
Algorithmically Efficient Syntactic
Characterization of Possibility Domains
Josep Díaz
Computer Science Department, Universitat Politècnica de Catalunya, Barcelona
diaz@cs.upc.edu

Lefteris Kirousis
Department of Mathematics, National and Kapodistrian University of Athens
Computer Science Department, Universitat Politècnica de Catalunya, Barcelona
lkirousis@math.uoa.gr

Sofia Kokonezi
Department of Mathematics, National and Kapodistrian University of Athens
skoko@math.uoa.gr

John Livieratos
Department of Mathematics, National and Kapodistrian University of Athens
jlivier89@math.uoa.gr

Abstract
We call domain any arbitrary subset of a Cartesian power of the set {0, 1} when we think of it as
reflecting abstract rationality restrictions on vectors of two-valued judgments on a number of issues.
In Computational Social Choice Theory, and in particular in the theory of judgment aggregation,
a domain is called a possibility domain if it admits a non-dictatorial aggregator, i.e. if for some k

there exists a unanimous (idempotent) function F : Dk → D which is not a projection function.
We prove that a domain is a possibility domain if and only if there is a propositional formula of
a certain syntactic form, sometimes called an integrity constraint, whose set of satisfying truth
assignments, or models, comprise the domain. We call possibility integrity constraints the formulas
of the specific syntactic type we define. Given a possibility domain D, we show how to construct a
possibility integrity constraint for D efficiently, i.e, in polynomial time in the size of the domain.
We also show how to distinguish formulas that are possibility integrity constraints in linear time in
the size of the input formula. Finally, we prove the analogous results for local possibility domains,
i.e. domains that admit an aggregator which is not a projection function, even when restricted to
any given issue. Our result falls in the realm of classical results that give syntactic characterizations
of logical relations that have certain closure properties, like e.g. the result that logical relations
component-wise closed under logical AND are precisely the models of Horn formulas. However, our
techniques draw from results in judgment aggregation theory as well from results about propositional
formulas and logical relations.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases collective decision making, computational social choice, judgment aggregation,
logical relations, algorithm complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.50

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at [3], https://arxiv.org/abs/1901.00138.

Funding Josep Díaz: Research partially supported by TIN2017-86727-C2-1-R, GRAMM.
Lefteris Kirousis: Research carried out while visiting the Computer Science Department of the
Universitat Politècnica de Catalunya and supported by TIN2017-86727-C2-1-R, GRAMM.

EA
T

C
S

© Joseph Díaz, Lefteris Kirousis, Sofia Kokonezi, and John Livieratos;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 50; pp. 50:1–50:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:diaz@cs.upc.edu
https://orcid.org/0000-0002-4912-8959
mailto:lkirousis@math.uoa.gr
https://orcid.org/0000-0002-4580-6150
mailto:skoko@math.uoa.gr
https://orcid.org/0000-0001-6409-4286
mailto:jlivier89@math.uoa.gr
https://doi.org/10.4230/LIPIcs.ICALP.2019.50
https://arxiv.org/abs/1901.00138
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Algorithmically Efficient Syntactic Characterization of Possibility Domains

Acknowledgements We are grateful to Bruno Zanuttini for his comments that improved the presen-
tation and simplified several proofs. Lefteris Kirousis is grateful to Phokion Kolaitis for initiating
him to the area of Computational Social Choice Theory. We thank Eirini Georgoulaki for her
valuable help in the final stages of writing this paper.

1 Introduction

We call domain any arbitrary subset of a Cartesian power {0, 1}n (n ≥ 1) when we think of it
as the set of yes/no ballots, or accept/reject judgment vectors on n issues that are “rational”
in the sense manifested by being a member of the subset. A domain D has a non-dictatorial
aggregator if for some k ≥ 1 there is a unanimous (idempotent) function F : Dk → D that
is not a projection function. Such domains are called possibility domains. The theory of
judgment aggregation was put in this abstract framework by Wilson [19], and then elaborated
by several others (see e.g. the work by Dietrich [4] and Dokow and Holzman [6, 5]). It can
be trivially shown that non-dictatorial aggregators always exist unless we demand that F is
defined on an issue by issue fashion (see next section for formal definitions). Such aggregators
are called Independent of Irrelevant Alternatives (IIA). In this work aggregators are assumed
to be IIA.

It is a well known fact from elementary Propositional Logic that for every subset D of
{0, 1}n, n ≥ 1, i.e. for every domain, there is a Boolean formula in Conjunctive Normal Form
(CNF) whose set of satisfying truth assignments, or models, denoted by Mod(φ), is equal to
D (see e.g. Enderton [8, Theorem 15B]). Zanuttini and Hébrard [21] give an algorithm that
finds such a formula and runs in polynomial-time with respect to the size of the representation
of D as input. Following Grandi and Endriss [11], we call such a φ an integrity constraint and
think of it as expressing the “rationality” of D (the term comes from databases, see e.g. [7]).

