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Abstract
We study fundamental graph parameters such as the Diameter and Radius in directed graphs, when
distances are measured using a somewhat unorthodox but natural measure: the distance between
u and v is the minimum of the shortest path distances from u to v and from v to u. The center
node in a graph under this measure can for instance represent the optimal location for a hospital to
ensure the fastest medical care for everyone, as one can either go to the hospital, or a doctor can be
sent to help.

By computing All-Pairs Shortest Paths, all pairwise distances and thus the parameters we study
can be computed exactly in Õ(mn) time for directed graphs on n vertices, m edges and nonnegative
edge weights. Furthermore, this time bound is tight under the Strong Exponential Time Hypothesis
[Roditty-Vassilevska W. STOC 2013] so it is natural to study how well these parameters can be
approximated in O(mn1−ε) time for constant ε > 0. Abboud, Vassilevska Williams, and Wang
[SODA 2016] gave a polynomial factor approximation for Diameter and Radius, as well as a constant
factor approximation for both problems in the special case where the graph is a DAG. We greatly
improve upon these bounds by providing the first constant factor approximations for Diameter,
Radius and the related Eccentricities problem in general graphs. Additionally, we provide a hierarchy
of algorithms for Diameter that gives a time/accuracy trade-off.
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46:2 Min-Distance Problems

1 Introduction

The diameter, radius and eccentricities of a graph are fundamental parameters that have
been extensively studied [13, 20, 12, 18, 3, 14, 11, 17, 5, 6, 26, 27, 9, 19, 24, 23, 10, 1, 7] (and
many others). The eccentricity of a vertex v is the largest distance between v and any other
vertex. The diameter is the maximum eccentricity of a vertex in the graph, thus measuring
how far apart two nodes can be, and the radius is the minimum eccentricity, measuring the
maximum distance to the most central node.

The distance between two vertices in an undirected graph is just the shortest path
distance d(·, ·) between them. For directed graphs, however, this notion of distance d is
no longer necessarily symmetric, and rather than being a distance between two nodes, it
measures the distance in a given direction. Several related notions of pairwise distance that
are symmetric have been studied. These include the roundtrip distance [15] which for two
vertices u and v is just d(u, v) + d(v, u), the max-distance [2] which is max{d(u, v), d(v, u)},
and the min-distance [2] which is min{d(u, v), d(v, u)}.

Each of these notions of distance has a particular application. For instance, one would
have to pay the roundtrip distance when going to the store and back. On the other hand,
if one needs medical assistance, one could either go to the hospital, or have a physician
come to the home – the time to receive care is then measured by the min-distance. Another
example of min-distance is in symmetric-key encryption: any pair of parties can create a
shared private key by using only one-way communication.

For each notion of distance, the diameter, radius and eccentricity parameters are well-
defined. Given the shortest path distances d(·, ·) for all vertices, the parameters for each
distance measure can be computed in O(n2) time in n vertex graphs. The fastest known al-
gorithms for All-Pairs Shortest Paths (APSP) [25, 21, 22] give the fastest known algorithms to
compute these parameters exactly, running in n3/ exp(

√
logn) time and O(mn+n2 log logn),

respectively on m-edge, n-vertex graphs. Furthermore, under the Strong Exponential Hypo-
thesis, there is no O(m2−ε) time algorithm for Diameter in unweighted graphs (and thus also
for any of these notions of Diameter and Eccentricities in directed graphs) [23]. For Radius,
the same lower bound holds but under the “Hitting Set” conjecture [2].

As exact computation is expensive, it makes sense to resort to approximation algorithms.
For the shortest path distance versions of Diameter, Eccentricities and Radius, there are
several fast algorithms that achieve various small constant approximation ratios [23, 10, 8, 4].
For instance, for Diameter, a folklore linear time algorithm can achieve a 2-approximation,
and an Õ(m3/2) time1 algorithm can achieve a 3/2-approximation [23, 10].

