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Abstract
In this paper, we present an improved algorithm for the All Pairs Non-decreasing Paths (APNP)
problem on weighted simple digraphs, which has running time Õ(n

3+ω
2 ) = Õ(n2.686). Here n is the

number of vertices, and ω < 2.373 is the exponent of time complexity of fast matrix multiplication
[Williams 2012, Le Gall 2014]. This matches the current best upper bound for (max, min)-matrix
product [Duan, Pettie 2009] which is reducible to APNP. Thus, further improvement for APNP
will imply a faster algorithm for (max, min)-matrix product. The previous best upper bound for
APNP on weighted digraphs was Õ(n

1
2 (3+ 3−ω

ω+1 +ω)) = Õ(n2.78) [Duan, Gu, Zhang 2018]. We also
show an Õ(n2) time algorithm for APNP in undirected simple graphs which also reaches optimal
within logarithmic factors.
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1 Introduction

Given a directed or undirected graph G = (V,E) with arbitrary real edge weights, a non-
decreasing path is a path on which edge weights form a non-decreasing sequence [11]. We
define the weight of a non-decreasing path to be the weight of its last edge, which we want
to minimize. The motivation of this definition comes from train scheduling [13]. Suppose
each train station is mapped to a vertex of a directed graph, and a train from station v1 to
station v2 scheduled at time w is mapped to a directed edge (v1, v2) with weight w. If we
neglect the time trains spent on their way, a trip from s to t is just a non-decreasing path
from s to t in the constructed graph, and the earliest time arriving at t equals the minimum
weight of such non-decreasing path. If we consider the train starts from v1 at time w1 and
arrives at v2 at time w2, we can add a vertex u and two edges (v1, u), (u, v2), then gives edge
weights w1, w2 on them, respectively.

The Single Source Non-decreasing Paths (SSNP) problem, first studied by Minty [11] in
1958, is to find the minimum weight non-decreasing path from a given source s to all t ∈ V .
The first linear time algorithm for SSNP problem in RAM model was given by Williams [13].
She also gave an O(m log logn) time algorithm in the standard addition-comparison model.
(m is the number of edges.)
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48:2 Faster Algorithms for All Pairs Non-Decreasing Paths Problem

The All Pairs Non-decreasing Paths (APNP) problem is the all-pairs version of the above
problem, asking for the minimum weight non-decreasing path between all pairs of vertices in
the graph. Williams [13] gave the first truly sub-cubic time algorithm of APNP. The original
time complexity of the algorithm was Õ(n(15+ω)/6), obtained by using an Õ(n2+ω/3)-time
(min,≤)-matrix product1 algorithm [12] as a subroutine. Here ω < 2.373 is the exponent of
time complexity of fast matrix multiplication [2, 14, 8]. Recently, Duan et al. [5] obtained
a faster algorithm for APNP in Õ(n

1
2 (3+ 3−ω

ω+1 +ω)) = Õ(n2.78), by using a simple balancing
technique introduced in [6]. We also adapt this technique in our algorithm.

Computing APNP is at least as hard as the All Pair Bottleneck Paths (APBP) problem [13],
which asks for the maximum bottleneck path between every pair of vertices, where the
bottleneck of a path is defined as the minimum weight (capacity) among all edges on this
path [12, 15, 6, 9]. APBP is shown to have the same complexity as the (max,min)-matrix
product (Ci,j = maxk{min(Ai,k, Bk,j)}) [1, 12]. The current fastest algorithm for (max,min)-
matrix product runs in Õ(n(3+ω)/2) = Õ(n2.686) time [6]. Our algorithm for APNP matches
this running time, so any further improvement on APNP will imply a faster algorithm for
APBP and (max,min)-matrix product as well.

The vertex-weighted APNP problem on directed graphs, a restricted version of APNP,
is computationally equivalent to the problem of Maximum Witness for Boolean Matrix
Multiplication (MWBMM) [13]. An algorithm of O(n2+µ) time for MWBMM was given by
Czumaj et al. [3], where µ satisfies the equation ω(1, µ, 1) = 1 + 2µ and ω(1, µ, 1) is the
exponent of multiplying an n×nµ matrix with an nµ×n matrix. Currently, the best bounds
on rectangular matrix multiplication by Le Gall and Urrutia [7] imply that µ < 0.5286.

1.1 Our results

In this paper we describe a faster algorithm for directed APNP problem running in Õ(n(3+ω)/2)
time, which reaches optimal if the algorithm for APBP cannot be improved.

I Theorem 1. The all pairs non-decreasing paths (APNP) problem on directed simple graphs
can be solved in Õ(n(3+ω)/2) time.

As in Dijkstra search [4] we can maintain a priority queue of current non-decreasing paths
we have found, then the minimum unvisited one is the optimal paths between its endpoints.
Every time we visit an optimal path, we “relax” all edges following that path. In [5] they
partition the edge set into some parts by increasing order. For low-degree vertices in one part,
trivially relax all of its outgoing edges, while for high-degree ones, use matrix multiplication
to accelerate. Our algorithm adapt this idea, but we recursively divide the edges to O(logn)
levels. In order the optimize the running time, a careful analysis of matrix multiplication is
needed, and we need new ideas to use fast matrix multiplication to “predetermine” some of
the useless edges from high-degree vertices.

