
A Nearly-Linear Time Algorithm for Submodular
Maximization with a Knapsack Constraint
Alina Ene
Department of Computer Science, Boston University, MA, USA
aene@bu.edu

Huy L. Nguyen
College of Computer and Information Science, Northeastern University, Boston, MA, USA
hlnguyen@cs.princeton.edu

Abstract
We consider the problem of maximizing a monotone submodular function subject to a knapsack
constraint. Our main contribution is an algorithm that achieves a nearly-optimal, 1 − 1/e − ε
approximation, using (1/ε)O(1/ε4)n log2 n function evaluations and arithmetic operations. Our
algorithm is impractical but theoretically interesting, since it overcomes a fundamental running
time bottleneck of the multilinear extension relaxation framework. This is the main approach for
obtaining nearly-optimal approximation guarantees for important classes of constraints but it leads
to Ω(n2) running times, since evaluating the multilinear extension is expensive. Our algorithm
maintains a fractional solution with only a constant number of entries that are strictly fractional,
which allows us to overcome this obstacle.

2012 ACM Subject Classification Theory of computation → Submodular optimization and poly-
matroids

Keywords and phrases submodular maximization, knapsack constraint, fast algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.53

Category Track A: Algorithms, Complexity and Games

Related Version https://arxiv.org/abs/1709.09767

Funding Alina Ene: Partially supported by NSF CAREER grant CCF-1750333 and NSF grant
CCF-1718342.
Huy L. Nguyen: Partially supported by NSF CAREER grant CCF-1750716.

Acknowledgements This work was done in part while the authors were visiting the Simons Institute
for the Theory of Computing.

1 Introduction

A set function f : 2V → R is submodular if for every A,B ⊆ V , we have f(A) + f(B) ≥
f(A ∪B) + f(A ∩B). Submodular functions naturally arise in a variety of contexts, both
in theory and practice. Submodular functions capture many well-studied combinatorial
functions including cut functions of graphs and digraphs, weighted coverage functions, as well
as continuous functions including the Shannon entropy and log-determinants. Submodular
functions are used in a wide range of application domains from machine learning to economics.
In machine learning, it is used for document summarization [9], sensor placement [7], exemplar
clustering [3], potential functions for image segmentation [4], etc. In an economics context,
it can be used to model market expansion [2], influence in social networks [5], etc. The
core mathematical problem underpinning many of these applications is the meta problem of
maximizing a submodular objective function subject to some constraints.

EA
T

C
S

© Alina Ene and Huy L. Nguyen;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 53; pp. 53:1–53:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aene@bu.edu
mailto:hlnguyen@cs.princeton.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.53
https://arxiv.org/abs/1709.09767
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Fast Submodular Maximization with a Knapsack Constraint

A common approach to submodular maximization is a two-step framework based on the
multilinear extension F of f , a continuous function that extends f to the domain [0, 1]V . The
program first (1) maximizes F (x) subject to a continuous relaxation of the constraint and
then (2) rounds the solution x to an integral vector satisfying the constraint. This paradigm
has been very successful and it has led to the current best approximation algorithms for a
wide variety of constraints including cardinality constraints, knapsack constraints, matroid
constraints, etc. One downside with this approach is that in general, evaluating the multilinear
extension is expensive and it is usually approximately evaluated. To achieve the desirable
approximation guarantees, the evaluation error needs to be very small and in a lot of cases,
the error needs to be O(n−1) times the function value. Thus, even an efficient algorithm
with O(n) queries to the multilinear extension would require Ω(n2) running time.

In this work, we develop a new algorithm that achieves 1 − 1/e − ε approximation for
maximizing a monotone submodular function subject to a knapsack constraint. The basic
approach is still based on the multilinear extension but the algorithm ensures that the number
of fractional coordinates is constant, which allows evaluating the multilinear extension exactly
in constant number of queries to the original function. This approach allows us to bypass
the obstructions discussed above and get nearly linear running time.

I Theorem 1. There is an algorithm for maximizing a monotone submodular function subject
to a knapsack constraint that achieves a 1− 1/e− ε approximation using (1/ε)O(1/ε4)n logn
function evaluations and (1/ε)O(1/ε4)n log2 n arithmetic operations.

