
The Arboricity Captures the Complexity of
Sampling Edges
Talya Eden
Tel Aviv University, Tel Aviv, Israel
talyaa01@gmail.com

Dana Ron
Tel Aviv University, Tel Aviv, Israel
danaron@tau.ac.il

Will Rosenbaum
Max Planck Institute for Informatics, Saarbrücken, Germany
will.rosenbaum@gmail.com

Abstract
In this paper, we revisit the problem of sampling edges in an unknown graph G = (V,E) from a
distribution that is (pointwise) almost uniform over E. We consider the case where there is some
a priori upper bound on the arboriciy of G. Given query access to a graph G over n vertices and
of average degree d and arboricity at most α, we design an algorithm that performs O

(
α
d
· log3 n

ε

)
queries in expectation and returns an edge in the graph such that every edge e ∈ E is sampled with
probability (1± ε)/m. The algorithm performs two types of queries: degree queries and neighbor
queries. We show that the upper bound is tight (up to poly-logarithmic factors and the dependence
in ε), as Ω

(
α
d

)
queries are necessary for the easier task of sampling edges from any distribution over

E that is close to uniform in total variational distance. We also prove that even if G is a tree (i.e.,
α = 1 so that α

d
= Θ(1)), Ω

(logn
loglogn

)
queries are necessary to sample an edge from any distribution

that is pointwise close to uniform, thus establishing that a poly(logn) factor is necessary for constant
α. Finally we show how our algorithm can be applied to obtain a new result on approximately
counting subgraphs, based on the recent work of Assadi, Kapralov, and Khanna (ITCS, 2019).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Approximation algorithms analysis; Theory of computation → Streaming, sublinear
and near linear time algorithms; Theory of computation → Sketching and sampling

Keywords and phrases sampling, graph algorithms, arboricity, sublinear-time algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.52

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/1902.08086.

Funding Talya Eden: Supported by the Azrieli fellowship program for graduate students, by the
Sephora Scholarship and by the Weinstein Graduate Studies Prize.
Dana Ron: Partially supported by the Israel Science Foundation grant No. 1146/18.

1 Introduction

Let G = (V,E) be a graph over n vertices and m edges. We consider the problem of sampling
an edge in G from a pointwise-almost-uniform distribution over E. That is, for each edge
e ∈ E, the probability that e is returned is (1 ± ε)/m, where ε is a given approximation
parameter. An algorithm for performing this task has random access to the vertex set
V = {1, . . . , n} and can perform queries to G. The allowed queries are (1) degree queries

EA
T

C
S

© Talya Eden, Dana Ron, and Will Rosenbaum;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:talyaa01@gmail.com
mailto:danaron@tau.ac.il
mailto:will.rosenbaum@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://arxiv.org/abs/1902.08086
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 The Arboricity Captures the Complexity of Sampling Edges

denoted deg(v) (what is the degree, d(v), of a given vertex v) and (2) neighbor queries
denoted nbr(v, i) (what is the ith neighbor of v).1 We refer to this model as the uniform
vertex sampling model.

Sampling edges almost uniformly is a very basic sampling task. In particular it gives the
power to sample vertices with probability approximately proportional to their degree, which
is a useful primitive. Furthermore, there are sublinear algorithms that are known to work
when given access to uniform edges (e.g., [1, 2]) and can be adapted to the case when the
distribution over the edges is almost uniform (see Section 1.4 for details). An important
observation is that in many cases it is crucial that the sampling distribution is pointwise-close
to uniform rather than close with respect to the Total Variation Distance (henceforth TVD)
– see the discussion in [15, Sec. 1.1].

Eden and Rosenbaum [15] recently showed that Θ∗(
√
m/d) queries are both sufficient

and necessary for sampling edges almost uniformly, where d = 2m/n denotes the average
degree in the graph. (We use the notation O∗ to suppress factors that are polylogarithmic
in n and polynomial in 1/ε.) The instances for which the task is difficult (i.e., for which
Ω(
√
m/d) queries are necessary), are characterized by having very dense subgraphs, i.e., a

subgraph with average degree Θ(
√
m). Hence, a natural question is whether it is possible to

achieve lower query complexity when some a apriori bound on the density of subgraphs is
known. A well studied measure for bounded density “everywhere” is the graph arboricity
(see Definition 1.2 below). Indeed there are many natural families of graphs that have
bounded arboricity such as graphs of bounded degree, bounded treewidth or bounded genus,
planar graphs, graphs that exclude a fixed minor and many other graphs. In the context
of social networks, preferential attachment graphs and additional generative models exhibit
bounded arboricity [3, 6, 5], and this has also been empirically validated for many real-world
graphs [18, 16, 22].

We describe a new algorithm for sampling edges almost uniformly whose runtime is
O∗(α/d) where α is an upper bound on the arboricity of G. In the extremal case that
α = Θ(

√
m), the runtime of our algorithm is the same as that of [15] (up to poly-log factors).

For smaller α, our algorithm is strictly faster. In particular for α = O(1), the new algorithm
is exponentially faster than that of [15]. We also prove matching lower bounds, showing that
for all ranges of α, our algorithm is query-optimal, up to polylogarithmic factors and the
dependence in 1/ε.

Furthermore, while not as simple as the algorithm of [15], our algorithm is still easy to
implement and does not incur any large constants in the query complexity and running time,
thus making in it suitable for practical applications.

1.1 Problem definition
In order to state our results precisely, we define the notion of pointwise-closeness of probability
distributions (cf. [15]) and arboricity of a graph.