We also give a Õ(n2) time algorithm for undirected APNP using the dynamic sequence
data structure [10], which also reaches optimal within logarithmic factors.

I Theorem 2. The all pairs non-decreasing paths (APNP) problem on undirected simple
graphs can be solved in Õ(n2) time.

1 The (min,≤)-product of two matrices A, B is defined as Ci,j = mink{Bk,j : Ai,k ≤ Bk,j}.
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1.2 Organization of this paper

In Section 2, we introduce some terminologies used throughout this paper, and discuss how
to recursively divide the edges. Then Section 3 and 4 will discuss our APNP algorithm for
directed graphs in detail, where Section 3 explains the main techniques used, and Section 4
describes our whole algorithm and its analysis using procedures in Section 3 as subroutines.
Due to page limit, the algorithm for undirected graphs will be discussed in the full version of
this paper2.

2 Preliminaries

2.1 Basic definitions

APNP problem

Let G = (V,E) be a directed simple graph with edge weight w(e) for each edge e ∈ E. We
denote n = |V | and m = |E| = O(n2).

A path is a sequence of edges e1, e2, . . . , el. A non-decreasing path is a path satisfying
∀1 ≤ i ≤ l − 1, w(ei) ≤ w(ei+1), and the weight of this non-decreasing path is defined to be
w(el), the weight of the last edge. All pairs non-decreasing paths problem asks to determine
the minimum weight non-decreasing path between every pair of vertices. Let OPT (i, j)
denote the optimal (minimum) non-decreasing path between i and j. In contrast, during
the algorithm, we use d(i, j) to denote the current minimum non-decreasing path that our
algorithm has found so far. In our algorithm, instead of explicitly maintaining the paths, we
only need to maintain the weights of the paths d(i, j) and OPT (i, j) (and their last edges if
we want to retrieve the paths), so we will also use d(i, j) and OPT (i, j) to denote the weights
of corresponding paths d(i, j) and OPT (i, j), respectively. (Remember that w(j, k) denotes
the weight of the edge (j, k).)

Notation for String and Subgraph

Without loss of generality3, we assume all edges have distinct edge weights ranged from 0 to
2b − 1, where b = dlog2 |E|e ≤ 2 log2 n+O(1), so 2b = O(n2). Then every edge weight w(e)
corresponds to a b-bit 0-1 string [w(e)] which is its binary representation, with the rightmost
bit being the lowest bit.

To distinguish between values and strings, string s is written as [s]. LCP ([w1], [w2])
(which is also a binary string) is the longest common prefix of [w1] and [w2]. For example
LCP ([100], [101]) = [10], and LCP ([000], [100]) = [ ](empty string). |[w]| denotes the length
of the string [w], and [x][y] denotes the concatenation of two strings [x] and [y]. [x] < [y]
means that the lexicographical order of [x] is smaller. For example, [0111] < [101] < [1010].

We define E[x] = {e ∈ E | [w(e)] has prefix [x]} to be the set of all edges whose weight
has prefix [x] (also call the edges have prefix [x]), and similarly the subgraph G[x] = (V,E[x]).
For convenience, an edge set or a subgraph with subscript [x] means all of the edges in it
have prefix [x].

2 See https://arxiv.org/abs/1904.10701.
3 See the full version of this paper for the proof.
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Rectangular Matrix Multiplication

We use M(m,n, p) to denote the asymptotic time complexity of multiplying an m×n matrix
with an n × p matrix. We denote M(n, n, n) = O(nω), where ω < 2.373 [2, 14, 8]. In this
paper, rectangular matrix multiplications are straightforwardly reduced to square matrix
multiplications. So we will only use the following fact. (Here min(x1, · · · , xk) means the
minimum number in {x1, · · · , xk}.)

I Lemma 3. M(m,n, p) = O

(
mnp

min(m,n, p)3−ω

)
.

Proof. The rectangular matrices are decomposed into min(m,n, p) × min(m,n, p) square
matrices, then standard fast square matrix multiplication is applied. J

2.2 Naïve Algorithm
Let us first take a look at the naïve algorithm for APNP, a simple Dijkstra-type search [4].
Initially set d(i, j) = w(i, j) for all edges (i, j) ∈ E, and d(i, j) = +∞ otherwise. Each time
we visit the minimum unvisited d(i, j) and enumerate every out-going edge (j, k) of vertex j.
If d(i, j) and (j, k) form a nondecreasing path, then we update d(i, k)← min(d(i, k), w(j, k)).
(See Algorithm 1.) We refer to this update step as relaxing edge (j, k) w.r.t. d(i, j). By the
greedy nature of Dijkstra search, when we visit d(i, j), d(i, j) = OPT (i, j). Namely, it is
optimal.