For simplicity, when stating running times, we assume that each call to the value oracle
of f takes constant time, since for the algorithms discussed the number of evaluations
dominates the running time up to logarithmic factors. Previously, Wolsey [11] gives an
algorithm with a 1− 1/eβ ≈ 0.35 approximation, where β is the unique root of the equation
ex = 2− x. Building on the work of Khuller et al. for the maximum k-coverage problem [6],
Sviridenko [10] gives an algorithm with a 1− 1/e approximation that runs in O(n5) time.
Badanidiyuru and Vondrak [1] give an algorithm with a 1− 1/e− ε approximation running
in n2(logn/ε)O(1/ε8) time. Our work builds on [1] and we discuss the relationship between
the two algorithms in more detail in Section 1.1.

Kulik et al. [8] obtain a 1 − 1/e − ε approximation for d knapsack constraints in time
Ω(nd/ε4) that comes from enumerating over d/ε4 items. The techniques in this paper
could likely be extended to obtain an algorithm for the continuous problem of maximizing
the multilinear extension subject to d knapsack constraints, with a running time that is
exponential in d and nearly-linear in n. We leave it as an open problem whether the rounding
can also be extended to multiple knapsack constraints.

Remark on the algorithm of [1]. We note that there are some technical issues in the
algorithm proposed in [1] for a knapsack constraint. The main issue, which was pointed out
by Yoshida [12], arises in the partitioning of the items into large and small items: an item e

is small if it has value f({e}) ≤ ε6f(OPT) and cost ce ≤ ε4, and it is large otherwise. The
algorithm enumerates the marginal values of the large items and thus the set of large items
was intended to be of size poly(1/ε). But this may not be true in general, as there could be
many items in OPT with singleton value greater than ε6f(OPT). On the other hand, the
assumption that the small items have small singleton values is crucial to ensuring that the
algorithm obtains a good value from the small items. Another issue arises in the rounding
algorithm. The fractional solution is rounded using a rounding algorithm for a partition
matroid that treats the parts independently. But in this setting an item participates in
several parts and we need to ensure that it is not selected more than once.

A. Ene and H. L. Nguyen 53:3

1.1 Our techniques
As in the classical knapsack problem with a linear objective, the algorithms achieving optimal
approximation are based on enumeration techniques. One such approach is to enumerate the
most valuable items in OPT (in the submodular problem, we can determine which items
of OPT are valuable based on the Greedy ordering of OPT, see (1)) and greedily pack the
remaining items based on the marginal gain to cost density. This approach leads to the
optimal 1− 1/e approximation provided that we enumerate 3 items [10]. The running time
of the resulting algorithm is O(n5) and it can be improved to O(n4 log(n/ε)/ε) time at a loss
of ε in the approximation.

A different approach, inspired by the algorithms for the classical knapsack problem
that use dynamic programming over the (appropriately discretized) profits of the items, is
to enumerate over the marginal gains of the valuable items of OPT. Unlike the classical
setting with linear profits, it is considerably more challenging to leverage such an approach
in the submodular setting. Badanidiyuru and Vondrak [1] propose a new approach based
on this enumeration technique and continuous density Greedy with a running time of

n2
(

logn
ε

)O(1
ε8)

, which overcame the Ω(n4) running time barrier for the approaches that are
based on enumerating items.

In this work, we build on the approach introduced by [1] and we obtain a faster running
time of

(1
ε

)O(1
ε4)

n log2 n. Our algorithm is impractical due to the high dependency on ε, but
it is theoretically interesting. Obtaining near-optimal approximations in nearly-linear time
for submodular maximization has been out of reach for all but a cardinality constraint.

Obtaining a fast running time poses several conceptual and technical challenges, and we
highlight some of them here. Let us denote the valuable items of OPT as OPT1, and let
OPT2 = OPT \ OPT1. For our algorithm, the set OPT1 has poly(1/ε) items and we can
handle them by enumerating over their marginal gains, appropriately discretized. Similarly
to [1], we use the guessed marginal gains to pack items that are competitive with OPT1: for
each guessed marginal gain, we find the cheapest item whose marginal gain is at least the
guessed value, and we add ε of the item to the fractional solution. The continuous approach
is necessary for ensuring that we obtain a good approximation, but it is already introducing
the following conceptual and technical difficulties:

We do not know how much budget is available for the remaining items. Since we packed
the items fractionally, we will need to perform the rounding to find out which of the
items will be in the final solution and their total budget. But we cannot do the rounding
before packing the remaining items. Additionally, we cannot afford to guess the budget
of OPT1, even approximately.
In the continuous setting, evaluating the multilinear extension takes Ω(n2) time in general.
We will need to ensure that we can round the resulting fractional solution.