I Definition 1.1. Let D be a fixed probability distribution on a finite set X. We say that a
probability distribution D̂ is pointwise ε-close to D if for all x ∈ X,

∣∣∣D̂(x)−D(x)
∣∣∣ ≤ εD(x) , or equivalently 1− ε ≤ D̂(x)

D(x) ≤ 1 + ε .

1 If i > d(v) then a special symbol, e.g. ⊥, is returned.

T. Eden, D. Ron, and W. Rosenbaum 52:3

If D = U , the uniform distribution on X, then we say that D̂ is pointwise ε-close
to uniform.

For the sake of conciseness, from this point on, unless explicitly stated otherwise, when we
refer to an edge sampling algorithm, we mean an algorithm that returns edges according to
a distribution that is pointwise-close to uniform.

IDefinition 1.2. Let G = (V,E) be an undirected graph. A forest F = (VF , EF) (i.e., a graph
containing no cycles) with vertex set VF = V and edge set EF ⊆ E is a spanning forest
of G. We say that a family of spanning forests F1, F2, . . . , Fk covers G if E =

⋃k
i=1EFi .

The arboricity of G, denoted α(G), is the minimum k such that there exists a family of
spanning forests of size k that covers G.

An edge-sampling algorithm is given as input an approximation parameter ε ∈ (0, 1) and
a parameter α which is an upper bound on the arboricity of G. The algorithm is required to
sample edges according a distribution that is pointwise ε-close to uniform. To this end the
algorithm is given query access to G. In particular we consider the aforementioned uniform
vertex sampling model.

1.2 Results
We prove almost matching upper and lower bounds on the query complexity of sampling an
edge according to a distribution that is pointwise-close to uniform when an upper bound on
the arboricity of the graph is known. The first lower bound stated below (Theorem 2) holds
even for the easier task of sampling from a distribution that is close to uniform in TVD.

I Theorem 1. There exists an algorithm A that for any n, m, α, and graph G = (V,E)
with n nodes, m edges, and arboricity at most α, satisfies the following. Given n and α, A
returns an edge e ∈ E sampled from a distribution Û that is pointwise ε-close to uniform
using O

(
α
d ·

log3 n
ε

)
degree and neighbor queries in expectation, where d = m/n.

In Section 1.5.1 we provide a high-level presentation of the algorithm referred to in
Theorem 1 and discuss how it differs from the algorithm in [15] (for the case that there is no
given upper bound on the arboricity).

We next state our lower bound, which matches the upper bound in Theorem 1 up to a
polylogarithmic dependence on n (for constant ε).

I Theorem 2. Fix ε ≤ 1/6 and let n,m and α be parameters such that α = α(n) ≤
√
m and

m ≤ nα. Let Gαn,m be the family of graphs with n vertices, m edges and arboricity at most α.
Then any algorithm A that for any G ∈ Gαn,m samples edges in G from a distribution that is
ε-close to uniform in total variation distance – and in particular, any distribution that is
pointwise ε-close to uniform – requires Ω (α/d) queries in expectation.

When α is a constant then (assuming that m = Ω(n)) the lower bound in Theorem 2 is
simply Ω(1), while Theorem 1 gives an upper bound of O(log3 n) (for constant ε). We prove
that an almost linear dependence on logn is necessary, even for the case that α = 1 (where
the graph is a tree).

I Theorem 3. Fix ε ≤ 1/6, and let Tn be the family of trees on n vertices. Then any
algorithm A that for any G ∈ Tn samples edges in G from a distribution that is pointwise
ε-close to uniform requires Ω

(
logn

loglogn

)
queries in expectation.

We note that both of our lower bounds hold when the algorithm is also given access to pair
queries, pair(u, v), which state whether u and v share an edge.

ICALP 2019

52:4 The Arboricity Captures the Complexity of Sampling Edges

1.3 Discussion of the results
Comparison to known results. The simplest algorithm for sampling edges uniformly is
based on rejection sampling. Namely, it repeats the following until an edge is output: Sample
a uniform vertex u, flip a coin with bias d(u)/dmax, where dmax is the maximum degree, and
if the outcome is HEADS, then output a random edge (u, v) incident to u. The expected
complexity of rejection sampling grows like dmax/d, that is, linearly with the maximum degree.
As noted earlier, Eden and Rosenbaum [11] show that this dependence on the maximum
degree is not necessary (for approximate sampling), as O∗(

√
m/d) queries and time always

suffice, even when the maximum degree is not bounded (e.g., is Θ(n)). However, if the
maximum degree is bounded, and in particular if dmax = o(

√
m), then rejection sampling has

lower complexity than the [11] algorithm (e.g., in the case that the graph is close to regular,
so that when dmax = O(d), we get complexity O(1)).

Since the arboricity of a graph is both upper bounded by dmax and by
√
m, our algorithm

can be viewed as “enjoying both worlds”. Furthermore, our results can be viewed as showing
that the appropriate complexity measure for sampling edges is not the maximum degree but
rather the maximum average degree (recall that the arboricity α measures the maximum
density of any subgraph of G – for a precise statement, see Theorem 4).

Sampling vs. Estimating. As shown by Eden, Ron and Seshadhri [11], Θ∗(α/d) is also
the complexity of estimating the number of edges in a graph when given a bound α on the
arboricity of the graph. Their algorithm improves on the previous known bound of O∗ (

√
m/d)

by Feige [17] and Goldreich and Ron [19] (when the arboricity is o(
√
m)). However, other

than the complexity, our algorithm for sampling edges and the algorithm of [11] for estimating
the number of edges do not share any similarities, in particular, as the result of [11] is allowed
to “ignore” an ε-fraction of the graph edges.