Algorithm 1 Relaxing edges naïvely.
1: while there exists unvisited d(i, j) do
2: visit the minimum unvisited d(i, j)
3: for every (j, k) such that w(j, k) > d(i, j) do
4: perform update d(i, k)← min(d(i, k), w(j, k))

For clarity, our usages of symbols i, j, k stick to the following convention: d(i, k) refers
to the path being updated by the concatenation of path d(i, j) and edge (j, k).

The naïve algorithm takes O(n3) time when edge weights are integers from 0 to 2b − 1,
since a bucket heap is enough to maintain unvisited d(i, j).

2.3 Classifying edges according to degrees
In order to avoid relaxing all edges when visiting d(i, j), our algorithm will classify the edges
based on the degrees of their two endpoints, and partition the edges whose both endpoints
have high degrees into two sets by the order of their weights, then recursively deal with
these two sets. We relax different types of edges by different approaches. First, we define
“high-degree” and “low-degree” vertices in a subgraph.

High degree and low degree

In this paper, sometimes we use a subset of edges E′ ⊆ E to denote the subgraph G′ = (V ′, E′)
where V ′ is the set of vertices associated with E′, namely, vertices in E′ refers to vertices in
V ′. In a subgraph G′ = (V ′, E′) of G, a vertex has high outdegree if its outdegree is larger
than n1−t, and otherwise, it has low outdegree. Here t is a parameter to be determined later
(we will choose t = 3−ω

2 ). Similarly, a vertex has high indegree if its indegree is larger than
n1−t, and otherwise, it has low indegree. In our algorithm, edges (j, k) in a subgraph are
divided into three types based on the outdegree of j and indegree of k:
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Low edge: if j has low outdegree
High-high edge: if j has high outdegree and k has high indegree
High-low edge: if j has high outdegree and k has low indegree

Divide the edges

In this binary partition procedure, starting from the entire edge set E′[ ] = E, each time we
divide the set of high-high edges H[x] in E′[x] into two parts: H ′[x][0] and H ′[x][1], based on its
next bit after prefix [x], then recursively partition the edge sets H ′[x][0] and H ′[x][1]. Here we
use L[x] and Γ[x] to denote the low edges and high-low edges with prefix [x] obtained in the
algorithm.

Algorithm 2 Divide the edges.
1: procedure Divide(E′[x])
2: Consider the indegrees and outdegrees of vertices in the graph G′[x] = (V,E′[x]);
3: Let L[x] be the set of edges from low outdegree vertices;
4: Let H[x] be the set of edges from high outdegree vertices to high indegree vertices;
5: Let Γ[x] be the set of edges from high outdegree vertices to low indegree vertices;
6: Let H ′[x][0] = {(j, k) ∈ H[x] s.t. [w(j, k)] has prefix [x][0]} and H ′[x][1] = {(j, k) ∈
H[x] s.t. [w(j, k)] has prefix [x][1]}.

7: Divide(H ′[x][0])
8: Divide(H ′[x][1])
9: end procedure

At the beginning we call Divide(E). Since only the edges in H[x] go into the next
recursion, every edge can only appear in one of L[x] or Γ[x] but can appear in many H[x].

2.4 Outline of our algorithm
In our algorithm, we run a Dijkstra-type procedure. When visiting d(i, j), which is guaranteed
to be optimal, we relax all the edges (j, k) in L[x] and Γ[x] w.r.t. d(i, j) for all [x] which is
a prefix of [d(i, j)]. The outdegree of j is small in L[x] but not in Γ[x], so to relax L[x], we
relax all edges from j as the naïve algorithm. But to relax Γ[x], a preprocessing procedure of
the edges in Γ[x] is needed in order to save time. For edges in H[x], instead of immediately
relaxing them, we wait until all optimal paths with prefix [x][0] are visited, then perform
a (min,≤)-matrix product of these paths with the adjacency matrix of H ′[x][1] to relax all
edges in it. Details of these methods will be given in Section 3.

3 Basic techniques

In this section, we explain the method we use for relaxing edges. Suppose we are trying to
relax edges (j, k) w.r.t. d(i, j), it will be based on whether (j, k) is in L[x], H[x], or Γ[x].

As explained before, L[x] is easiest. Since j has low outdegree, like the naïve algorithm,
we simply relax all of its outgoing edges, which takes O(n1−t) time. H[x] and Γ[x] are handled
by different methods, though they both use the “row/column balancing” technique of matrix
proposed in [6]. Instead of considering it as splitting rows/columns on matrix, we describe
the balancing technique as splitting vertices so that every vertex has low outdegree/indegree.
In the following subsections we describe how to handle H[x] and Γ[x].

ICALP 2019
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Table 1 Balancing the indegrees of vertices k.