We prove that a domain is a possibility domain, if and only if it admits an integrity
constraint of a certain syntactic form to be precisely defined, which we call a possibility
integrity constraint. Very roughly, possibility integrity constraints are formulas that belong
to one of three types, the first two of which correspond to “easy” cases of possibility domains:
(i) formulas whose variables can be partitioned into two non-empty subsets so that no clause
contains variables from both sets and (ii) formulas whose clauses are exclusive OR’s of their
literals. The most interesting third type is comprised of formulas such that if we change the
logical sign of some of their variables, we get formulas that have a Horn part and whose
remaining clauses contain only negative occurrences of the variables in the Horn part. We call
such formulas renamable partially Horn, whereas we call partially Horn1 the formulas that
belong to the third type without having to rename any variables. Furthermore, we show that
the unified framework of Zanuttini and Hébrard [21] for producing formulas of a specific type
that describe a given domain, and which entails the notion of prime formulas (i.e. formulas
that we cannot further simplify its clauses; see Definition 2.11) works also in the case of
possibility integrity constraints. Actually, in addition to the syntactical characterization of
possibility domains, we give two algorithms: the first on input a formula decides whether it
is a possibility integrity constraint in time linear in the length of the formula (notice that
the definition of possibility integrity constraint entails searching over all subsets of variables
of the formula); the second on input a domain D halts in time polynomial in the size of

1 A weaker notion of Horn formulas has appeared before in the work of Yamasaki and Doshita [20];
however our notion is incomparable with theirs, in the sense that the class of partially Horn formulas in
neither a subset nor a superset (nor equal) to the class S0 they define.

J. Díaz, L. Kirousis, S. Kokonezi, and J. Livieratos 50:3

D and either decides that D is not a possibility domain or otherwise returns a possibility
integrity constraint that describes D. It should be noted that the satisfiability problem
remains NP-complete even when restricted to formulas that are partially Horn. However
in Computational Social Choice, domains are considered to be non-empty (see paragraph
preceding Example 2.6).

We then consider local possibility domains, that is, domains admitting IIA aggregators
whose components are all different than any projection function. Such aggregators are called
locally non-dictatorial (see [15]). Local non-dictatorial domains were introduced in [12] as
uniform possibility domains (the definition entails also non-Boolean domains). We show
that local possibility domains are described by formulas we call local possibility integrity
constraints and again, we provide a linear algorithm that checks if a formula is a local
possibility integrity constraint and a polynomial algorithm that checks if a domain is a
local possibility one and, in case it is, constructs a local possibility integrity constraint that
describes it.

As examples of similar classical results in the theory of Boolean relations, we mention
that domains component-wise closed under ∧ or ∨ have been identified with the class of
domains that are models of Horn or dual-Horn formulas respectively (see Dechter and Pearl
[1]). Also it is known that a domain is component-wise closed under the ternary sum mod 2
if and only if it is the set of models of a formula that is a conjunction of subformulas each of
which is an exclusive OR (the term “ternary” refers to the number of bits to be summed).
Finally, a domain is closed under the ternary majority operator if and only it is the set of
models of a CNF formula where each clause has at most two literals. The latter two results
are due to Schaefer [18]. The ternary majority operator is the ternary Boolean function that
returns 1 on input three bits if and only if at least two of them are 1. It is also known that
the respective formulas for each case can be found in polynomial time with respect to the
size of D (see Zanuttini and Hébrard [21]).

Our result can be interpreted as verifying that non-dictatorial voting schemes can always
be generated by integrity constraints that have a specific, easily recognizable syntactic form.
This can prove valuable for applications in the field of judgment aggregation, where relations
are frequently encountered in compact form, as the sets of models of integrity constraints.
As examples of such applications, we mention the work of Pigozzi [16] in avoiding the
discursive dilemma, the characterization of safe agendas by Grandi and Endriss [10] and
that of Endriss and de Haan [9] concerning the winner determination problem. Our proofs
draw from results in judgment aggregation theory as well as from results about propositional
formulas and logical relations. Specifically, as stepping stones for our algorithmic syntactic
characterization we use three results. First, a theorem implicit in Dokow and Holzman [5]
stating that a domain is a possibility domain if and only if it either admits a binary (of
arity 2) non-dictatorial aggregator or it is component-wise closed under the ternary direct
sum. This result was generalized by Kirousis et al. [12] for domains in the non-Boolean
framework. Second, a characterization of local possibility domains proven by Kirousis et al.
in [12]. Lastly, the “unified framework for structure identification” by Zanuttini and Hébrard
[21] (see next section for definitions).

Due to space restrictions, most proofs are omitted and can instead be found in [3].

2 Preliminaries

We first give the notation and basic definitions from Propositional Logic and judgment
aggregation theory that we will use.

ICALP 2019

50:4 Algorithmically Efficient Syntactic Characterization of Possibility Domains

Let V = {x1, . . . , xn} be a set of Boolean variables. A literal is either a variable x ∈ V
(positive literal) or a negation ¬x of it (negative literal). A clause is a disjunction (li1∨· · ·∨lik

)
of literals from different variables. A propositional formula φ (or just a “formula”, without
the specification “propositional”, if clear from the context) in Conjunctive Normal Form
(CNF) is a conjunction of clauses. A formula is called k-CNF if every clause of it contains
exactly k literals. A (truth) assignment to the variables is an assignment of either 0 or 1
to each of the variables. We denote by a(x) the value of x under the assignment a. Truth
assignments will be identified with elements of {0, 1}n, or n-sequences of bits. The truth
value of a formula for an assignment is computed by the usual rules that apply to logical
connectives. The set of satisfying (returning the value 1) truth assignments, or models, of a
formula, is denoted by Mod(φ). In what follows, we will assume, except if specifically noted,
that n denotes the number of variables of a formula φ and m the number of its clauses.

We say that a variable x appears positively (resp. negatively) in a clause C, if x (resp.
¬x) is a literal of C. A variable x ∈ V is positively (resp. negatively) pure if it has only
positive (resp. negative) appearances in φ.

