating levels of ANDs and ORs, with negations
on the bottom variables level. Without loss of generality, the top gate is an OR. (The other
case is symmetric.) Case 1. We want to flip the value on a ∈ {0, 1}n from 0 to 1. Add an
AND of xai

i ’s, and feed this AND into the top OR gate. (Use just one extra gate.) Case 2:
We want to flip from 1 to 0 on a ∈ {0, 1}n. Add an OR of x1−ai

i ’s, and feed this OR into
every AND-gate just one level below the top OR-gate. (Use just one extra gate.) Note that
the depth doesn’t change, if the original circuit is of depth d ≥ 3.

The Shannon-style lower bounds for random n-variate functions are known for general
circuits Ω(2n/n), formulas Ω(2n/(logn)), and constant-depth circuits Ω(2n/2) (see, e.g., [16]).
Finally, Theorem 6.1 gives matching upper bounds for biased functions. The proof follows. J

7 Circuit lower bounds for MKTP via the coin problem

Here we show how to re-prove a known AC0[p] circuit lower bound for MKTP [5], using the
coin problem. This was the starting point in our attempt to prove an AC0[p] lower bound
for MCSP. For MKTP, we managed to show that biased random strings have a noticeably
smaller KT complexity than that of uniformly random strings, where the bias 1/2− ε can be
chosen for a sufficiently small ε so that we immediately get an AC0[p] circuit lower bound for
MKTP using Theorem 2.6. We provide the details next.

We first define the KT complexity [2]. Fix a universal random-access Turing machine U .
The KT complexity of a string x ∈ {0, 1}N is defined as the

min{|d|+ t | ∀ 0 ≤ i ≤ N + 1 Ud(i) = xi in at most t steps},
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and xN+1 = ⊥. In other words, x can be computed at every position i in time at most t by
a TM U that has random access to some binary string d, and we want to minimize the total
sum of the length of such an auxiliary string d and the time bound t.

MKTP is then naturally defined as follows: Given x ∈ {0, 1}N and a parameter s, decide
if the KT complexity of x is at most s.

To prove a super-polynomial AC0[p] circuit lower bound for MKTP via the coin problem
approach (using Theorem 2.6), it would suffice to show that the MKTP oracle can distinguish
between uniformly random N -bit strings and those where each bit is sampled, independently,
with probability 1/2− ε, for some ε� 1/poly logN . We’ll show how to do this for ε = N−γ ,
for some γ > 0 (in fact, for γ ≈ 1/6).

What we need is to show that a random biased N -bit string can be compressed to have
its KT complexity noticeably smaller than that of a uniformly random N -bit. Let q = 1/2− ε
be the probability for sampling each bit to be 1 in a random biased string. By standard
concentration bounds, we know that a random biased N -bit string will have, with very high
probability, the number of 1s very close to K = qN . For the simplicity of exposition, we
will assume that our random biased strings have at most K = qN ones in them. We then
show that every N -bit string with (at most) K ones has its KT complexity much less than
N , which is the lower bound on the KT complexity of a uniformly random N -bit string.

It is natural to think of an N -bit string with K ones as a subset of size K in the universe
of size N . As there are exactly

(
N
K

)
such subsets, the minimal bit complexity to represent any

one of such subsets is OPT = log2
(
N
K

)
. Such an information-theoretically optimal encoding

of K-size subsets of the N -size universe is known, and is achieved by using the combinatorial
number system where we represent each such subset by the unique number of the form

(
cK
K

)
+ · · ·+

(
c2
2

)
+
(
c1
1

)
.

In more detail, suppose we have x ∈ {0, 1}N where X has exactly K ones. For the base
case, when K = 0, we output 0. For K > 0, we associate with x an integer number using
the following recursive procedure: if xN = 1, then output

(
N−1
K

)
+ R1, where R1 is the

recursively computed integer associated with N − 1-bit prefix of x and the parameter K − 1;
if xN = 0, then output R0, which is the integer associated with the N − 1-bit prefix of x and
the parameter K.

Note that the final integer associated with a given K-size subset x ∈ {0, 1}N has value at
most

(
N
K

)
(using Pascal’s identity that

(
N
K

)
=
(
N−1
K−1

)
+
(
N−1
K

)
), and so has the optimal bit

complexity. The encoding is efficient (as outlined above). The decoding is also efficient: given
an integer B encoding some unknown K-size subset x ∈ {0, 1}N , if B ≥

(
N−1
K

)
, then set

xN = 1, and recursively decode B −
(
N−1
K

)
for a K − 1-size subset of the N − 1-size universe;

otherwise, set xN = 0, and recursively decode B for a K-size subset of the N−1-size universe.
The running time of such a decoding algorithm is clearly poly(N), and can be shown to be
about O(N2).