Balancing the indegrees of vertices
(S1) For every k, sort all the in-coming edges of k in increasing order and obtain the sorted
list Lk.
(S2) Split k into vertices k′1, k′2, · · · k′p, and divide Lk into segments each of size n1−t (while
the last segment is possibly incomplete). The edges in the r-th segment is assigned to vertex
k′r. Namely, edge (j, k) in the r-th segment now becomes edge (j, k′r).
(S3) Let [L(k′r), R(k′r)] denote the weight range of in-coming edges of k′r. Namely L(k′r)
is the minimum weight of in-coming edges of k′r, and R(k′r) is the maximum. Obviously,
L(k′1) ≤ R(k′1) < L(k′2) ≤ R(k′2) < · · · < L(k′p) ≤ R(k′p).

3.1 Balancing
A graph G = (V,E) contains at most |E|

n1−t vertices with high indegrees or outdegrees. If
there are Θ( |E|n1−t ) number of vertices with high degrees, we would expect an average degree
of O(n1−t). However, the degrees of some vertices may be far greater than n1−t. To balance
the indegree (outdegree) of each vertex, we split every vertex into several vertices each of
indegree (outdegree) n1−t and one vertex of indegree (outdegree) ≤ n1−t . The number
of new vertices with indegree (outdegree) exactly n1−t is bounded by O

(
|E|
n1−t

)
, and every

original high indegree (outdegree) vertex corresponds to at most one new vertex with indegree
(outdegree) < n1−t, thus we have at most O

(
|E|
n1−t

)
many new vertices each with indegree

(outdegree) ≤ n1−t.
In our algorithm, for edge set {(j, k)}, we use this technique to either balance the

outdegrees of vertices j or the indegrees of vertices k. Here we demonstrate this technique for
balancing indegrees of k as an example in Table 1. Denote the set of edges after balancing to
be Ē, then the graph corresponding to Ē is actually a bipartite graph with edges between
vertices j and k′r. The procedure for balancing outdegrees of j is symmetric.

3.2 High-high edges
The technique for high-high edges solves the following problem: Given a set P of optimal
paths of prefix [x][0] and a set H ′[x][1] of high-high edges, the problem asks to relax all edges
in H ′[x][1] w.r.t. paths in P , namely, extend paths in P by a single edge in H ′[x][1].

This problem is equivalent with a length-two nondecreasing path problem. As discussed
in Section 1, this can be solved by fast (min,≤)-product implied in [6]. But the rectangular
version is not covered by [6], so we fully describe the algorithm and its analysis (in graphs).

We have two extra guarantees when we use this procedure in our main algorithm:
P is the set of optimal paths OPT (i, j) such that [OPT (i, j)] has prefix [x][0], so any
path d(i, j) in P can form a nondecreasing path with any edge (j, k) in H ′[x][1].
All d(i, j) satisfying [d(i, j)] < [x][1] are already visited by Dijkstra search. So we can tell
whether [OPT (i, j)] < [x][1] or not.

Suppose there are n[x][1] many [OPT (i, j)] which have [x][1] as a prefix. In our algorithm
the time complexity will depend on n[x][1].

The first step is to apply the balancing technique in Section 3.1 to indegrees of vertices
k in H ′[x][1], and let the edge set after balancing be H̄ ′[x][1]. Here each high indegree vertex
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k is split into vertices {k′r}. We define the following two matrices: (j and k′r only include
vertices having out-going edges and in-coming edges in H̄ ′[x][1], respectively.)

Ai,j =
{

1 d(i, j) ∈ P
0 otherwise

Bj,k′r =
{

1 (j, k′r) ∈ H̄ ′[x][1]

0 otherwise

Then we multiply them with rectangular matrix multiplication. Let C = AB, then,

Ci,k′r

{
> 0 if there is a nondecreasing path from i to k′r
= 0 otherwise

For every pair (i, k) such that [OPT (i, k)] ≥ [x][1] (d(i, j) 6∈ P ) and k is an in-coming
vertex in H ′[x][1], we find the minimum r with Ci,k′r > 0 and relax all n1−t incoming edges
(j, k′r) of k′r w.r.t. d(i, j) if d(i, j) ∈ P . We can skip other r′ > r because OPT (i, k) ≤
R(k′r) < L(k′r′). Namely, we only have to relax O(n1−t) many edges for each (i, k), which
is the benefit of balancing. We attribute this O(n1−t) cost of relaxations to the OPT (i, k)
with prefix [x][1] found in these relaxations, which must exist if Ci,k′r > 0.

The procedure above consists of three parts: finding minimum r for each (i, k), relaxation
and matrix multiplication. The time cost for the first part is at most enumerating all nonzero
elements of C, so it is dominated by the matrix multiplication part.
I Lemma 4. The relaxation part takes O

(
n[x][1]n

1−t) time in total.
Proof. The cost of relaxation is attributed to each OPT (i, k) with prefix [x][1]. Since there
are n[x][1] many OPT (i, k) with prefix [x][1], and each corresponds to O(n1−t) relaxations, it
costs O(n[x][1]n

1−t) time in total. J

I Lemma 5. In the matrix multiplication part, A is an n × O
(

min
(
n, 2b−|[x]|

n1−t

))
matrix,

and B is a O
(

min
(
n, 2b−|[x]|

n1−t

))
× O

(
2b−|[x]|

n1−t

)
matrix, so the time complexity for matrix

multiplication is M
(
n,min

(
n, 2b−|[x]|

n1−t

)
, 2b−|[x]|

n1−t

)
.