A key idea in our algorithm, and an important departure from the approach of [1], is to
integrally pack the remaining items using density Greedy with lazy evaluations to obtain a
nearly-linear running time. The resulting fractional solution has only a constant number
of entries that are strictly fractional, and we show that this is beneficial both in terms of
running time and rounding: we can evaluate the multilinear extension in constant time and
we can exploit the special structure of the solution to round. However, the first difficulty
mentioned above remains a significant conceptual barrier for realizing this plan: if we cannot
get a handle on how much budget to allocate to density Greedy, we will not be able to round
the solution without violating the budget or losing value. Our solution here is based on the
following insights.

ICALP 2019

53:4 Fast Submodular Maximization with a Knapsack Constraint

Algorithm 1 Knapsack(f, ε).
1: t← 1/ε3
2: r ← 1/ε
3: M ← Θ(f(OPT))
4: Sbest ← ∅
5: Try all possible sequences:
6: {vp,i}: p ∈ {1, 2, . . . , 1/ε}, i ∈ {1, 2, . . . , t}, vp,i ∈ {0, εM/t, 2εM/t, . . . , 1}
7: {Wp}: p ∈ {1, 2, . . . , 1/ε}, Wp ∈ {0, εM, 2εM, . . . ,M}
8: {wp,i}: p ∈ {1, 2, . . . , 1/ε}, i ∈ {1, 2, . . . , r + 1}, wp,i ∈ {0, ε2Wp/r, 2ε2Wp/r, . . . ,Wp}
9: for every choice {vp,i}, {Wp}, {wp,i} do
10: x← KnapsackGuess(f, ε, {vp,i}, {Wp}, {wp,i})
11: S ← Round(x)
12: if f(S) > f(Sbest) then
13: Sbest ← S

14: end if
15: end for
16: Return Sbest

First, note that we may assume that every item in OPT2 has a cost that is small relative
to the total budget of OPT2: there can only be a small number of heavy items and each of
them has small marginal gain on top of OPT1, and thus we can discard them without losing
too much in the approximation. Moreover, if there are no heavy items at all, we can show
that density Greedy will not exceed the budget. Thus, if we knew the budget of OPT2, we
could remove all of the heavy items and run density Greedy on the remaining items.

Unfortunately, we cannot guess the budget of OPT2 since there are too many possible
choices. Instead, note that, since the cost of an item is its marginal value divided by its
density, a heavy item has large value or small density. If it has small density then intuitively
Greedy will not pick it. The problematic items are the ones that have large marginal values,
as density Greedy may pick them and they may be too heavy. Unfortunately, we cannot filter
out all the items with large marginal value, since those items may include items in OPT2
(note that even though every item in OPT2 has small marginal value on top of OPT1, it can
have large marginal value on top of our current fractional solution that does not necessarily
contain OPT1). Now the key observation is that the number of such items is small, and we
can handle them with additional guessing.

The final step of the algorithm is to round the fractional solution to a feasible integral
solution. Here we take advantage of the fact that the only entries that are strictly fractional
were introduced in the OPT1 stages of the algorithm. The fractional items can be mapped to
the items in OPT1 in such a way that every item in OPT1 is assigned a fractional mass of at
most 1 coming from items with smaller or equal cost. Thus, for each item in OPT1, we want
to select one of the items fractionally assigned to it. This is reminiscent of a partition matroid
and thus a natural approach is to use a matroid rounding algorithm such as pipage rounding
or swap rounding. However, an item may be fractionally assigned to more than one item in
OPT1, and we need to ensure that the rounding does not select the same item for different
items in OPT1. We show that we can do so using a careful application of swap rounding.

A. Ene and H. L. Nguyen 53:5

Algorithm 2 KnapsackGuess(f, ε, {vp,i}, {Wp}, {wp,i}).
1: t← 1/ε3
2: r ← 1/ε
3: x0 ← 0
4: for p = 1, 2, . . . , 1/ε do
5: y(p,0) ← xp−1
6: Ap ← ∅
7: for i = 1, 2, . . . , t do
8: ap,i ← element with minimum size ce in {e /∈ Ap : F (y(p,i−1)∨1e)−F (y(p,i−1)) ≥
vp,i}

9: y(p,i) ← y(p,i−1) + ε1ap,i
10: Ap ← Ap ∪ {ap,i}
11: end for
12: if Wp = 0 then
13: Continue to the next phase p+ 1
14: end if
15: z(p,0) ← y(p,t)