Many of these algorithms [23, 10, 4] work for any distance measure that satisfies the
triangle inequality. Thus they work for the shortest paths distance, max-distance and
roundtrip distance. The min-distance however does not satisfy the triangle inequality: e.g.
you might have edges (x, y) and (z, y), and thus the min-distance between x and y and
between y and z are both 1, yet there may be no directed path between x and z in any
direction, so that the min-distance between them may be ∞.

This issue makes it much more difficult to design fast approximation algorithms for
Min-Diameter, Min-Radius and Min-Eccentricities (the parameters of interest under the
min-distance). The only known nontrivial algorithms are by Abboud et al. [2]. For Min-
Diameter [2] gives a near-linear time 2-approximation algorithm if the input is a directed
acyclic graph. For general graphs, the only nontrivial fast approximation algorithm is an

1 We use Õ notation to hide polylogarithmic factors.
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Õ(mn1−ε) time nε-approximation algorithm for any constant ε > 0. (No constant factor
approximation algorithm is known that runs significantly faster than just computing APSP.)
For Min-Radius, [2] gives an Õ(m

√
n) time 3-approximation algorithm for directed acyclic

graphs. For general graphs, they only achieve a very weak n-approximation in near-linear
time that checks if the Min-Radius is finite. There are no known approximation algorithms
for Min-Eccentricities faster than just computing APSP.

1.1 Our Results
The main goal of our paper is to obtain new fast, O(mn1−ε) time for some constant ε > 0,
algorithms for Min-Diameter, Min-Radius and Min-Eccentricities (thus beating the Õ(mn)
time of exact computation). We achieve this by developing powerful new techniques that can
handle the complications that arise due to the fact that the min-distance does not satisfy
the triangle inequality.

Our results are as follows. For Min-Diameter we achieve a hierarchy of algorithms trading
off running time with approximation accuracy.
I Theorem 1. For any integer 0 < ` ≤ O(logn), there is an Õ(mn1/(`+1)) time randomized
algorithm that, given a directed weighted graph G with edge weights non-negative and polyno-
mial in n, can output an estimate D̃ such that D/(4`− 1) ≤ D̃ ≤ D with high probability,
where D is the min-diameter of G.

When we set ` = 1, we obtain an Õ(m
√
n) time 3-approximation algorithm, and when

we set ` = dlogne, we get an Õ(m) time O(logn)-approximation.
Our tradeoff achieves the first constant factor approximation algorithms for Min-Diameter

in general graphs that run in O(mn1−ε) time for constant ε > 0. Such a result was only
known for directed acyclic graphs, whereas for general graphs the only known efficient
algorithm could achieve an nε-approximation.

For Min-Radius, we also achieve the first constant factor approximation algorithm for
general graphs running in O(mn1−ε) time for some constant ε > 0. Such a result was
only known for directed acyclic graphs, whereas for general graphs the only known efficient
algorithm could only check if the Min-Radius is finite.
I Theorem 2. For any constant δ with 1 > δ > 0, there is an Õ(m

√
n/δ) time randomized

algorithm, that given a directed weighted graph G with edge weights positive and polynomial
in n, can output an estimate R′ such that R ≤ R′ ≤ (3 + δ)R with high probability, where R
is the min-radius of G.

Finally, we obtain the first O(mn1−ε) time (for constant ε > 0) constant factor approxim-
ation algorithms for the Min-Eccentricities of all vertices in a graph. For unweighted graphs
we are able to obtain a close to 3 approximation in Õ(m

√
n) time. For weighted graphs,

our approximation factor grows to 5, while the running time is the same. Previously, the
only algorithm to approximate the Min-Eccentricities computed them exactly via an APSP
computation.
I Theorem 3. For any constant δ with 1 > δ > 0, there is an Õ(m

√
n/δ) time randomized

algorithm, that given a directed weighted graph G = (V,E) with weights positive and polynomial
in n, can output an estimate ε′(s) for every vertex s ∈ V such that ε(s) ≤ ε′(s) ≤ (5 + δ)ε(s)
with high probability, where ε(s) is the min-eccentricity of vertex s in G.