Proof. There are at most min
(
n,
|H′[x][1]|
n1−t

)
many j because vertices j have high outdegrees.

After balancing, there are at most O
( |H′[x][1]|

n1−t

)
many k′r by discussion in Section 3.1. Since

each edge in H ′[x][1] has prefix [x][1], |H ′[x][1]| ≤ 2b−|[x]|−1 = O
(
2b−|[x]|). Plug in the size of

H ′[x][1] gives the desired bound. J

3.3 High-low edges
Now we consider the relaxation of the high-low edges in Γ[x] when visiting paths with the
same prefix [x]. To preprocess high-low edges, we run an initialization step when all optimal
paths less than [x] have been visited. As before, we denote the number of [OPT (i, j)] with
prefix [x] by n[x].

Since the outdegrees of vertices j are high, we cannot relax edges one by one. But we
still want to utilize the property that the indegrees of k are low. As in the last subsection,
we denote the set of optimal paths we have found to be P , namely when we visit d(i, j), we
add d(i, j) to P . By the nature of Dijkstra search, such d(i, j) is always visited in increasing
order. At the initialization step, P is the set of all optimal paths less than [x]. During the
procedure, optimal paths with prefix [x] are added to P .

We also maintain a dynamic set Q which is initially empty. When we relax an edge (j, k)
w.r.t. d(i, j), we put d(i, k) into Q only if [d(i, k)] ≥ [x], that is, d(i, k) was not visited at
initialization. So Q contains new nondecreasing path but not guaranteed to be optimal.

ICALP 2019
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Initialization by Matrix Multiplication

The first step is to apply the balancing technique to the outdegrees of vertices j in Γ[x] such
that every vertex j in Γ[x] is split into a sequence of vertices {j′r}. Suppose the edge set after
balancing is Γ̄[x]. Then, we define the following two matrices: (j′r and k only include vertices
having out-going edges and in-coming edges in Γ̄[x], respectively.)

Ai,k =
{

1 d(i, k) 6∈ P ∪Q
0 otherwise

Bk,j′r =
{

1 (j′r, k) ∈ Γ̄[x]

0 otherwise

We compute C = AB. Basically speaking, the matrix C can indicate whether we need to
relax edges (j′r, k) from j′r when visiting d(i, j). Note that when we run initialization, Q is
empty, so d(i, k) 6∈ Q is trivially true. But we will add paths to Q and dynamically update
the matrix multiplication later.

We make the following observation about Ci,j′r .

I Observation 1. If d(i, j) < L(j′r) and Ci,j′r > 0, there is at least one edge (j′r, k) such that
d(i, k) 6∈ P ∪Q and [x] is a prefix of [OPT (i, k)].
Conversely, if Ci,j′r = 0, there is no such an edge (j′r, k).

Proof. Since Ci,j′r > 0, at least one vertex k satisfy the following:
Ai,k > 0 : d(i, k) 6∈ P , so [OPT (i, k)] ≥ [x][0 · · · 0]. Also d(i, k) 6∈ Q.
Bk,j′r > 0 : (j′r, k) ∈ Γ̄[x].

Since d(i, j) < L(j′r), d(i, j) and the original edge of (j′r, k) form a non-decreasing path. So
[OPT (i, k)] ≤ [x][1 · · · 1].

Conversely, if Ci,j′r = 0, for every k, at least one of these happens:
Ai,k = 0 : d(i, k) ∈ P ∪Q
Bk,j′r = 0 : edge (j′r, k) does not exist in Γ̄[x]. J

Update matrix multiplication

When a new path d(i, k) is added to P or Q, the matrix A and product C need to be updated.
Adding a new path to P or Q only changes one entry of Ai,k, so we utilize the low indegree
of k. There are at most O(n1−t) many j′r such that Bk,j′r 6= 0, since Γ[x] contains high-low
edges only. So the update of C when changing one element Ai,k takes only O(n1−t) time by
enumerating all nonzero Bk,j′r . This cost can be attributed to each [OPT (i, k)] with prefix
[x], since every such path can only be added to P ∪Q once. However, adding d(i, k) to Q
does not mean we have found the optimal path OPT (i, k), as it can still be updated. How
to deal with this will be discussed later.

Relaxation when visiting d(i, j)

When we visit d(i, j), for each split vertex j′r of j, there are three cases:
1. d(i, j) > R(j′r) : d(i, j) cannot form a non-decreasing path with any out-going edge of j′r,

so we skip j′r.
2. d(i, j) ∈ [L(j′r), R(j′r)] : We relax all out-going edges of j′r larger than d(i, j).
3. d(i, j) < L(j′r) : Only when Ci,j′r > 0, we relax all out-going edges of j′r one by one.