Furthermore, while the complexity of sampling and of approximate counting of edges are
the same (up to logn and 1/ε dependencies), we have preliminary results showing that for
other subgraphs this is not necessarily the case. Specifically, there exist graphs with constant
arboricity for which estimating the number of triangles can be done using O∗(1) queries, but
pointwise-close to uniform sampling requires Ω(n1/4) queries in expectation.

On the necessity of being provided with an upper bound on the arboricity. While our
algorithm does not require to be given any bound on the average degree d, it must be
provided with an upper bound α on the arboricity of the given graph. To see why this is true,
consider the following two graphs. The first graph consists of a perfect matching between
its vertices, so that both its average degree and its arboricity are 1. For α̃ > 1, the second
graph consists of a perfect matching over n − n/α̃ vertices and an α̃-regular graph over
the remaining n/α̃ vertices. This graph has an average degree of roughly 2, and arboricity
α̃. If an edge-sampling algorithm is not provided with an appropriate upper bound on the
arboricity, but is still required to run in (expected) time that grows like the ratio between
the arboricity and the average degree, then the algorithm can be used to distinguish between
the two graphs. However, assuming a random labeling of the vertices of the two graphs, this
cannot be done in time o(α̃).2

Pointwise closeness vs. closeness with respect to the TVD. The lower bound of The-
orem 2 holds for sampling from a distribution that is close to uniform with respect to TVD,

2 We note that this construction can be extended to work for any d ≤ α̃.

T. Eden, D. Ron, and W. Rosenbaum 52:5

and a fortiori to sampling from pointwise-almost-uniform distributions. In contrast, the
lower bound of Theorem 3 does not apply to sampling edges from a distribution that is ε-close
to uniform in TVD. Indeed, a simple rejection sampling procedure (essentially ignoring all
nodes with degrees greater than 1/ε) can sample edges from a distribution that is ε-close to
uniform in TVD using O(1/ε) queries in expectation. Thus, Theorem 3 gives a separation
between the tasks of sampling from distributions that are pointwise-close to uniform versus
close to uniform in TVD. The general upper and lower bounds of Theorems 1 and 2 show
that the separation between the complexity of these tasks can be at most poly-logarithmic
for any graph.

1.4 An application to approximately counting subgraphs
In a recent paper [2], Assadi, Kapralov, and Khanna made significant progress on the question
of counting arbitrary subgraphs in a graph in sublinear time. Specifically, they provide
an algorithm that estimates the number of occurrences of any arbitrary subgraph H in G,
denoted by #H, to within a (1 ± ε)-approximation with high probability. The running
time of their algorithm is O∗

(
mρ(H)

#H

)
, where ρ(H) is the fractional edge cover of H.3 Their

algorithm assumes access to uniform edge samples in addition to degree, neighbor and pair
queries. As noted in [2], their algorithm can be adapted to work with edge samples that are
pointwise ε-close to uniform (where this is not true for edge samples that are only ε-close to
uniform in TVD – e.g., when all the occurrences of H are induced by an ε-fraction of the
edges). Invoking the algorithm of [2], and replacing each edge sample with an invocation of
Sample-edge results in the following corollary.

I Corollary 1. Let G be a graph G = (V,E) with n nodes, m edges, and arboricity at most
α. There exists an algorithm that, given n, α, ε ∈ (0, 1), a subgraph H and query access to G,
returns a (1± ε) approximation of the number of occurrences of H in G, denoted #H. The
expected query complexity and running time of the algorithm are

O∗
(

min
{
m,

nα ·mρ(H)−1

#H

})
and O∗

(
nα ·mρ(H)−1

#H

)
,

respectively, where ρ(H) denotes the fractional edge cover of H, and the allowed queries are
degree, neighbor and pair queries.

Thus, by combining our result with [2], we extend the known results for approximately count-
ing the number of subgraphs in a graph in the uniform vertex sampling model. Furthermore,
for graphs in which m = Θ(nα), we obtain the same query complexity and running time
of [2] without the assumption that the algorithm has access to uniform edge samples.

1.5 A high-level presentation of the algorithm and lower bounds

1.5.1 The algorithm
While our results concern undirected graphs G = (V,E), it will be helpful to view each edge
{u, v} ∈ E as a pair of ordered edges (u, v) and (v, u). Sampling an edge (almost) uniformly
is equivalent to sampling a vertex with probability (almost) proportional to its degree. Hence

3 The fractional edge cover of a graph H = (VH , EH) is a mapping ψ : EH → [0, 1] such that for each
vertex a ∈ VH ,

∑
e∈EH ,a∈e ψ(e) ≥ 1. The fractional edge-cover number ρ(H) of H is the minimum

value of
∑

e∈EH
ψ(e) among all fractional edge covers ψ.

ICALP 2019

52:6 The Arboricity Captures the Complexity of Sampling Edges

we focus on the latter task. A single iteration of the algorithm we describe either returns a
vertex or outputs FAIL. We show that the probability that it outputs FAIL is not too large,
and that conditioned on the algorithm returning a vertex, each vertex v is returned with
probability proportional to its degree, up to a factor of (1± ε).