16: Bp ← ∅
17: Let rp be the smallest i ∈ {0, 1, . . . , r} such that wp,i+1 ≤ ε(1− ε)Wp/r. If no such i

exists, let rp = r. 〈〈 rp is the number of large value elements in OPT2 〉〉
18: for i = 1, 2, . . . , rp do
19: bp,i ← element with minimum size ce in {e : F (z(p,i−1)∨1e)−F (z(p,i−1)) ≥ wp,i}
20: z(p,i) ← z(p,i−1) ∨ 1bp,i
21: Bp ← Bp ∪ {bp,i}
22: if F (z(p,i))− F (z(p,0)) ≥ ε(1− 12ε)Wp then
23: Set xp ← z(p,i) and continue to phase p+ 1
24: end if
25: end for
26: if F (z(p,rp))− F (z(p,0)) < ε(1− 12ε)Wp then
27: V ′ ← V \ {e : F (z(p,rp) ∨ 1e)− F (z(p,rp)) ≥ εWp/r}
28: Cp ← DensityGreedy(f, z(p,rp), ε(1− 12ε)Wp − F (z(p,rp)) + F (z(p,0)), V ′)
29: xp ← z(p,rp) ∨ 1Cp
30: end if
31: end for
32: Return x1/ε

2 The algorithm

We consider the problem of maximizing a monotone submodular function subject to a single
knapsack constraint. Each element e ∈ V has a cost ce ∈ R+, and the goal is to find a set
OPT ∈ argmax{f(S) :

∑
e∈S ce ≤ 1}. We assume that the knapsack capacity is 1, which we

may assume without loss of generality by scaling the cost of each element by the knapsack
capacity. We let F : [0, 1]V → R+ denote the multilinear extension f . For every x ∈ [0, 1]V ,
we have

F (x) =
∑
S⊆V

f(S)
∏
e∈S

xe
∏
e/∈S

(1− xe) = E[f(R(x))],

ICALP 2019

53:6 Fast Submodular Maximization with a Knapsack Constraint

where R(x) is a random set that includes each element e ∈ V independently with probability
xe. For two vectors x and y, we let x ∨ y denote the vector such that (x ∨ y)i = max{xi, yi}
for all i ∈ V .

We fix an optimal solution to the problem that we denote by OPT. We assume that the
algorithm knows a constant approximation of f(OPT); such an approximation can be obtained
in nearly linear time by taking the best of the following two solutions: the solution obtained
by running Density Greedy (implemented using lazy evaluations, similarly to Algorithm 3)
and the solution consisting of the best single element. Let f(OPT) ≥M ≥ (1− ε)f(OPT)
denote the algorithm’s guess for the optimal value. There are O(1/ε) choices for M given
the constant approximation of f(OPT).

We order OPT as o1, o2, . . . , o|OPT|, where

oi = argmaxo∈OPT(f({o1, . . . , oi−1} ∪ {o})− f({o1, . . . , oi−1})) (1)

Let t = O(1/ε3), OPT1 = {o1, o2, . . . , ot}, and OPT2 = OPT \OPT1.
We emphasize that we use the above ordering of OPT and the partition of OPT into

OPT1 and OPT2 only for the analysis and to motivate the choices of the algorithm. In
particular, the algorithm does not know this ordering or partition.

It is useful to filter out from OPT2 the items that have large cost, more precisely, cost
greater than ε2(1 − c(OPT1)). Since every element o ∈ OPT2 satisfies f(OPT1 ∪ {o}) −
f(OPT1) ≤ ε3f(OPT1) and there are at most 1/ε2 such elements, this will lead to only an
εf(OPT) loss. For ease of notation, we use OPT2 to denote the set without these elements,
i.e., we assume that co ≤ ε2(1− c(OPT1)) for every o ∈ OPT2.

Algorithm 1 gives a precise description of the algorithm. The algorithm guesses a sequence
of values as follows.

Guessed values. Throughout the paper, we assume for simplicity that 1/ε is an integer.
Recall that t = 1/ε3. Let r = 1/ε (r is an upper bound on the number of items of OPT2
that have large marginal value in each phase).

A sequence
{
v1,1, v1,2, . . . , v1/ε,t

}
where vp,i ∈ {0, εM/t, 2εM/t, . . . ,M} is an integer

multiple of εM/t, for all integers p and i such that 1 ≤ p ≤ 1/ε and 1 ≤ i ≤ t. The value
vp,i is an approximate guess for the marginal value of oi ∈ OPT1 during phase p. There
are t/ε+ 1 = 1/ε4 + 1 choices for each vp,i and thus there are (1/ε4 + 1)1/ε4 = (1/ε)O(1/ε4)