A Horn clause is a clause with at most one positive literal. A dual Horn is a clause with
at most one negative literal. A formula that contains only Horn (dual Horn) clauses is called
Horn (dual Horn, respectively). Generalizing the notion of a clause, we will also call clauses
sets of literals connected with exclusive OR (or direct sum), the logical connective that
corresponds to summation in {0, 1} mod 2. Formulas obtained by considering a conjunction
of such clauses are called affine. Finally, bijunctive are called the formulas whose clauses, in
inclusive disjunctive form, have at most two literals. A domain D ⊆ {0, 1}n is called Horn,
dual Horn, affine or bijunctive respectively, if there is a Horn, dual Horn, affine or bijunctive
formula φ of n variables such that Mod(φ) = D. In the previous section, we mentioned
efficient solutions to classical syntactic characterization problems for classes of relations with
given closure properties on one hand, and formulas of the syntactic forms mentioned above
on the other.

We have presented the above notions and results without many details, as they are all
classical results. For the notions that follow we give more detailed definitions and examples.
The first one, as far as we can tell, dates back to 1978 (see Lewis [13]).

I Definition 2.1. A formula φ whose variables are among the elements of the set V =
{x1, . . . , xn} is called renamable Horn, if there is a subset V0 ⊆ V so that if we replace every
appearance of every negated literal l from V0 with the corresponding positive one and vice
versa, φ is transformed to a Horn formula.

The process of replacing the literals of some variables with their logical opposite ones, is
called a renaming of the variables of φ.

I Example 2.2. Consider the formulas φ1 = (x1∨x2∨¬x3)∧(¬x1∨x3∨x4)∧(¬x2∨x3∨¬x5)
and φ2 = (¬x1∨x2∨x3∨x4)∧(x1∨¬x2∨¬x3)∧(x4∨x5), defined over V = {x1, x2, x3, x4, x5}.

The formula φ1 is renamable Horn. To see this, let V0 = {x1, x2, x3, x4}. By renaming
these variables, we get the Horn formula φ∗1 = (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨
¬x3 ∨ ¬x5). On the other hand, it is easy to check that φ2 cannot be transformed into a
Horn formula for any subset of V , since for the first clause to become Horn, at least two
variables from {x2, x3, x4} have to be renamed, which will make the second clause not Horn.

�

It turns out that whether a formula is renamable Horn can be checked in linear time.
There are several algorithms that do that in the literature, with the one of del Val [2] being
a relatively recent such example. The original non-linear one was given by Lewis [13].

J. Díaz, L. Kirousis, S. Kokonezi, and J. Livieratos 50:5

We now proceed with introducing several syntactic types of formulas:

I Definition 2.3. A formula is called separable if its variables can be partitioned into two
non-empty disjoint subsets so that no clause of it contains literals from both subsets.

I Example 2.4. The formula φ3 = (¬x1∨x2∨x3)∧ (x1∨¬x2∨¬x3)∧ (x4∨x5) is separable.
Indeed, for the partition V1 = {x1, x2, x3}, V2 = {x4, x5} of V , we have that no clause of φ3
contains variables from both subsets of the partition. On the other hand, there is no such
partition of V for neither φ1 nor φ2 of the previous example. �

The fact that separable formulas can be recognized in linear time is relatively straightfor-
ward (see Proposition 3.1 in Subsection 3.1).

We now introduce the following notions:

I Definition 2.5. A formula φ is called partially Horn if there is a nonempty subset V0 ⊆ V
such that (i) the clauses containing only variables from V0 are Horn and (ii) the variables of
V0 appear only negatively (if at all) in a clause containing also variables not in V0.

If a formula φ is partially Horn, then any non-empty subset V0 ⊆ V that satisfies the
requirements of Definition 2.5 will be called an admissible set of variables. Also the Horn
clauses that contain variables only from V0 will be called admissible clauses (the set of
admissible clauses might be empty). A Horn clause with a variable in V \ V0 will be called
inadmissible (the reason for the possible existence of such clauses will be made clear in the
following example).

Notice that a Horn formula is, trivially, partially Horn too, as is a formula that contains
at least one negative pure literal. It immediately follows that the satisfiability problem
remains NP-complete even when restricted to partially Horn formulas (just add a dummy
negative pure literal). However, in Computational Social Choice, domains are considered
to be non-empty as a non-degeneracy condition. Actually, it is usually assumed that the
projection of a domain to any one of the n issues is the set {0, 1}.

I Example 2.6. We first examine the formulas of the previous examples. φ1 is partially Horn,
since it contains the negative pure literal ¬x5. The Horn formula φ∗1 is also trivially partially
Horn. On the other hand, φ2 and φ3 are not, since for every possible V0 ⊆ {x1, x2, x3, x4, x5},
we either get non-Horn clauses containing variables only from V0, or variables of V0 that
appear positively in inadmissible clauses.

The formula φ4 = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) is partially
Horn. Its first three clauses are Horn, though the third has to be put in every inadmissible
set, since x3 appears positively in the fourth clause which is not Horn. The first two clauses
though constitute an admissible set of Horn clauses. Finally, φ5 = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧
(¬x1 ∨ x3 ∨ x4) is not partially Horn. Indeed, since all its variables appear positively in some
clause, we need at least one clause to be admissible. The first two clauses of φ5 are Horn,
but we will show that they both have to be included in an inadmissible set. Indeed, the
second has to belong to every inadmissible set since x3 appears positively in the third, not
Horn, clause. Furthermore, x2 appears positively in the second clause, which we just showed
to belong to every inadmissible set. Thus, the first clause also has to be included in every
inadmissible set, and therefore φ5 is not partially Horn. �

Accordingly to the case of renamable Horn formulas, we define:

I Definition 2.7. A formula is called renamable partially Horn if some of its variables can
be renamed (in the sense of Definition 2.1) so that it becomes partially Horn.