Our starting point is a structural decomposition result for graphs with bounded arboricity
(Lemma 2.3). Our decomposition defines a partition of the graph’s vertices into levels
L0, L1, . . . , L`. For parameters θ and β, the first layer L0 consists of all vertices with degree
at most θ, and for i > 0, level Li contains all vertices v that do not belong to previous levels
L0, . . . , Li−1, but have at least (1 − β)d(v) neighbors in these levels. We prove that that
for any graph with arboricity at most α, for θ = Θ(α logn/ε) and β = Θ(ε/ logn), there
exists such a partition into layers with ` = O(logn) levels. We stress that the algorithm does
not actually construct such a partition, but rather we use the partition in our analysis of
the algorithm.4

In order to gain intuition about the algorithm and its analysis, suppose that all vertices in
L0 have degree exactly θ, and that all edges in the graph are between vertices in consecutive
layers. Consider the following random walk algorithm. The algorithm first selects an index
j ∈ [0, `] uniformly at random. It then selects a vertex u0 uniformly at random. If u0 ∈ L0,
then it performs a random walk of length j starting from u0 (otherwise it outputs FAIL). If
the walk did not pass through any vertex in L0 (with the exception of the starting vertex
u0), then the algorithm returns the final vertex reached.

First observe that for every u ∈ L0, the probability that u is returned is 1
`+1 ·

1
n (the

probability that the algorithm selected j = 0 and selected u as u0). This equals d(u)
(`+1)·θ·n

(by our assumption that d(u) = θ for every u ∈ L0). Now consider a vertex v ∈ L1. The
probability that v is returned is at least 1

`+1 ·
(1−β)d(v)

n · 1θ = (1−β)d(v)
(`+1)·θ·n (the probability that the

algorithm selected j = 1, then selected one of v’s neighbors u ∈ L0, and finally selected to take
the edge between u and v). In general, our analysis shows that for every i and every v ∈ Li, the
probability that v is returned is at least (1−β)id(v)

(`+1)·θ·n . On the other hand, we show that for every
vertex v, the probability that v is returned is at most d(v)

(`+1)·θ·n . By the choice of θ and β we
get that each vertex v is returned with probability in the range [(1−ε)d(v)ρ(ε, n), d(v)ρ(ε, n)]
for ρ(ε, n) = Θ(ε/(αn log2 n)). By repeating the aforementioned random-walk process until
a vertex is returned – Θ

(
αn
m ·

log2 n
ε

)
= Θ

(
α
d ·

log2 n
ε

)
times in expectation – we obtain a

vertex that is sampled with probability proportional to its degree, up to (1± ε).
We circumvent the assumption that d(u) = θ for every u ∈ L0 by rejection sampling: In

the first step, if the algorithm samples u0 ∈ L0, then it continues with probability d(u)/θ
and fails otherwise. The assumption that all edges are between consecutive levels is not
necessary for the analysis described above to hold. The crucial element in the analysis is
that for every vertex v /∈ Li, where i > 0, at least (1 − β) of the neighbors of v belong to
L0, . . . , Li−1. This allows us to apply the inductive argument for the lower bound on the
probability that v is returned when we average over all choices of j (the number of steps in
the random walk). For precise details of the algorithm and its analysis, see Section 2.

We briefly discuss the relation between our algorithm for bounded-arboricity graphs,
which we denote by Aba and the algorithm presented in [15] (for the case that no upper
bound is given on the arboricity), which we denote by Aua. The algorithm Aua can be

4 This decomposition is related to the forest decomposition of Barenboim and Elkin [4]. The main
difference, which is essential for our analysis, is that the partition we define is based on the number of
neighbors that a vertex has in lower levels relative to its degree, while in [4] the partition is based on
the absolute number of neighbors in higher levels.

T. Eden, D. Ron, and W. Rosenbaum 52:7

viewed as considering a partition of the graph vertices into just two layers according to a
degree threshold of roughly

√
m/ε. It performs a random walk similarly to Aba, but where

the walk has either length 0 or 1. This difference in the number of layers and the length
of the walk, is not only quantitative. Rather, it allows Aua to determine to which layer a
vertex belongs simply according to its degree. This is not possible in the case of Aba (with
the exception of vertices in L0). Nonetheless, despite the apparent “blindness” of Aba to the
layers it traverses in the random walk, we can show the following: Choosing the length of
the random walk uniformly at random and halting in case the walk returns to L0, ensures
that each vertex is output with probability approximately proportional to its degree.

1.5.2 The lower bounds

In order to prove Theorem 2, we employ the method of [14] – which builds upon the paradigm
introduced in [7] – based on communication complexity. The idea of the proof is to reduce
from the two-party communication complexity problem of computing the disjointness function.
The reduction is such that (1) any algorithm that samples edges from an almost-uniform
distribution reveals the value of the disjointness function with sufficiently large probability,
and (2) every allowable query can be simulated in the two-party communication setting using
little communication.

As opposed to the proof of the lower bound for general α, in the case of α = 1 we did not
find a way to employ the communication-complexity method. Instead, we design a direct,
albeit somewhat involved, proof from first-principles.

Specifically, in order to prove Theorem 3, we consider a complete tree in which each
internal vertex has degree logn (so that its depth is Θ

(
logn

loglogn

)
). We then consider the

family of graphs that correspond to all possible labelings of such a tree. As noted in
Section 1.5.1, sampling edges almost uniformly is equivalent to sampling vertices with
probability approximately proportional to their degree. In particular, in our construction, the
label of the root should be returned with probability approximately logn/n. We show that
any algorithm that succeeds in returning the label of the root of the tree with the required
probability must perform Ω

(
logn

loglogn

)
queries.

To this end we define a process P that interacts with any algorithm A, answering A’s
queries while constructing a uniform random labeling of the vertices and edges in the tree.
The vertices of the tree are assigned random labels in [n], and for each vertex v in the tree,
its incident edges are assigned random labels in [d(v)]. We say that A succeeds, if after the
interaction ends, A outputs the label of the root of the tree, as assigned by P.