possible sequences.
A sequence

{
W1,W2, . . . ,W1/ε

}
where Wp ∈ {0, εM, 2εM, . . . ,M} is an integer multiple

of εM , for all integers p such that 1 ≤ p ≤ 1/ε. The value Wp is an approximate guess
for the total marginal value of OPT2 in phase p. There are 1/ε+ 1 choices for each Wp

and thus there are (1/ε+ 1)1/ε possible sequences.
A sequence

{
w1,1, w1,2, . . . , w1/ε,1/ε+1

}
where wp,i ∈ {0, ε2Wp/r, 2ε2Wp/r, . . . ,Wp} is an

integer multiple of ε2Wp/r, for all integers p and i such that 1 ≤ p, i ≤ 1/ε (the value
Wp is the same as in the sequence above). The values wp,i, where i ∈ {1, 2, . . . , 1/ε}, are
approximate guesses for the marginal values of the items in OPT2 with large marginal
value in phase p. There are r/ε2 + 1 = 1/ε3 + 1 choices for each wp,i and thus there are
(1/ε)O(1/ε2) possible sequences.

The algorithm enumerates all possible such sequences. For each choice, the algorithm
works as follows. Let {vp,i}, {Wp}, and {wp,i} denote the current sequences. The algorithm
performs 1/ε phases. Each phase is comprised of three stages, executed in sequence in this
order: an OPT1 stage, a stage for the large value items in OPT2, and a Density Greedy
stage. We describe each of these stages in turn.

A. Ene and H. L. Nguyen 53:7

The OPT1 stage of phase p. This stage uses the values {vp,i : 1 ≤ i ≤ t} as follows. We
perform t iterations. In each iteration i, we consider the items not selected in previous
iterations that have marginal value at least vp,i on top of the current solution, i.e., F (x ∨
1e)− F (x) ≥ vp,i. Among these items, we select the item with minimum cost and increase
its fractional value by ε. Together, the t iterations select t different items and increase their
fractional value by ε.

The stage of phase p for the large value items in OPT2. This stage uses the value Wp

and the values {wp,i : 1 ≤ i ≤ 1/ε} as follows. We perform at most r iterations. In each
iteration i, we find the minimum cost element that has marginal value at least wp,i on top
of the current solution, and we integrally select this item. (Note that this is similar to the
OPT1 stage, except that we select items integrally.) At the end of the stage, if the items
selected in this phase have total marginal gain at least ε(1− 12ε)Wp, then we end phase p
and proceed to the next phase. Otherwise, the algorithm proceeds to the Density Greedy
stage.

The Density Greedy stage of phase p. If the previous stage did not reach a total marginal
gain of at least ε(1− 12ε)Wp, we run the discrete Density Greedy algorithm until we reach
a gain of ε(1− 12ε)Wp. Before running Density Greedy, we remove from consideration all
elements whose marginal value is at least εWp/r. In every step, the Density Greedy algorithm
fully selects the item with largest density, i.e., ratio of marginal value to cost.

In order to achieve nearly linear time, we implement the Density Greedy algorithm using
approximate lazy evaluations as shown in Algorithm 3. We maintain the items in a priority
queue sorted by density. We initialize the marginal values and the densities with respect to
the initial solution. In each iteration of the algorithm, we find an item whose density with
respect to the current solution is within a factor of (1− ε) of the maximum density as follows.
We remove the item at the top of the queue. The marginal value of the item may be stale, so
we evaluate its marginal gain with respect to the current solution. If the new marginal gain
is within a factor of (1− ε) of the old marginal gain, it follows from submodularity that the
density of the item is within a factor of (1− ε) of the maximum density, and we select the
item. If the marginal gain has changed by a factor larger than (1− ε), we update the density
and reinsert the item in the queue. We also keep track of how many times each item’s density
has been updated and, if an item has been updated more than 2 ln(n/ε)/ε times, we discard
the item since it can no longer contribute a significant value to the solution.

Rounding the fractional solution. After 1/ε phases, we obtain a fractional solution with
O(1/ε4) fractional entries. We round the resulting fractional solution to an integral solution
using swap rounding, as shown in Algorithm 4.

The following theorem states our main result for the fractional solution. We will use the
second guarantee to obtain a fast rounding algorithm (see Section 3). We defer the proof of
the theorem to the full version of the paper.

I Theorem 2. There are choices for the guessed values {vp,i}, {Wp}, and {wp,i} for which
Algorithm 2 returns a fractional solution x with the following properties:
(1) F (x) ≥

(
1− 1

e −O(ε)
)
f(OPT);

(2) Let E be the set of all items e ∈ V such that 0 < xe < 1. There exists a mapping
σ : E × {1, 2, . . . , 1/ε} → OPT1 with the following properties:
(a) For every element e ∈ E and every phase p ∈ {1, 2, . . . , 1/ε} such that e ∈ Ap, σ(e, p)

is defined and c(e) ≤ c(σ(e, p)).
(b) For every element o ∈ OPT1, there are at most 1/ε pairs (e, p) such that σ(e, p) = o.