By Observation 1, when Ci,j′r = 0, for each edge (j′r, k), either d(i, k) ∈ P or d(i, k) ∈ Q.
If d(i, k) ∈ P , it needs no more update. If d(i, k) ∈ Q, roughly speaking, since k has indegree
less than n1−t, the updates for d(i, k) can be done “in advance” when it is added to Q. The
details will be clear later. This is why we can skip j′r when Ci,j′r = 0.
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Since the degree of j′r is bounded by n1−t, the relaxation takes O(n1−t) time for each
j′r. For the second case, it only happens once for each d(i, j) because [L(j′r), R(j′r)] are
disjoint for different j′r, so the O(n1−t) cost is attributed to d(i, j). For the third case, by
Observation 1, there is at least one edge (j′r, k) such that OPT (i, k) 6∈ P ∪ Q with prefix
[x], so the O(n1−t) time is attributed to d(i, k). (If there is more than one such k, choose
an arbitrary one.) Then d(i, k) is added to Q, and the cost of updating A and C is also
bounded by n1−t, dominated by the cost of relaxation.

Because the first path d(i, k) we found for each (i, k) is not necessarily the optimal one,
we discuss how to handle all future updates of d(i, k) “in advance” after adding it to Q. We
enumerate every in-coming edge (j′′, k) ∈ Γ[x] of k. If d(i, j′′) is not in P , we add (i, k) to
a waiting list for (i, j′′), denoted by W (i, j′′). When d(i, j) is visited in the future, we can
go through its waiting list W (i, j) and update d(i, k) for all pair (i, k) in the list. There
are only n1−t in-coming edges for k, so the waiting list construction cost is also O(n1−t)
for every d(i, k).

In conclusion, we follow the procedure in Algorithm 3 when visiting d(i, j) with prefix [x].

Algorithm 3 High-low relaxation when visiting d(i, j).
1: Add d(i, j) to P and update A and C = AB.
2: for (i, k) in the waiting list W (i, j) do
3: Relax (j, k) w.r.t. d(i, j) if w(j, k) > d(i, j)
4: for every j′r satisfying d(i, j) ∈ [L(j′r), R(k′r)] or (d(i, j) < L(j′r) and Ci,j′r > 0) do
5: for every outgoing edge (j′r, k) of j′r larger than d(i, j) do
6: if d(i, k) 6∈ P ∪Q then
7: Relax (the original edge of) (j′r, k) w.r.t. d(i, j)
8: Add d(i, k) to Q and update A and C = AB

9: for incoming edge (j′′, k) of k do
10: Add (i, k) to the waiting list W (i, j′′) if d(i, j′′) 6∈ P

Complexity

This procedure is divided into matrix multiplication part (initialization) and relaxation part
(Algorithm 3) as well.

I Lemma 6. The relaxation part takes O
(
n[x]n

1−t) time.

Proof. From discussion above, the O(n1−t) cost of each relaxation is either attributed to
optimal d(i, j) with prefix [x] or d(i, k) ∈ Q. For each d(i, k) ∈ Q, OPT (i, k) is of course
larger than [x][0 · · · 0], and then relaxed by an edge ≤ [x][1 · · · 1], so the size of Q is also
bounded by n[x]. Since each d(i, j) can only be added to P and Q once, respectively, the
total time is O

(
n[x]n

1−t).
The total size of all waiting lists W (i, j) is bounded by O

(
n[x]n

1−t) as well, because each
time when an d(i, k) is added to Q, we enumerate ≤ n1−t many incoming edges of k, and
add (i, k) to waiting list at Line 10. Every waiting list can only be relaxed once, thus, the
relaxation of waiting list edges in Line 3 needs O

(
n[x]n

1−t) in total. J

The following lemma is crucial. Although edges (j, k) in Γ[x] are high-low edges, the
number of k is not directly bounded, but remind that in our binary partition of edges, only
high-high edges of previous level can be in this set, thus in fact the number of k cannot be
asymptotically larger than the number of j′r.
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I Lemma 7. In the matrix multiplication part, A is an n × O
(

min
(
n, 2b−|[x]|

n1−t

))
matrix,

and B is an O
(

min
(
n, 2b−|[x]|

n1−t

))
× O

(
2b−|[x]|

n1−t

)
matrix, so the time complexity of matrix

multiplication is M
(
n,min

(
n, 2b−|[x]|

n1−t

)
, 2b−|[x]|

n1−t

)
.

Proof. Since |Γ[x]| ≤ 2b−|[x]| (because each edge in it has prefix [x]), after balancing, there
are at most O

(
2b−|[x]|

n1−t

)
many j′r.