Let L = logn
C·loglogn be the lower bound we would like to prove, where C is a sufficiently

large constant (so that in particular, L is a (small) constant fraction of the depth of the
tree). Intuitively, A would like to “hit” a vertex at depth at most L and then “walk up the
tree” to the root. There are two sources of uncertainty for A. One is whether it actually hits
a vertex at depth at most L, and the second is which edges should be taken to go up the
tree. Our lower bound argument mainly exploits the second uncertainty, as we sketch next.

The process P starts with an unlabeled tree (of the aforementioned structure), and assigns
labels to its vertices and edges in the course of its interaction with A. Recall that P answers
the queries of A while constructing a uniform labeling. Therefore, whenever A asks a query
involving a new label (i.e., that has not yet appeared in its queries or answers to them), the
vertex to which this label is assigned, should be uniformly selected among all vertices that
are not yet labeled. We shall say that a vertex is critical it its depth is at most L. As long
as no critical vertex is hit, A cannot reach the root. This implies that if no critical vertex is

ICALP 2019

52:8 The Arboricity Captures the Complexity of Sampling Edges

hit in the course of its queries, then the probability that A succeeds is O(1/n).
While the probability of hitting a critical vertex is relatively small, it is not sufficiently

small to be deemed negligible. However, suppose that A hits a critical vertex u at depth
∆ < L, which occurs with probability roughly (logn)∆/n. Then, conditioned on this event,
each of the (logn)∆ edge-labeled paths from u is equally likely to lead to the root, and the
labels of vertices on these paths are uniformly distributed, thus intuitively conveying no
information regarding the “right path”.

A subtlety that arises when formalizing this argument is the following. Suppose that
in addition to hitting a critical vertex u, A hits another vertex, v, which is not necessarily
critical, but is at distance less than L from u (and in particular has depth at most 2L, which
we refer to as shallow). Then, a path starting from v might meet a path starting from u,
hence adding a conditioning that makes the above argument (regarding uniform labelings)
imprecise. We address this issue by upper bounding the probability of such an event (i.e., of
hitting both a critical vertex and a shallow vertex), and accounting for an event of this type
as a success of A.

1.6 Related work
Some of the works presented below were already mentioned earlier in the introduction, but
are provided in this subsection for the sake of completeness.

The work most closely related to the present work is the recent paper of Eden and
Rosenbaum [15]. In [15], the authors proved matching upper and lower bounds of Θ∗(

√
m/d)

for the problem of sampling an edge from an almost-uniform distribution in an arbitrary
graph using degree, neighbor, and pair queries.

The problem of sampling edges in a graph is closely related to the problem of estimating
m, the number of edges in the graph. In [17], Feige proved an upper bound of O∗(

√
m/d)

for obtaining a (2 + ε)-factor multiplicative approximation of m using only degree queries,5
and shows that it is not possible to go below a factor of 2 with a sublinear number of
degree queries. In [19], Goldreich and Ron showed that Θ∗(

√
m/d) queries are necessary and

sufficient to obtain a (1 + ε)-factor approximation of m if neighbor queries are also allowed.
Several works prove matching upper and lower bounds on the query complexity of counting

the number of triangles [8], cliques [13], and star-graphs of a given size [20] using degree,
neighbor, and pair queries (when the latter are necessary). Eden, Ron, and Seshadhri
devised algorithms for estimating the number of k-cliques [12] and moments of the degree
distribution [11] whose runtimes are parameterized by the arboricity α of the input graph
(assuming a suitable upper bound for α is given to the algorithm as input). These algorithms
outperform the lower bounds of [13] and [20] (respectively) in the case where α �

√
m.

In [9], Eden, Levi, and Ron described an efficient algorithm for distinguishing graphs with
arboricity at most α from those that are far from any graph with arboricity 3α.

Two recent works [1, 2] consider a query model that allows uniform random edge sampling
in addition to degree, neighbor, and pair queries. In this model, Aliakbarpour et al. [1]
described an algorithm for estimating the number of star subgraphs. In the same model,
Assadi et al. [2] devised an algorithm that relies on uniform edge samples as a basic query
to approximately count the number of instances of an arbitrary subgraph in a graph. The

5 To be precise, Feige [17] shows that, given a lower bound d0 on the average degree, O(
√
n/d0/ε) degree

queries are sufficient. If such a lower bound is not provided to the algorithm, then a geometric search
can be performed, as shown in [19].

T. Eden, D. Ron, and W. Rosenbaum 52:9

results in [1] and [2] imply that uniform edge samples afford the model strictly more power:
the sample complexity of the algorithm of [1] outperforms the lower bound of [20] for the
same task, and the sample complexity of the algorithm of [2] outperforms the lower bound
of [13] for estimating the number of cliques. (The results of [20, 13] are in the uniform vertex
sampling model.)

Organization
Due to space constraints, in this extended abstract we provide full details only for the proof
of our upper bound (Theorem 1). The proofs of Theorems 2 and 3 can be found in [10].

2 The Algorithm

In this section we describe an algorithm that samples an edge e from an arbitrary graph G
with arboricity at most α, according to a pointwise almost uniform distribution. Theorem 1
follows from our analysis of the algorithm. In what follows, for integers i ≤ j, we use [i, j] to
denote the set of integers {i, . . . , j}, and for a vertex v we let Γ(v) denote its set of neighbors.

As noted in the introduction, sampling edges from a uniform distribution is equivalent
to sampling vertices proportional to their degrees. Indeed, if each vertex v is sampled with
probability d(v)/2m, then choosing a random neighbor w ∈ Γ(v) uniformly at random returns
the (directed) edge e = (v, w) with probability 1/2m. Thus, it suffices to sample each vertex
v ∈ V with probability (approximately) proportional to its degree.