ICALP 2019

53:8 Fast Submodular Maximization with a Knapsack Constraint

Algorithm 3 LazyDensityGreedy(f, x,W, V ′).
1: S0 ← ∅
2: D ← ∅
3: u(e)← 0 for all e ∈ V ′
4: v(e)← F (x ∨ 1e)− F (x) for all e ∈ V ′
5: Maintain the elements in a priority queue sorted in decreasing order by key, where the

key of each element e is initialized to its density v(e)
c(e)

6: for i = 1, 2, . . . do
7: while true do
8: if queue is empty then
9: return Si−1
10: end if
11: Remove the element e from the priority queue with maximum key
12: v′(e)← F (x ∨ 1Si−1∪{e})− F (x ∨ 1Si−1)
13: u(e)← u(e) + 1
14: if v(e) ≥ (1− ε)v′(e) then
15: ei ← e

16: v(e)← v′(e)
17: Si ← Si−1 ∪ {ei}
18: if F (x ∨ 1Si)− F (x) ≥W then
19: return Si
20: end if
21: Exit the while loop and continue to iteration i+ 1
22: else
23: if u(e) ≤ 2 ln(n/ε)

ε then
24: v(e)← v′(e)
25: Reinsert e into the queue with key v′(e)

c(e)
26: else
27: D ← D ∪ {e}
28: end if
29: end if
30: end while
31: end for

3 Rounding algorithm and analysis of the final solution

In this section, we analyze the rounding algorithm (Algorithm 4) that rounds the fractional
solution x guaranteed by Theorem 2. We round the fractional entries of x as follows. We
initialize x̂ = x. For analysis purposes, we initialize O = OPT1. We sort the fractional
elements in non-increasing order according to their cost. While there are fractional elements,
we repeatedly move fractional mass between the two elements with highest cost as follows.
Let e1 and e2 be the fractional elements with the highest and second-highest cost, respectively.
We consider two cases:

Case 1: x̂e1 + x̂e2 ≤ 1. With probability x̂e1/(x̂e1 + x̂e2), we update x̂e1 ← x̂e1 + x̂e2

and x̂e2 ← 0; with the remaining probability, we update x̂e2 ← x̂e1 + x̂e2 and x̂e1 ← 0. If an
element becomes integral, we remove it from the list. For analysis purposes, if an element is
rounded up to 1, we pair it up with the element o1 ∈ O with highest cost, and we update
O ← O \ {o1}.

A. Ene and H. L. Nguyen 53:9

Algorithm 4 Round(x).
1: Let σ1, . . . , σk be the fractional coordinates of x.
2: Sort σ1, . . . , σk so that cσ1 ≤ cσ2 ≤ · · · ≤ cσk .
3: while k > 0 do
4: if k = 1 then
5: xσ1 ← 1
6: return x

7: end if
8: if xσk + xσk−1 > 1 then
9: Pick u ∈ {0, 1} randomly such that Pr[u = 1] = 1−xσk−1

2−xσk−xσk−1

10: if u = 1 then
11: xσk ← 1
12: xσk−1 ← xσk−1 + xσk − 1
13: k ← k − 1
14: else
15: xσk−1 ← 1
16: xσk ← xσk−1 + xσk − 1
17: σk−1 ← σk
18: k ← k − 1
19: end if
20: else
21: Pick u ∈ {0, 1} randomly such that Pr[u = 1] = xσk

xσk+xσk−1

22: if u = 1 then
23: xσk ← xσk−1 + xσk
24: xσk−1 ← 0
25: σk−1 ← σk
26: k ← k − 1
27: else
28: xσk−1 ← xσk−1 + xσk
29: xσk ← 0
30: k ← k − 1
31: end if
32: if xσk = 1 then
33: k ← k − 1
34: end if
35: end if
36: end while

Case 2: x̂e1 + x̂e2 > 1. With probability (1− x̂e2)/(2− x̂e1− x̂e2), we update x̂e1 ← 1 and
x̂e2 ← x̂e1 +x̂e2−1; with the remaining probability, we update x̂e2 ← 1 and x̂e1 ← x̂e1 +x̂e2−1.
If an element becomes integral, we remove it from the list. For analysis purposes, if an
element is rounded up to 1, we pair it up with an element in O as follows. If the element e1
with the highest cost is rounded up to 1, we pair up e with the element o1 ∈ O with highest
cost, and we update O ← O \ {o1}. If the element e2 with the second-highest cost is rounded
up to 1, we pair up e2 with the element o2 ∈ O with the second-highest cost, and we update
O ← O \ {o2}.