ICALP 2019

50:6 Algorithmically Efficient Syntactic Characterization of Possibility Domains

Observe that any Horn, renamable horn or partially Horn formula is trivially renamable par-
tially Horn. Also, a formula with at least one pure positive literal is renamable partially Horn,
since by renaming the corresponding variable, we get a formula with a pure negative literal.

I Example 2.8. All formulas of the previous examples are renamable partially Horn: φ∗1, φ1
and φ4 correspond to the trivial cases we discussed above, whereas φ2, φ3 and φ5 all contain
the pure positive literal x4.

Lastly, we examine two more formulas: φ6 = (¬x1∨x2∨x3∨x4)∧ (x1∨¬x2∨¬x3)∧¬x4
is easily not partially Horn, but by renaming x4, we obtain the partially Horn formula
φ∗6 = (¬x1 ∨ x2 ∨ x3 ∨¬x4)∧ (x1 ∨¬x2 ∨¬x3)∧ x4, where V0 = {x4} is the set of admissible
variables. One the other hand, the formula φ7 = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) is not
renamable partially Horn. Indeed, whichever variables we rename, we end up with one Horn
and one non-Horn clause, with at least one variable of the Horn clause appearing positively
in the non-Horn clause. �

We prove, by Theorem 3.3 in Subsection 3.1 that checking whether a formula is renamable
partially Horn can be done in linear time in the length of the formula.

I Remark 2.9. Let φ be a renamable partially Horn formula, and let φ∗ be a partially Horn
formula obtained by renaming some of the variables of φ, with V0 being the admissible set of
variables. Let also C0 be an admissible set of Horn clauses in φ∗. We can assume that only
variables of V0 have been renamed, since the other variables are not involved in the definition
of being partially Horn. Also, we can assume that a Horn clause of φ∗ whose variables appear
only in clauses in C0 belongs to C0. Indeed, if not, we can add it to C0. �

IDefinition 2.10. A formula is called a possibility integrity constraint if it is either separable,
or renamable partially Horn or affine.

From the above and the fact that checking whether a formula is affine is easy we get Theorem
3.4 in Subsection 3.1, which states that checking whether a formula is a possibility integrity
constraint can be done in polynomial time in the size of the formula.

Now, given a clause C of a formula φ, we say that a sub-clause of C is any non-empty
clause created by deleting at least one literal of C. In Quine [17] and Zanuttini and Hébrard
[21], we find the following definitions:

I Definition 2.11. A clause C of a formula φ is a prime implicate of φ if no sub-clause of C
is logically implied by φ. Furthermore, φ is prime if all its clauses are prime implicates of it.

In sub-section 3.2, we use this notion in order to efficiently construct formulas whose set of
models is a possibility domain.

We now come to some notions from Social Choice Theory (for an introduction, see e.g.
List [14]). In the sequel, we will deal with k sequences of n-bit-vectors, each of which belongs
to a fixed domain D ⊆ {0, 1}n. It is convenient to present such sequences with an k × n
matrix xi

j , i = 1, . . . , k, j = 1, . . . , n with bits as entries. The rows of this matrix are denoted
by xi, i = 1, . . . , k and the columns by xj , j = 1, . . . , n. Each row represents a row-vector of
0/1 decisions on n issues by one of k individuals. Each column represents the column-vector
of the positions of all k individuals on a particular issue.

In Social Choice Theory, D ⊆ {0, 1}n is said to have a k-ary (of arity k) unanimous
aggregator if there are exists a sequence of n k-ary Boolean functions (f1, . . . , fn), fj :
{0, 1}k → {0, 1}, j = 1, . . . , n such that

J. Díaz, L. Kirousis, S. Kokonezi, and J. Livieratos 50:7

all fj are unanimous, i.e if b1 = · · · = bk are equal bits, then

fj(b1, . . . , bk) = b1 = · · · = bk, and

if for a matrix (xi
j)i,j that represents the opinions of k individuals on n issues we have

that the row-vectors xi ∈ D for all i = 1, . . . , k, then

(f1(x1), . . . , fn(xn)) ∈ D.

Notice that in the second bullet above, the fj ’s are applied to column-vectors, which have
dimension k. The fj ’s are called the components of the aggregator (f1, . . . , fn). Intuitively,
an aggregator is a sequence of functions that when applied onto some rational opinion vectors
of k individuals on n issues, in a issue-by-issue fashion, they return a row-vector that is still
rational. From now on, we will refer to unanimous aggregators, simply as aggregators. We
will also sometimes say that F is an aggregator, meaning that F is a sequence of n functions
(f1, . . . , fn) as above.

An aggregator (f1, . . . , fn) is called dictatorial if there is a d = 1. . . . , k such that
f1 = · · · = fn = prk

d, where prk
d : (b1, . . . , bk) 7→ bd is the k-ary projection function on the

d’th coordinate.
A k-ary aggregator is called a projection aggregator if each of its components is a projection

function prk
d, for some d = 1, . . . ,m.

Notice that it is conceivable to have non-dictatorial aggregators that are projection
aggregators.