2.1 Decomposing graphs of bounded arboricity
Before describing the algorithm, we describe a decomposition of a graph G into layers
depending on its arboricity. We begin by recalling the following characterization of arboricity
due to Nash-Williams [21].

I Theorem 4 (Nash-Williams [21]). Let G = (V,E) be a graph. For a subgraph H of
G, let nH and mH denote the number of vertices and edges, respectively, in H. Then
α(G) = maxH {dmH/(nH − 1)e} , where the maximum is taken over all subgraphs H of G.

I Definition 2.1. Let G = (V,E) be a graph, and θ ∈ N, β ∈ (0, 1) parameters. We define
a (θ, β)-layering in G to be the sequence of non-empty disjoint subsets L0, L1, . . . , L` ⊆ V
defined by L0 = {v ∈ V | d(v) ≤ θ} and for i ≥ 1,

Li+1 =
{
v /∈ L0 ∪ L1 ∪ · · · ∪ Li

∣∣ |Γ(v) ∩ (L0 ∪ · · · ∪ Li)| ≥ (1− β)d(v)
}
.

That is, L0 consists of all vertices of degree at most θ, and a vertex v is in Li+1 if i is the
smallest index for which a (1− β)-fraction of v’s neighbors resides in L0 ∪ L1 ∪ · · · ∪ Li. We
say that G admits a (θ, β)-layered partition of depth ` if we have V = L0 ∪L1 ∪ · · · ∪L`.

I Notation 2.2. For a fixed i, we denote L≤i = L0 ∪ L1 ∪ · · · ∪ Li, and similarly for L<i,
L≥i, and L>i. We use the notation di(v) to denote |Γ(v) ∩ Li| and similarly for d≤i(v) and
d≥i(v).

I Lemma 2.3. Suppose G is a graph with arboricity at most α. Then G admits a (θ, β)-
layered partition of depth ` for θ = 4αdlogne/ε, β = ε/2dlogne, and ` ≤ dlogne.

Proof. For each i, let Wi = V \ (L0 ∪ L1 ∪ · · · ∪ Li−1) be the set of vertices not in levels
0, 1, . . . , i− 1. Let m(Wi) denote the number of edges in the subgraph of G induced by Wi.

ICALP 2019

52:10 The Arboricity Captures the Complexity of Sampling Edges

For any fixed i and v ∈Wi+1, we have d<i(v) < (1− β)d(v) because v /∈ L≤i. Therefore, v
has at least βd(v) > βθ neighbors in Wi. Summing over vertices v ∈Wi+1 gives

m(Wi) = 1
2
∑
v∈Wi

d≥i(v) ≥ 1
2
∑

v∈Wi+1

d≥i(v) > 1
2 |Wi+1| · βθ . (1)

On the other hand, sinceG has arboricity at most α, Theorem 4 implies thatm(Wi) ≤ α |Wi| .
Plugging this into Equation (1), we find that |Wi+1|

|Wi| ≤
2α
βθ = 1

2 , where the inequality is by
the choice of β and θ. Therefore, for ` ≤ dlogne, we have that W`+1 = ∅, implying that
V = L0 ∪ L1 ∪ · · · ∪ L`. J

2.2 Algorithm description
The algorithm exploits the structure of graphs G with arboricity at most α described in
Lemma 2.3. More precisely, as the algorithm does not have direct access to this structure,
the structure is used explicitly only in the analysis of the algorithm. Let L0, L1, . . . , L` be a
(θ, β)-layered partition of V with θ = 4αdlogne/ε, β = ε/dlogne, and ` = dlogne. Vertices
v ∈ L0 are sampled with probability exactly proportional to their degree using a simple
rejection sampling procedure, Sample-L0(G, θ). In order to sample vertices in layers Li for
i > 0, our algorithm performs a random walk starting from a random vertex in L0 chosen with
probability proportional to its degree. Specifically, the algorithm Sample-edge(G,α) chooses
a length j to the random walk uniformly in [0, `]. The subroutine Random-walk(G, θ, j)
performs the random walk for j steps, or until a vertex v ∈ L0 is reached in some step i > 0.
If the walk returns to L0, the subroutine aborts and does not return any vertex. (This
behavior ensures that samples are not too biased towards vertices in lower layers.) Otherwise,
Random-walk returns the vertex at which the random walk halts. Our analysis shows that
the probability that the random walk terminates at any vertex v ∈ V is approximately
proportional to d(v) (Corollary 2.7), although Sample-edge may fail to return any edge with
significant probability. Finally, we repeat Sample-edge until it successfully returns a vertex.

Sample-edge(G,α, ε)
1. Let θ = 4αdlogne/ε and let ` = dlogne.
2. Choose a number j ∈ [0, `] uniformly at random.
3. Invoke Random-walk(G, θ, j) and let v be the returned vertex if one was returned.

Otherwise, return FAIL.
4. Sample a uniform neighbor w of v and return e = (v, w).

Random-walk(G, θ, j)
1. Invoke Sample-L0(θ) and let v0 be the returned vertex if one was returned. Otherwise,

return FAIL.
2. For i = 1 to j do

a. Sample a random neighbor vi of vi−1.
b. If vi ∈ L0 then return FAIL.

3. Return vj .

Sample-L0(G, θ)
1. Sample a vertex u ∈ V uniformly at random and query for its degree.
2. If d(u) > θ return FAIL.
3. Return u with probability d(u)

θ , and with probability 1− d(u)
θ return FAIL.