For the KT complexity of a string x ∈ {0, 1}N with K ones, we could define d to be the
integer encoding this K-size subset, and then define Ud(i) to be an algorithm that does the
decoding of d to get all the bits of x. The problem with this is that the runtime to do a
complete decoding of d into x is more than N , which is too much. However, the decoding
we do is global, recovering all bits xi simultaneously, whereas we just need to give a local
decoding algorithm: given i, recover xi.
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Encoding

To get a locally decodable representation for our string x ∈ {0, 1}N , we partition x into
blocks of size b (for b to be determined). For each block j, 1 ≤ j ≤ N/b, let Ki be the
number of ones in that block. Note that

∑N/b
j=1 Kj = K. Given Kj , encode each block j

information-theoretically optimally as described above, using at most log2
(
b
Kj

)
bits. Write

the resulting encodings of all blocks one after the other; add N/b pointers (of at most logN
bits each) that point to the beginnings of the encodings of the blocks; add N/b numbers
Kj ’s to the encoding. We get that the total bit size of the overall encoding of x is at most

O(N/b)(logN + log b) +
N/b∑
j=1
dlog2

(
b

Kj

)
e.

The latter sum is at most
N/b∑
j=1

log2

(
b

Kj

)
+N/b = log2

N/b∏
j=1

(
b

Kj

)
+N/b ≤ log2

(
N

K

)
+N/b,

since the number of sets with Kj ones in block j is at most the number of all subsets of [N ]
with K ones. Overall, the encoding size is OPT +O(N logN/b).

Decoding

Given i ∈ [N ], we first figure out which block j it is in, and then decode that entire block
(after looking up its number of ones in Kj and its compressed image). As discussed earlier,
the decoding runs in time about O(b2).

Upper-bounding the KT complexity

To keep the KT complexity of x low, we choose b to be N1/3. Then the KT complexity of x
is at most OPT +O(N2/3).

Finally, we show that MKTP 6∈ AC0[p] as follows. Recall that we consider random biased
strings of length N where the bias probability is q = 1/2− ε. Let K = qN be the expected
number of ones in a typical biased string, and let’s assume that most biased strings have at
most K ones in them (for simplicity). We get that for such a biased string, its KT complexity
is at most

log2

(
N

K

)
+O(N2/3) ≈ H(q) ·N +O(N2/3),

where H is the binary entropy function. For q = 1/2− ε, we can estimate H(q) ≈ 1−O(ε2).
Thus, to have the KT complexity of a typical q-biased N -bit string to be strictly less than N ,
we need N ·O(ε2)−O(N2/3) > 0, which implies that we need ε > Ω(N−1/6). This implies
by Theorem 2.6 that MKTP on inputs of size N requires AC0[p] circuits of depth d of size at
least exp(Ω(N1/6(d−1))).

8 Open questions

We managed to find a work-around the lack of a tighter Lupanov-style upper bound on
the circuit complexity of just slightly biased random functions where the bias probability is
arbitrarily close to 1/2 (as opposed to the bias probability being a small constant bounded



A. Golovnev, R. Ilango, R. Impagliazzo, V. Kabanets, A. Kolokolova, and A. Tal 66:13

away from 1/2). Our proof would be much more direct and constructive if we had such
refinements of Lupanov’s circuit upper bounds for biased boolean functions (since then we
could have proceeded similarly to our proof for the MKTP case in the previous section). Can
one prove such tighter circuit upper bounds?

Our current circuit lower bound applies to MCSP, but doesn’t seem to apply for its
average-case version, the Razborov-Rudich natural property [28]. Can one show such
an extension?

Finally, we showed (Corollary 5.7) that either NEXP 6⊆ P/poly or MCSP 6∈ ACC0. For the
proof, we used the original Easy Witness Lemma of [15], the existence of random-self-reducible
problems in EXP, plus the known lower bound that NEXP 6⊆ ACC0 [32]. Given the new Easy
Witness Lemma and the improved circuit lower bound that NQP = NTIME[npoly logn] 6⊆
ACC0 [23], it is natural to ask the following: Can we show that either NQP 6⊆ P/poly or
MCSP 6∈ ACC0? Our current proof techniques rely on the existence of a random-self-reducible
problem complete for EXP, and no such problem is known for the class NQP.
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