A binary (of arity 2) Boolean function f : {0, 1}2 → {0, 1} is called symmetric if for all
pairs of bits b1, b2, we have that f(b1, b2) = f(b2, b1). A binary aggregator is called symmetric
if all its components are symmetric. Let us mention here the easily to check fact that the
only unanimous binary functions are the ∧, ∨ and the two projection functions pr2

1,pr2
2. Of

those four, only the first two are symmetric.

I Definition 2.12. A domain D is called a possibility domain if it has a (unanimous)
non-dictatorial aggregator of some arity.

Notice that the search space for such an aggregator is large, as the arity is not restricted.
However, from [12, Theorem 3.7] (a result that follows from Dokow and Holzman [5], but
without being explicitly mentioned there), we can easily get that:

I Theorem 2.13 (Dokow and Holzman [5]). A domain D is a possibility domain if and only
if it admits either: (i) a non-dictatorial binary projection aggregator or (ii) a non-projection
binary aggregator (i.e. at least one symmetric component) or (iii) a ternary aggregator all
components of which are the binary addition mod 2.

Nehring and Puppe [15] defined a type of non-dictatorial aggregators they called locally
non-dictatorial. A k-ary aggregator (f1, . . . , fn) is locally non-dictatorial if fj 6= prk

d, for all
d ∈ {1, . . . , k} and j = 1, . . . , n.

I Definition 2.14. D is a local possibility domain (lpd) if it admits a locally non-dictatorial
aggregator.

Consider the following ternary operators on {0, 1}: (i) ∧(3)(x, y, z) := ∧(∧(x, y), z)) (resp.
for ∨(3)), (ii) maj, where maj(x, y, z) = 1 if and only if at least two elements of its input are
1 and (iii) ⊕, where ⊕(x, y, z) = 1 if an only if exactly one or all of the elements of its input
are equal to 1. In [12], the following characterization of lpd’s has been proven:

I Theorem 2.15 (Kirousis et al. [12]). D ⊆ {0, 1} is a local possibility domain if and only if it
admits a ternary aggregator (f1, . . . , fn) such that fj ∈ {∧(3),∨(3),maj,⊕}, for j = 1, . . . , n.

ICALP 2019

50:8 Algorithmically Efficient Syntactic Characterization of Possibility Domains

3 Syntactic characterization of possibility domains by possibility
integrity constraints

3.1 Identifying possibility integrity constraints
In this subsection, we show that identifying possibility integrity constraints can be done in
time linear in the length of the input formula. By Definition 2.10, it suffices to show that for
separable and renamable partially Horn formulas, since the corresponding problem for affine
formulas is trivial.

In all that follows, we assume that we have a set of variables V := {x1, . . . , xn} and
a formula φ defined on V that is a conjunction of m clauses C1, . . . , Cm, where Cj =
(lj1 , . . . , ljkj

), j = 1, . . . , n, and ljs
is a positive or negative literal of xjs

, s = 1, . . . , kj . We
denote the set of variables corresponding to the literals of a clause Cj by vbl(Cj).

We begin with the result for separable formulas:

I Proposition 3.1. There is an algorithm that, on input a formula φ, halts in time linear in
the length of φ and either returns that the formula is not separable, or alternatively produces
a partition of V in two non-empty and disjoint subsets V1, V2 ⊆ V , such that no clause of φ
contains variables from both V1 and V2.

Proof. (Sketch; detailed proof provided in [3].) Let the variables of φ be the vertices of a
simple graph G. We connect two such vertices if they appear consecutively in a common
clause of φ. The result is then obtained by showing that φ is separable if and only if G is
not connected. J

To deal with renamable partially Horn formulas, we will start with Lewis’ idea [13] of creating,
for a formula φ, a 2Sat formula φ′ whose satisfiability is equivalent to φ being renamable
Horn. However, here we need to (i) look for a renaming that might transform only some
clauses into Horn and (ii) deal with inadmissible Horn clauses, since such clauses can cause
other Horn clauses to become inadmissible too.

I Proposition 3.2. For every formula φ, there is a formula φ′ such that φ is renamable
partially Horn if and only if φ′ is satisfiable.

Proof. (Sketch; detailed proof provided in [3].) For each variable x ∈ V , we introduce a new
variable x′. Intuitively, setting x = 1 means that x is renamed, whereas setting x′ = 1 means
that x is in V0, but is not renamed. Finally we set both x and x′ equal to 0 in case x is not
in V0. Obviously, we should not not allow the assignment x = x′ = 1 (a variable in V0 cannot
be renamed and not renamed).

Suppose that a clause C of φ has the literals x,¬y. If we add x to V0 without renaming
it, we should not rename y, since we would have two positive literals in an admissible clause.
Also, we should not leave the latter out of V0, since we would have a variable of V0 appearing
positively in a clause containing a variable not in V0. Thus, we have that x′ → y′, which
is expressed by the equivalent clause (¬x′ ∨ y′). We add this clause to φ′ and we proceed
in this way for any possible combination of literals in a clause of φ. We also introduce the
clauses ¬x ∨ ¬x′, for all x ∈ V , in order to exclude the assignment x = x′ = 1. Finally, we
add the clause

∨
x∈V ′ x, to ensure that at least one variable is admissible. J

To compute φ′ from φ, one would need quadratic time in the length of φ. Thus, we introduce
the following linear algorithm that decides if a formula φ is renamable partially Horn, by
tying a property of a graph constructed based on φ, with the satisfiability of φ′.