T. Eden, D. Ron, and W. Rosenbaum 52:11

I Definition 2.4. We let Pj [v] denote the probability that Random-walk returns v, when
invoked with parameters G, θ and j ∈ [0, `]. We also let P≤j [v] def=

∑j
i=0 Pi[v] and similarly

for P≥j.

I Lemma 2.5. Let ` be as set in Step 1 of Sample-edge and let P≤j be as defined in
Definition 2.4. For all v ∈ V , P≤`[v] ≤ d(v)

nθ .

Proof. We argue by induction on j that for any j ∈ [0, `], P≤j [v] ≤ d(v)/nθ. For the
case j = 0, it is immediate from the description of Random-walk and Sample-L0 that
P0[v] = d(v)/(nθ) if v ∈ L0 and P0[v] = 0 otherwise. Further, for v ∈ L0, due to Step 2b,
Pi(v) = 0 for all i > 0, so that the lemma holds for all v ∈ L0. Now suppose that for all
v ∈ V we have P≤j−1(v) ≤ d(v)/nθ. Then for any fixed v /∈ L0 we compute

P≤j [v] =
j∑
i=1

Pi[v] =
j∑
i=1

∑
u∈Γ(v)

Pi−1[u] 1
d(u) =

∑
u∈Γ(v)

1
d(u)

j−1∑
i=0

Pi[u]

=
∑

u∈Γ(v)

1
d(u)P≤j−1[u] ≤

∑
u∈Γ(v)

1
d(u)

d(u)
nθ

= d(v)
nθ

.

The second equality holds by the definition of Random-walk, and the one before the last
inequality holds by the inductive hypothesis. J

I Lemma 2.6. Let ` be as set in Step 1 of Sample-edge. For every j ∈ [`], v ∈ Lj and
k ∈ [j, `], we have P≤k[v] ≥ (1−β)jd(v)

nθ .

Proof. We prove the claim by induction on j. For j = 0 and k = 0, by the description of
Random-walk and Sample-L0, for every v ∈ L0,

P0[v] = d(v)
nθ

. (2)

For j = 0 and 0 < k ≤ `,

P≤k[v] =
k∑
i=0

Pi[v] = P0[v] +
k∑
i=1

Pi[v] = d(v)
nθ

, (3)

where the last equality is due to Step 2b in Random-walk.
For j = 1 and 1 ≤ k ≤ `, for every v ∈ L1, according to Step 2b in the procedure

Random-walk, P0[v] = 0. Also, for every u /∈ L0, P0[u] = 0, since by Step 2 in Sample-L0 it
always holds that v0 is in L0. Therefore,

P1[v] =
∑

u∈Γ(v)

P0[u] · 1
d(u) =

∑
u∈Γ(v)∩L0

P0[u] · 1
d(u) =

∑
u∈Γ(v)∩L0

d(u)
nθ
· 1
d(u) = d0(v)

nθ
, (4)

where the second to last inequality is by Equation (2). By the definition of L1, for every
v ∈ L1, d0(v) ≥ (1− β)d(v), and it follows that P≤k[v] ≥ P1[v] ≥ (1− β)d(v)/(nθ).

We now assume that the claim holds for all i ≤ j − 1 and k ∈ [i, `], and prove that it
holds for j and for every k ∈ [j, `]. By the induction hypothesis and the definition of Lj , for
any v ∈ Lj we have

P≤k[v] ≥ P≤j [v] =
∑

u∈Γ(v)

P≤j−1[u] · 1
d(u) ≥

j−1∑
i=0

∑
u∈Γ(v)∩Li

P≤j−1[u] · 1
d(u)

≥
j−1∑
i=0

∑
u∈Γ(v)∩Li

(1− β)id(u)
nθ

· 1
d(u) ≥

(1− β)j−1d≤j−1(v)
nθ

≥ (1− β)jd(v)
nθ

.

Hence, the claim holds for every j ∈ [`] for every k ∈ [j, `]. J

ICALP 2019

52:12 The Arboricity Captures the Complexity of Sampling Edges

I Corollary 2.7. For any graph G with arboricity at most α, the procedure Sample-edge
when invoked with G, α and ε, returns each edge in the graph with probability in the range[

1−ε/2
ρ , 1

ρ

]
for ρ = nθ(`+ 1), θ = 4αdlogne/ε and ` = dlogne.

Proof. Consider a specific edge e∗ = (v∗, w∗), and let i be the index such that v∗ ∈ Li. By
the description of the procedure Sample-edge, the procedure Random-walk is invoked with
an index j that is chosen uniformly in [0, `]. Hence, the probability that v∗ is returned
by Random-walk in Step 3 is Pr[v = v∗] = 1

`+1
∑`
j=0 Pj [v] = 1

`+1P≤`[v]. By Lemma 2.5,
P≤`[v] ≤ d(v)

nθ , and by Lemma 2.6, P≤`[v∗] ≥ (1−β)`d(v∗)
nθ , where the probability is over the

random coins of the procedures Sample-edge and Random-walk. Hence,

Pr[v = v∗] ∈ [(1− β)`, 1] · d(v∗)
nθ(`+ 1) ,

implying that for ρ = nθ(`+ 1),

Pr[(v∗, w∗) is the returned edge] ∈ [(1− β)`, 1] · 1
nθ(`+ 1) ∈

[
1− ε/2

ρ
,

1
ρ

]
, (5)

where the last inequality is by the setting of β = ε/2dlogne. J

Proof of Theorem 1. Consider the algorithm that repeatedly calls Sample-edge(G,α) until
an edge e is successfully returned. For a single invocation of Sample-edge and fixed edge
e let Ae denote the event that Sample-edge returns e. By Corollary 2.7 we have that
Pr[Ae] ≥ (1− ε)/nθ(`+ 1). Further, for any edge e′ 6= e the events Ae and Ae′ are disjoint,
so we bound

Pr[Sample-edge returns an edge] = Pr
[⋃
e∈E

Ae

]
=
∑
e∈E

Pr[Ae] ≥
(1− ε)m
nθ(`+ 1) .