If [x] 6= [], suppose [x] = [x′][0/1], namely [x′] is the prefix of [x] which is one bit shorter.
If (j, k) ∈ Γ[x], by Algorithm 2, (j, k) ∈ H[x′]. Since k has high indegree in H[x′], the number
of such k is bounded by O

(
min

(
n,
|H[x′]|
n1−t

))
. Also |H[x′]| = O

(
2b−|[x]|). Plug it in gives the

O
(

min
(
n, 2b−|[x]|

n1−t

))
bound for the number of k. If [x] = [], of course the number of k is

bounded by n. J

4 Main algorithm for directed graphs and analysis

4.1 Main algorithm
Just like in the naïve algorithm, we use a bucket to maintain all d(i, j) we have found, and
the minimal unvisited d(i, j) is guaranteed to be optimal. Our algorithm enumerates the
value x from 0 to 2b − 1 and visit d(i, j) if d(i, j) = x. We carefully combine techniques
introduced in the previous section into this framework.

Recall that in Algorithm 2 of Section 2.3 we define L[x] to be the set of low edges (from
low outdegree vertices) and Γ[x] to be the set of high-low edges in H ′[x], which are high-high
edges in higher level, then divide the edge set H[x] of high-high edges in H ′[x] to H ′[x][0] and
H ′[x][1] and recursively deal with them. Our main algorithm is presented in Algorithm 4.

Algorithm 4 Main algorithm.
1: d(i, j) = w(i, j) for all edges (i, j) ∈ E, and d(i, j) = +∞ otherwise
2: for x from 0 to 2b − 1 do
3: for all prefix [y] of [x] do
4: if [x] = [y][000 · · · 0] then
5: Run high-low edge initialization for edges in Γ[y]

6: if [x] = [y][100 · · · 0] then
7: P[y][0] = {d(i, j) | [y][0] is a prefix of [d(i, j)]}
8: Append high-high edges in H ′[y][1] to paths in P[y][0]

9: for d(i, j) = x do
10: Mark d(i, j) as visited, add d(i, j) to P .
11: for all prefix [y] of [d(i, j)] do
12: Relax edges (j, k) ∈ L[y]
13: Relax edges (j, k) ∈ Γ[y] by Algorithm 3

When visiting an optimal path d(i, j), we need to relax all edges (j, k) which are larger
than d(i, j).

I Observation 2. For [d(i, j)] = [x], every edge (j, k) larger than d(i, j) must be one of the
following three cases: (so [y] is a prefix of both [x] and [w(j, k)].)

(j, k) ∈ L[y] for some prefix [y] of [x]
(j, k) ∈ Γ[y] for some prefix [y] of [x]
(j, k) ∈ H ′[y][1] where [y][0] is a prefix of [x]
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Proof. Consider the longest common prefix [y] = LCP ([x], [w(j, k)]). If (j, k) is not in the
L[y′] or Γ[y′] for any prefix [y′] of [y], it must be in H[y]. Since [y] is the longest common
prefix and w(j, k) is larger than d(i, j), [d(i, j)] has prefix [y][0] and [w(j, k)] has prefix [y][1],
thus (j, k) is in H ′[y][1]. J

Thus, we can simply relax the edges of the first type, and use the method in Section 3.2
to relax the edges in H ′[y][1] when all of the optimal paths with prefix [y][0] have been visited.
The method for high-low edges Γ[y] is like a dynamic data structure: we initialize it when
[x] = [y][0 · · · 0], and update it when relaxing an edge in Γ[y].

High-high edges

For high-high edges, when [x] = [y][100 · · · 0], before those d(i, j) = x are visited, we append
edges in H ′[y][1] to paths in P[y][0] = {d(i, j) | [y][0] is a prefix of [d(i, j)]} using the technique
introduced in Section 3.2. See Line 8, Algorithm 4.

In Section 3.2, we have two guarantees. Now we check them one by one:
Because each edge in H ′[y][1] has prefix [y][1], and each path in P[y][0] has prefix [y][0], the
maximum weight in P[y][0] is smaller than the minimum weight of H ′[y][1]. At the time of
[x] = [y][100 · · · 0], all paths in P[y][0] are optimal.
Since [x] = [y][100 · · · 0], all [d(i, j)] < [y][1] are visited, and none of [d(i, j)] ≥ [y][1] are
visited yet.

High-low edges

We initialize for Γ[y] when [x] = [y][000 · · · 0] before we visit those d(i, j) = x. See Line 5 of
Algorithm 4. All [d(i, j)] < [y] are visited, and none of [d(i, j)] ≥ [y] are visited. Once a d(i, j)
within the range [y][000 · · · 0] ∼ [y][111 · · · 1] is visited, we use the approach in Algorithm 3.

4.2 Correctness
We now prove the correctness of our algorithm. Suppose the last edge of OPT (i, k) is
(j, k). Then d(i, k) is correctly computed before it is visited if and only if the following two
conditions holds:

If i 6= j, d(i, j) is correctly computed before it is visited.
After d(i, j) is visited, before we visit d(i, k), d(i, k) is updated by relaxing the edge (j, k)
w.r.t. d(i, j).

We prove the second condition holds for every d(i, j), and the first one simply follows
from induction.

Suppose [z] = LCP ([OPT (i, j)], [OPT (i, k)]) = LCP ([OPT (i, j)], [w(j, k)]). By Obser-
vation 2 the last edge (j, k) must be in one of the three cases, so we check them one by
one.