J. Díaz, L. Kirousis, S. Kokonezi, and J. Livieratos 50:9

I Theorem 3.3. There is an algorithm that, on input a formula φ, halts in time linear in
the length of φ and either returns that φ is not renamable partially Horn or alternatively
produces a subset V ∗ ⊆ V such that the formula φ∗ obtained from φ by renaming the literals
of variables in V ∗ is partially Horn.

Proof. (Sketch; detailed proof provided in [3].) To prove Theorem 3.3, we define a directed
bipartite graph G, i.e. a directed graph whose set of vertices is partitioned in two sets such
that no vertices belonging in the same part are adjacent. One set is comprised of the variables
of φ′, and the other of the clauses of φ. Each variable is connected with the clauses it appears
in. Then, by computing its strongly connected components (scc), i.e. its maximal sets of
vertices such that every two of them are connected by a directed path, we show that at least
one of them does not contain both a variable x and x′ (and thus allows x to be admissible)
if and only if φ is renamable partially Horn. J

Because checking whether a formula is affine can be trivially done in linear time, we get:

I Theorem 3.4. There is an algorithm that, on input a formula φ, halts in linear time in the
length of φ and either returns that φ is not a possibility integrity constraint, or alternatively,
(i) either it returns that φ is affine or (ii) in case φ is separable, it produces two non-empty
and disjoint subsets V1, V2 ⊆ V such that no clause of φ contains variables from both V1 and
V2 and (iii) in case φ is renamable partially Horn, it produces a subset V ∗ ⊆ V such that the
formula φ∗ obtained from φ by renaming the literals of variables in V ∗ is partially Horn.

3.2 Syntactic Characterization of possibility domains
In this subsection, we provide a syntactic characterization for possibility domains, by proving
they are the models of possibility integrity constraints. Furthermore, we show that given a
possibility domain D, we can produce a possibility integrity constraint, whose set of models is
D, in time polynomial in the size of D. To obtain the characterization, we proceed as follows.
We separately show that each type of a possibility integrity constraint of Definition 2.10
corresponds to one of the conditions of Theorem 2.13: (i) Domains admitting non-dictatorial
binary projection aggragators are the sets of models of separable formulas, those admitting
non-projection binary aggregators are the sets of models of renamable partially Horn formulas
and (iii) affine domains are the sets of models of affine formulas.

We will need some additional notation. For a set of indices I, let DI := {(ai)i∈I | a ∈ D}
be the projection of D to the indices of I and D−I := D{1,...,n}\I . Also, for two (partial)
vectors a = (a1, . . . , ak) ∈ D{1,...,k}, k < n and b = (b1, . . . , bn−k) ∈ D{k+1,...,n}, we define
their concatenation to be the vector ab = (a1, . . . , ak, b1, . . . , bn−k). Finally, given two subsets
D,D′ ⊆ {0, 1}n, we write that D ≈ D′ if we can obtain D by permuting the coordinates of
D′, i.e. if D = {(dj1 , . . . , djn

) | (d1, . . . , dn) ∈ D′}, where {j1, . . . , jn} = {1, . . . , n}.
We begin with characterizing the domains closed under a non-dictatorial projection

aggregator as the models of separable formulas.

I Proposition 3.5. D admits a binary non-dictatorial projection aggregator (f1, . . . , fn) if
and only if there exists a separable formula φ whose set of models equals D.

Proof. (Sketch; detailed proof provided in [3].) First prove that D admits a binary non-
dictatorial projection aggregator if an only if there exists a partition (I, J) of {1, . . . , n} such
that D ≈ DI×DJ . To do that, take I to be the indices of the aggregator that are projections
to the first coordinate and J that of the indices that are projections to the second coordinate.

Then, take the formulas φ1 and φ2 such that Mod(φ1) = DI and Mod(φ2) = DJ and
prove that Mod(φ1 ∧ φ2) = D. J

ICALP 2019

50:10 Algorithmically Efficient Syntactic Characterization of Possibility Domains

We now turn our attention to domains closed under binary non projection aggregators.

I Theorem 3.6. D admits a binary aggregator (f1, . . . , fn) which is not a projection aggre-
gator if and only if there exists a renamable partially Horn formula φ whose set of models
equals D.

Proof. (Sketch; detailed proof provided in [3].) We first show that any domain D admitting
a binary aggregator that has some components being projections to different coordinates,
also admits one whose projections are all to the same coordinate. Also, given a domain
admitting a binary aggregator with some components being ∨, we construct a domain D∗
admitting a binary aggregator that all of its symmetric components are ∧.

We then proceed to describing a partially Horn formula φ = φ0 ∧ φ1, such that φ0 is
Horn and describes DI , the projection of D to the indices corresponding to the symmetric
components of (f1, . . . , fn). φ1 is then constructed as the conjunction of smaller formulas
that describe the sets of partial vectors that extend those of DI . We also ensure that any
variable of φ0 appears only negatively in φ1. J

We thus get:

I Theorem 3.7. D is a possibility domain if and only if there exists a possibility integrity
constraint φ whose set of models equals D.

Proof. (Sketch; detailed proof provided in [3].) The proof follows by combining the charac-
terization of possibility domains of Theorem 2.13, with Proposition 3.5 for separable formulas,
Theorem 3.6, for renamable partially Horn formulas and the fact that an affine domain is
described by an affine formula. J

To finish this section, we will use Zanuttini and Hébrard’s “unified framework” [21]. Recall
the definition of a prime formula (Def. 2.11) and consider the following proposition:

I Proposition 3.8. Let φP be a prime formula and φ be a formula logically equivalent to
φP . Then:
1. if φ is separable, φP is also separable and
2. if φ is renamable partially Horn, φP is also renamable partially Horn.