The expected number of iterations until Sample-edge succeeds is the reciprocal of this
probability, so

E[# invocations until success] ≤ nθ(`+ 1)
(1− ε)m = O

(nα
mε
· log2 n

)
.

Since each invocation of Sample-edge uses O(logn) queries, the expected number of queries
before an edge is returned is O(nαεm · log3 n).

Finally, when conditioned on a successful invocation of Sample-edge, Corollary 2.7 implies
that for any e, f ∈ E the probabilities pe, pf of returning e and f , respectively, satisfy

1− ε/2 ≤ pe
pf
≤ 1

1− ε/2 ≤ 1 + ε.

Therefore, the induced distribution P over edges returned by a successful invocation of
Sample-edge is pointwise ε-close to uniform, which gives the desired result. J

T. Eden, D. Ron, and W. Rosenbaum 52:13

References
1 Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt

Rubinfeld, and Anak Yodpinyanee. Sublinear-Time Algorithms for Counting Star Subgraphs
via Edge Sampling. Algorithmica, pages 1–30, 2017. doi:10.1007/s00453-017-0287-3.

2 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A Simple Sublinear-Time Algorithm
for Counting Arbitrary Subgraphs via Edge Sampling. In ITCS, volume 124 of LIPIcs, pages
6:1–6:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

3 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

4 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distributed Computing, 22(5-6):363–379, 2010.
doi:10.1007/s00446-009-0088-2.

5 Reinhard Bauer, Marcus Krug, and Dorothea Wagner. Enumerating and generating labeled
k-degenerate graphs. In Proceedings of the Meeting on Algorithm Engineering & Expermiments,
pages 90–98. Society for Industrial and Applied Mathematics, 2010.

6 Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, and Dorothea Wagner. Generating
graphs with predefined k-core structure. In Proceedings of the European Conference of Complex
Systems. Citeseer, 2007.

7 Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311–358, 2012.

8 Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles
in sublinear time. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 614–633. IEEE, 2015.

9 Talya Eden, Reut Levi, and Dana Ron. Testing bounded arboricity. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2081–2092, 2018.
doi:10.1137/1.9781611975031.136.

10 Talya Eden, Dana Ron, and Will Rosenbaum. The Arboricity Captures the Complexity of
Sampling Edges, 2019. arXiv:1902.08086.

11 Talya Eden, Dana Ron, and C. Seshadhri. Sublinear Time Estimation of Degree Distribution
Moments: The Degeneracy Connection. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,
and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 7:1–7:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2017.7.

12 Talya Eden, Dana Ron, and C. Seshadhri. Faster sublinear approximations of k-cliques for
low arboricity graphs. CoRR, abs/1811.04425, 2018. arXiv:1811.04425.

13 Talya Eden, Dana Ron, and C. Seshadhri. On approximating the number of k-cliques in
sublinear time. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 722–734, 2018.
doi:10.1145/3188745.3188810.

14 Talya Eden and Will Rosenbaum. Lower Bounds for Approximating Graph Parameters
via Communication Complexity. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 -
Princeton, NJ, USA, pages 11:1–11:18, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.11.

15 Talya Eden and Will Rosenbaum. On Sampling Edges Almost Uniformly. In Raimund Seidel,
editor, 1st Symposium on Simplicity in Algorithms (SOSA 2018), volume 61 of OpenAccess
Series in Informatics (OASIcs), pages 7:1–7:9, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.SOSA.2018.7.

16 David Eppstein and Darren Strash. Listing all maximal cliques in large sparse real-world
graphs. In International Symposium on Experimental Algorithms, pages 364–375. Springer,
2011.

ICALP 2019

http://dx.doi.org/10.1007/s00453-017-0287-3
http://dx.doi.org/10.1007/s00446-009-0088-2
http://dx.doi.org/10.1137/1.9781611975031.136
http://arxiv.org/abs/1902.08086
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.7
http://arxiv.org/abs/1811.04425
http://dx.doi.org/10.1145/3188745.3188810
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.11
http://dx.doi.org/10.4230/OASIcs.SOSA.2018.7

52:14 The Arboricity Captures the Complexity of Sampling Edges

17 Uriel Feige. On sums of independent random variables with unbounded variance and estimating
the average degree in a graph. SIAM Journal on Computing, 35(4):964–984, 2006.

18 Gaurav Goel and Jens Gustedt. Bounded arboricity to determine the local structure of sparse
graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages
159–167. Springer, 2006.

19 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random Struct.
Algorithms, 32(4):473–493, 2008.

20 Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small subgraphs in
sublinear-time. SIAM Journal on Discrete Mathematics, 25(3):1365–1411, 2011.

21 C. St. JA. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London
Mathematical Society, 1(1):445–450, 1961.

22 Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Patterns and anomalies in k-cores
of real-world graphs with applications. Knowledge and Information Systems, 54(3):677–710,
2018.

	Introduction
	Problem definition
	Results
	Discussion of the results
	An application to approximately counting subgraphs
	A high-level presentation of the algorithm and lower bounds
	The algorithm
	The lower bounds

	Related work

	The Algorithm
	Decomposing graphs of bounded arboricity
	Algorithm description