I Lemma 8. If (j, k) is in L[y] for some prefix [y] of [z], and d(i, j) is correctly computed
before visited, then d(i, k) is also correctly computed before visited.

Proof. Because [y] is also a prefix of [OPT (i, j)], at Line 12, when we visit d(i, j), d(i, k) is
updated by relaxing (j, k). Because OPT (i, j) < OPT (i, k), d(i, k) is not visited yet. J

I Lemma 9. Suppose (j, k) is in H ′[y][1] where [y][0] is a prefix of [OPT (i, j)]. If d(i, j) is
correctly computed before visited, d(i, k) is also correctly computed before visited.
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Proof. We can see [y] = [z] from the proof of Observation 2. At Line 8, when [x] =
[y][100 · · · 0], d(i, k) is updated by d(i, j) and (j, k). d(i, j) is already visited before because
it has prefix [y][0]. d(i, k) will be visited later because it has prefix [y][1]. J

I Lemma 10. If (j, k) is in Γ[y] for some prefix [y] of [z], and d(i, j) is correctly computed
before visited, then d(i, k) is also correctly computed before visited.

Proof. Since [y] is a prefix of both [OPT (i, j)] and [w(j, k)], the initialization for Γ[y] is done
at Line 5 when [x] = [y][000 · · · 0]. After that, d(i, k) is updated when we visit d(i, j) at Line
13. d(i, k) is not visited yet because OPT (i, k) > OPT (i, j). J

I Lemma 11. All d(i, j) are correctly computed before visited.

Proof. This follows from a simple induction. In the base case, for all length 1 optimal
paths OPT (i, j), they are obviously correctly computed in Line 1. Then if all length l − 1
paths OPT (i, j) are correctly computed before visited, by Lemma 8, 9, 10, all length l paths
OPT (i, j) are also correctly computed before visited. J

4.3 Running time
I Lemma 12. The relaxation for low edges (L[x]) takes Õ

(
n3−t) time in total. (Line 12)

Proof. At Line 12, we only enumerate O(n1−t) many edges because j has low outdegree in
L[y]. Since there are only b = O(logn) many prefix [y] for each [d(i, j)], each d(i, j) takes
Õ(n1−t) time. So in total, these updates take Õ(n3−t) time for all O(n2) many d(i, j). J

I Lemma 13. The relaxation for high-high edges and high-low edges besides matrix multi-
plication takes Õ

(
n3−t) time in total.

Proof. By Lemma 4 and Lemma 6, for each [y], the complexity for relaxation is bounded by
(n[y] + n[y][1])n1−t = O

(
n[y]n

1−t), where n[y] stands for the number of optimal paths with
prefix [y]. Since an optimal path can be counted in O(logn) many n[y], the total time is
therefore Õ(n3−t). J

I Lemma 14. The matrix multiplication parts for high-high edge updates and the initialization
of high-low edge updates take Õ (nt+ω) time in total.

Proof. By Lemma 5 and Lemma 7, the complexity for matrix multiplication is at most
M
(
n,min

(
2b−|[y]|

n1−t , n
)
, 2b−|[y]|

n1−t

)
for each [y]. We fix the length of [y], denoted by l = |[y]|,

then consider the two cases:
2l < nt : There are at most 2l many such [y], and each takes

M

(
n, n,

2b−l

n1−t

)
= O

(
n2 · 2b−l

n1−t

n3−ω

)
= O

(
nt+ω · 2−l

)
This follows from both Lemma 3 and the fact that 2b = |E| = O(n2). For each l, the time
complexity is exactly O(nt+ω). So the total complexity is Õ(nt+ω) since l = O(log2(n)).
2l ≥ nt : There are at most 2l many such [y]. Each takes

M

(
n,

2b−l

n1−t ,
2b−l

n1−t

)
= O

(
n ·
(

2b−l

n1−t

)2−(3−ω))
= O

(
n(t+1)(ω−1)+1 · 2−l(ω−1)

)
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So for all [y] of length l, it takes O
(
n(t+1)(ω−1)+1 · 2−l(ω−2)) time. The term 2−l(ω−2) is

maximized when l is minimized, so 2−l(ω−2) ≤ n−t(ω−2), and the total time for all lengths
of [y] is

Õ
(
n(t+1)(ω−1)+1−t(ω−2)

)
= Õ

(
nt+ω

)
J

I Theorem 15. The All Pair Non-decreasing Paths (APNP) problem on directed simple
graphs can be solved in Õ

(
n

3+ω
2

)
time. The optimal path of length l between any two vertices

can also be explicitly found in O(l) time if we slightly modify the algorithm.

Proof. We choose t = 3−ω
2 . The running time of this algorithm follows from previous lemmas.

Since all optimal paths OPT (i, k) are obtained by relaxation of edges (j, k), we can store
the last edge (j, k) for each OPT (i, k), so retrieving the optimal path can be done in O(l)
time. J
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