Proof. (Sketch; detailed proof provided in [3].) Follows from the fact that neither resolution
nor omission can destroy separability or make an admissible variable non-admissible (see
also Quine [17]). J

We are now ready to prove our main result:

I Theorem 3.9. There is an algorithm that, on input D ⊆ {0, 1}n, halts in time O(|D|2n2)
and either returns that D is not a possibility domain, or alternatively outputs a possibility
integrity constraint φ, containing O(|D|n) clauses, whose set of satisfying truth assignments
is D.

Proof. Given a domain D, we first use Zanuttini and Hébrard’s algorithm to check if it is
affine [21, Proposition 8], and if it is, produce, in time O(|D|2n2) an affine formula φ with
O(|D|n) clauses, such that Mod(φ) = D. If it isn’t, we use again Zanuttini and Hébrard’s
algorithm [21] to produce, in time O(|D|2n2), a prime formula φ with O(|D|n) clauses, such
that Mod(φ) = D. Then, we use the linear algorithms of Proposition 3.1 and Theorem 3.3
to check if φ is separable or renamable partially Horn. If it is either of the two, then φ is
a possibility integrity constraint and, by Theorem 3.7, D is a possibility domain. Else, by
Proposition 3.8, D is not a possibility domain. J

J. Díaz, L. Kirousis, S. Kokonezi, and J. Livieratos 50:11

4 Local possibility domains

We turn now our attention to local possibility domains. As in the case of possibility domains,
we want to characterize lpd’s with a syntactic type of formulas.

We will first address a technical issue. Let V, V ′ be two disjoint sets of variables. By
further generalizing the notion of a clause of a CNF formula, we say that a (V, V ′)-generalized
clause is a clause of the form:

(l1 ∨ · · · ∨ ls ∨ (ls+1 ⊕ · · · ⊕ lt)),

where the literal lj corresponds to variable vj , j = 1, . . . , t, v1, . . . , vs ∈ V , vs+1, . . . , vt ∈ V ′
and 0 ≤ s < t. Such a clause if falsified by exactly those assignments that falsify every literal
li, i = 1, . . . , s and satisfy an even number of literals lj , j = s+ 1, . . . , t. An affine clause is
trivially a (V, V ′)-generalized clause, where all its literals correspond to variables from V ′.

Consider now the following definition, which is analogous to Definition 2.10.

I Definition 4.1. A formula φ is a local possibility integrity constraint (lpic) if there are
three pairwise disjoint subsets V0, V1, V2 ⊆ V , with V0∪V1∪V2 = V , where no clause contains
variables both from V1 and V2 and such that:
1. by renaming some variables of V0, we obtain a partially Horn formula φ∗, whose set of

admissible variables is V0,
2. any clause contains at most two variables from V1 and
3. the clauses containing variables from V2 are (V0, V2)-generalized clauses.

I Example 4.2. Easily, every (renamable) Horn, bijunctive or affine formula is an lpic. On
the other hand, consider the following possibility integrity constraint:

φ = (¬x1 ∨ x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4).

φ is partially Horn, since it has the pure negative literal ¬x1 and thus a possibility integrity
constraint. But, it is not an lpic, since however we define V0, V1, either there will be a
variable of V0 with a positive appearence in a non-admissible clause (even after any possible
renaming of the variables of V0) and/or there will be a clause with more than two literals
from V1. �
By Definition 4.1, we get the following corollary:

I Corollary 4.3. If φ is a local possibility integrity constraint, then it is also a possibility
integrity constraint.

Proof. Let V0, V1 and V2 be as in Definition 4.1. If V0 6= ∅, φ is partially Horn. Else, if
V0 = V1 = ∅, then φ is affine. On the other hand, if V0 = ∅ and V1 and V2 are not, φ is
separable. Finally, if V1 = V , then φ is bijunctive and equivalently, 2-SAT. The result now
follows by the fact that any 2-SAT formula is renamable Horn. Indeed, let α be an assignment
satisfying φ and rename all the variables x ∈ V such that α(x) = 1. Then, every clause of φ
either has a positive literal that is renamed, or a negative one that is not renamed. J

The first theorem we prove is that we can recognize lpic’s efficiently.

I Theorem 4.4. There is an algorithm that, on input a formula φ, halts in linear time in
the length of φ and either returns that φ is not a local possibility constraint, or alternatively,
produces the sets V0, V1, V2 described in Definition 4.1.

ICALP 2019

50:12 Algorithmically Efficient Syntactic Characterization of Possibility Domains

Proof. (Sketch; detailed proof provided in [3].) By Theorem 3.3, we check if φ is renamable
partially Horn in time linear to its length and obtain the set V0 of admissible variables, in
case it is. Then, we can trivially check if any sub-clause, obtained by a non-admissible clause
by deleting any variable from V0 is bijunctive or affine. J

We now syntactically characterize lpd’s as the sets of models of lpic’s.

I Theorem 4.5. A domain D ⊆ {0, 1}n is a local possibility domain if and only if there is a
local possibility integrity constraint φ such that Mod(φ) = D.

Proof. (Sketch; detailed proof provided in [3].) The proof is a variation of the one for
Theorem 3.6. J

We end this section by showing that, given an lpd D, we can efficiently construct an lpic φ
such that Mod(φ) = D.