If there is only one fractional entry then we can round this entry up to 1 and pair up this
element with the element o1 ∈ O with highest cost.

ICALP 2019

53:10 Fast Submodular Maximization with a Knapsack Constraint

We now turn to the analysis of the rounding. We first show that the expected value of
the rounded solution is at least F (x). We then show that the cost of the fractional elements
that were rounded up to 1 is at most c(OPT1), thus ensuring that the final rounded solution
is feasible.

I Lemma 3. E[F (x̂)] ≥ F (x).

Proof. Note that each iteration updates the solution as follows: x̂′ = x̂+ δ(1e1 −1e2), where
δ is a random value satisfying Eδ[x̂′] = x̂. The multilinear extension is convex along the
direction 1e−1e′ for every pair of elements e and e′. Therefore Eδ[F (x̂′)] ≥ F (Eδ[x̂′]) = F (x̂),
and the claim follows by induction. J

I Lemma 4. Let Ê be the set of elements corresponding to the fractional entries that were
rounded to 1. We have c(Ê) ≤ c(OPT1).

Proof. The lemma follows from the following invariant maintained by the algorithm for the
partially rounded solution x̂ and the set O ⊆ OPT1:
Invariant: Let o1, o2, . . . , op be the elements of O, labeled such that co1 ≥ co2 ≥ · · · ≥ cop .

Let e1, e2, . . . , e` be the elements corresponding to the fractional entries of x̂, labeled such
that ce1 ≥ ce2 ≥ · · · ≥ ce` . We define the following grouping of the elements e1, e2, . . . , e`
where each group contributes a fractional mass of 1 and each element belongs to at most
two groups. Consider the interval [0,

∑`
i=1 xei] that is divided among the elements as

follows: [0, xe1) corresponds to e1 and, for all 2 ≤ i ≤ `, [
∑i−1
j=1 xej ,

∑i
j=1 xej) corresponds

to ei. The elements that overlap with the interval [i− 1, i) define the i-th group. The
invariant is that x̂ and O satisfy the following properties:

(1)
∑`
i=1 x̂ei ≤ |O|, and

(2) for every i ≥ 1 and each element e in the i-th group, we have ce ≤ coi .
We will show the invariant using induction on the number of iterations. We start by showing
the invariant at the beginning of the rounding algorithm. We can show the invariant for x
and OPT1 using Theorem 2.

B Claim 5. The invariant holds for x and OPT1.

Proof. Recall that each phase p of the KnapsackGuess algorithm selects a set Ap of elements
and it increases the values of each of these elements by ε. Thus the fractional value xei of
each element ei ∈ E is equal to ε times the number of phases p such that ei ∈ Ap. Moreover,
by Theorem 2, there is a mapping σ : {e1, . . . , e`} × {1, 2, . . . , 1/ε} → OPT1 such that, for
each phase p such that ei ∈ Ap, σ(ei, p) exists and c(ei) ≤ c(σ(ei, p)).

We can think of each element ei having xei/ε copies and each element o ∈ OPT1 having
|σ−1(o)| ≤ 1/ε copies. By letting Ẽ and Õ be the copies of the elements in E and OPT1
(respectively), we can equivalently view σ as a bijection between Ẽ and Õ with the property
that, if σ((e, i)) = (o, j) then c(e) ≤ c(o). We may also assume that the elements of O with
the highest costs have 1/ε copies, i.e., there exists an index p′ such that o1, . . . , op′ have 1/ε
copies and op′+1, . . . , op have zero copies; we can ensure this property by reassigning pairs
in Ẽ to elements of O with higher cost. Thus, if we sort Ẽ and Õ in non-increasing order
according to costs, σ maps the first 1/ε elements of Ẽ to o1, the next 1/ε elements to o2, etc.
Since the i-th consecutive block of 1/ε elements of Ẽ represents the fractional mass of the
i-th group of elements, the second property of the invariant follows. The first property of the
invariant follows from the fact that ‖x‖1

ε = |Ẽ| = |Õ| ≤ |OPT1|
ε . C

A. Ene and H. L. Nguyen 53:11

Now consider some iteration of the rounding algorithm, and suppose that the invariant
holds at the beginning of the iteration. The invariant guarantees that the total fractional
mass ‖x̂‖1 is at most |O| and, if we sort the fractional elements in non-increasing order
according to the cost, the first unit of fractional mass can be assigned to the element o1 with
highest cost in O, the next unit of fractional mass can be assigned to the element o2 with
second-highest cost in O, etc. We will use such an assignment to argue that the invariant
is preserved.