I Theorem 4.6. There is an algorithm that, on input D ⊆ {0, 1}n, halts in time O(|D|2n2)
and either returns that D is not a local possibility domain, or alternatively outputs a local
possibility integrity constraint φ, containing O(|D|n) clauses, whose set of satisfying truth
assignments is D.

Proof. (Sketch; detailed proof provided in [3].) Using Zanuttini and Hébrard’s unified
framework, we compute a prime formula φ such that Mod(φ) = D in time O(|D|2n2) that
contains O(|D|n) clauses. We then check, in linear time to the length of φ, whether it
is an lpic. J

Concluding remarks

It is known that any domain on n issues can be represented either by n formulas φ1, . . . , φn

(an agenda), in which case the domain is the set of binary n-vectors, the i-component of
which represents the acceptance or rejection of φi in a consistent way (logic-based approach),
or, alternatively, by a single formula φ of n variables (an integrity constraint), in which
case the domain is the set of models of φ. In the former case, there are results, albeit of
non-algorithmic nature, that give us conditions on the syntactic form of the φi’s, so that
the domain accepts a non-dictatorial aggregator. In this work, we give a necessary and
sufficient condition on the syntactic form of a formula to be an integrity constraint of a
domain that accepts a (locally) non-dictatorial aggregator. We called such formulas, (local)
possibility integrity constraints. Our results are algorithmic, in the sense that (i) recognizing
a (local) possibility integrity constraint can be implemented in time linear in the length
of the input formula and (ii) given a (local) possibility domain, a corresponding (local)
possibility integrity constraint, whose number of clauses is polynomial in the size of the
domain, can be constructed in time polynomial in the size of the domain. Our proofs draw
from results in judgment aggregation theory as well from results about propositional formulas
and logical relations.

References
1 Rina Dechter and Judea Pearl. Structure identification in relational data. Artificial Intelligence,

58(1-3):237–270, 1992.
2 Alvaro del Val. On 2-SAT and renamable Horn. In Proceedings of the National Conference on

Artificial Intelligence, pages 279–284. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2000.

J. Díaz, L. Kirousis, S. Kokonezi, and J. Livieratos 50:13

3 Josep Díaz, Lefteris Kirousis, Sofia Kokonezi, and John Livieratos. Algorithmically Efficient
Syntactic Characterization of Possibility Domains. arXiv preprint, 2019. arXiv:1901.00138.

4 Franz Dietrich. A generalised model of judgment aggregation. Social Choice and Welfare,
28(4):529–565, 2007.

5 Elad Dokow and Ron Holzman. Aggregation of binary evaluations for truth-functional agendas.
Social Choice and Welfare, 32(2):221–241, 2009.

6 Elad Dokow and Ron Holzman. Aggregation of binary evaluations. Journal of Economic
Theory, 145(2):495–511, 2010.

7 Ramez Elmasri and Sham Navathe. Fundamentals of database systems. Pearson London, 2016.
8 Herbert Enderton and Herbert B Enderton. A mathematical introduction to logic. Elsevier,

2001.
9 Ulle Endriss and Ronald de Haan. Complexity of the winner determination problem in judgment

aggregation: Kemeny, Slater, Tideman, Young. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, pages 117–125. International
Foundation for Autonomous Agents and Multiagent Systems, 2015.

10 Umberto Grandi and Ulle Endriss. Binary aggregation with integrity constraints. In IJCAI
Proceedings-International Joint Conference on Artificial Intelligence, volume 22, page 204,
2011.

11 Umberto Grandi and Ulle Endriss. Lifting integrity constraints in binary aggregation. Artificial
Intelligence, 199:45–66, 2013.

12 Lefteris Kirousis, Phokion G Kolaitis, and John Livieratos. Aggregation of votes with multiple
positions on each issue. In Proceedings 16th International Conference on Relational and
Algebraic Methods in Computer Science, pages 209–225. Springer, 2017. Expanded version to
appear in ACM Transactions on Economics and Computation.

13 Harry R Lewis. Renaming a set of clauses as a Horn set. Journal of the ACM (JACM),
25(1):134–135, 1978.

14 Christian List. The theory of judgment aggregation: An introductory review. Synthese,
187(1):179–207, 2012.

15 Klaus Nehring and Clemens Puppe. Abstract arrowian aggregation. Journal of Economic
Theory, 145(2):467–494, 2010.

16 Gabriella Pigozzi. Belief merging and the discursive dilemma: an argument-based account to
paradoxes of judgment aggregation. Synthese, 152(2):285–298, 2006.

17 Willard V Quine. On cores and prime implicants of truth functions. The American Mathematical
Monthly, 66(9):755–760, 1959.

18 Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. of the 10th Annual
ACM Symp. on Theory of Computing, pages 216–226, 1978.

19 Robert Wilson. On the theory of aggregation. Journal of Economic Theory, 10(1):89–99, 1975.
20 Susumu Yamasaki and Shuji Doshita. The satisfiabilty problem for a class consisting of

Horn sentences and some non-Horn sentences in proportional logic. Information and Control,
59(1-3):1–12, 1983.

21 Bruno Zanuttini and Jean-Jacques Hébrard. A unified framework for structure identification.
Information Processing Letters, 81(6):335–339, 2002.

ICALP 2019

http://arxiv.org/abs/1901.00138

	Introduction
	Preliminaries
	Syntactic characterization of possibility domains by possibility integrity constraints
	Identifying possibility integrity constraints
	Syntactic Characterization of possibility domains

	Local possibility domains