Suppose we are in Case 1, i.e., x̂e1 + x̂e2 ≤ 1, where e1 and e2 are the fractional elements
with the highest and second-highest cost. Let o1 be the element of O with the highest cost.
Since x̂e1 + x̂e2 ≤ 1, it follows from the invariant that the entire fractional mass of x̂e1 + x̂e2

is assigned to o1. Since the rounding step moves fractional mass between e1 and e2, this
property will continue to hold after the rounding step. If neither e1 nor e2 is rounded to 1,
the updated fractional solution clearly satisfies the invariant. Therefore we may assume that
one of e1, e2 is rounded to 1, and thus we must have had x̂e1 + x̂e2 = 1 before the rounding.
Since o1 is assigned a fractional mass of 1 in total, e1 and e2 are the only elements assigned
to o1. Therefore, after removing o1, e1, and e2, the remaining fractional entries and the set
O \ {o1} satisfy the invariant.

Suppose we are in Case 2, i.e., 1 < x̂e1 + x̂e2 ≤ 2, where e1 and e2 are the fractional
elements with the highest and second-highest cost, respectively. Let o1 and o2 be the elements
of O with the highest and second-highest cost, respectively. It follows from the invariant
that the fractional mass x̂e1 + x̂e2 is assigned to o1 and o2 as follows: the 1 unit of fractional
mass assigned to o1 is comprised of x̂e1 from e1 and 1− x̂e2 from e2, and o2 is assigned the
remaining x̂e1 + x̂e2 − 1 fractional mass of e2. The rounding step either rounds e1 to 1 by
moving 1− x̂e1 mass from e2 to e1 or it rounds e2 to 1 by moving 1− x̂e2 mass from e1 to
e2. In the former case, after removing e1 and o1, the remaining fractional entries and the set
O \ {o1} satisfy the invariant. Therefore we may assume that it is the latter, i.e., we round e2
to 1 and we remove e2 and o2. In this case, the fractional values on the elements e3, e4, . . .

move forward by 1− x̂e2 to fill in the space vacated by e2. We can also move forward their
assignment to O \ {o2}: e1 remains entirely assigned to o1 as before, and the assignment of
each of the elements e3, e4, . . . is shifted forward. Since we remove one unit from both the
total fractional mass and O, every remaining element becomes assigned to an element of
O \ {o2} whose cost is at least as much as the element of O that it was previously assigned.
Therefore the invariant is preserved. J

References
1 Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular

functions. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.
2 Shaddin Dughmi, Tim Roughgarden, and Mukund Sundararajan. Revenue Submodularity.

Theory of Computing, 8(1):95–119, 2012.
3 Ryan Gomes and Andreas Krause. Budgeted Nonparametric Learning from Data Streams. In

International Conference on Machine Learning (ICML), pages 391–398, 2010.
4 Stefanie Jegelka and Jeff A. Bilmes. Submodularity beyond submodular energies: Coupling

edges in graph cuts. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011.

5 David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 137–146, 2003.

6 Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum coverage problem.
Information processing letters, 70(1):39–45, 1999.

ICALP 2019

53:12 Fast Submodular Maximization with a Knapsack Constraint

7 Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-Optimal Sensor Placements in
Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies. Journal of Machine
Learning Research, 9:235–284, 2008.

8 Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and nonmonotone
submodular maximization with knapsack constraints. Mathematics of Operations Research,
38(4):729–739, 2013.

9 Hui Lin and Jeff A. Bilmes. Multi-document Summarization via Budgeted Maximization of
Submodular Functions. In Human Language Technologies: Conference of the North American
Chapter of the Association of Computational Linguistics, pages 912–920, 2010.

10 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32(1):41–43, 2004.

11 Laurence A Wolsey. Maximising real-valued submodular functions: Primal and dual heuristics
for location problems. Mathematics of Operations Research, 7(3):410–425, 1982.

12 Yuichi Yoshida. Maximizing a Monotone Submodular Function with a Bounded Curvature
under a Knapsack Constraint. CoRR, abs/1607.04527, 2016. arXiv:1607.04527.

http://arxiv.org/abs/1607.04527

	Introduction
	Our techniques

	The algorithm
	Rounding algorithm and analysis of the final solution