I Theorem 4. For any constant δ with 1 > δ > 0, there is an Õ(m
√
n/δ2) time randomized

algorithm, that given a directed unweighted graph G = (V,E), can output an estimate ε′(s)
for every vertex s ∈ V such that ε(s) ≤ ε′(s) ≤ (3 + δ)ε(s) with high probability, where ε(s)
is the min-eccentricity of the vertex s in G.
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46:4 Min-Distance Problems

1.2 Our Techniques
To obtain our results, we develop powerful new techniques which we outline below.

Partial search graphs. The idea of partial search graphs is used in the algorithms of [2]
for Min-Radius and Min-Diameter on DAGs. These algorithms use the following high-level
framework: perform Dijkstra’s algorithm from some vertices and then perform a partial
Dijkstra’s algorithm from every vertex. The partial search from a vertex v is with respect to
a carefully defined partial search graph Gv ⊂ G. The crux of the analysis for the algorithms
on DAGs is to argue that if the executions of Dijkstra’s algorithm on the full graph did not
find a good estimate for the desired quantity (either min-diameter or min-radius), then the
partial search from some vertex v returns a good estimate of the min-eccentricity of v, which
in turn is a good estimate for the desired quantity. In DAGs it is natural to define the partial
search graphs Gv by considering a topological ordering of the vertices and letting each Gv

be some interval containing v (though defining the exact intervals requires some work). For
general graphs it is completely unclear how to even define such intervals since there is no
natural notion of an ordering of the vertices, and thus figuring out what the Gv’s should
be is nontrivial. Our approach to overcoming this hurdle is to carefully define a DAG-like
structure in general graphs. Such a structure may be of independent interest.

Defining a DAG-like structure in general graphs. It would be ideal to directly reduce the
problem on general graphs to the problem on DAGs, however it is very unclear how to do
this. Instead, we recognize that it suffices to define a DAG-like structure in general graphs.
As a first step, we use the following idea. Suppose we have performed Dijkstra’s algorithm
from a vertex v. We let Sv = {u : d(u, v) < d(v, u)} and we let Tv = {u : d(u, v) > d(v, u)}2.
Then, we partially order the vertices so that the vertices in Sv appear before v and those in
Tv appear after v. We note that this partial ordering is “DAG-like” because it is consistent
with the topological ordering of a DAG; that is, if we apply this partition into Sv and Tv

to a DAG then there trivially exists a topological ordering such that every vertex in Sv

appears before v and every vertex in Tv appears after v. After partitioning into Sv and Tv,
we recursively partition each set to create a more precise partial ordering. Importantly, we
show that by recursively sampling vertices randomly, we can guarantee that our partitioning
is approximately balanced which is crucial for the runtime analysis. The obtained partial
ordering is the starting point for all of our algorithms.

Min-Diameter: graph augmentation. The Min-Diameter algorithm on DAGs from [2]
relies heavily on the following key property of DAGs. Consider a topological ordering and the
graphs induced by the first and second halves of the ordering; which are defined with respect
to the middle vertex in the ordering. For all pairs of vertices in the same half of the ordering,
their min-distance in the graph induced by this half is the same as their min-distance in
the full graph. As previously mentioned, if we sample a vertex v, we can make sure that Sv

and Tv are approximately balanced, so that we can think of Sv and Tv as corresponding to
the first and second half of a DAG topological ordering, respectively. However it is unclear
how to obtain a property of Sv and Tv analogous to the above key property of DAGs. In
particular, the min-distance between a pair of vertices in the graph induced by Sv could be
wildly different from their min-distance in the full graph, since paths whose endpoints are

2 u’s with d(u, v) = d(v, u) are added to either Sv or Tv as specified in the formal definition later
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in Sv can contain vertices outside of Sv. To overcome this hurdle, we augment the graph
induced by Sv and the graph induced by Tv by carefully adding edges so that distances
within these augmented graphs approximate distances in the original graph.

Min-Radius: refined DAG-like structure. Our Min-Radius algorithm is much more delicate
than our Min-Diameter algorithm due to the fact that for Min-Radius we care about small
distances instead of large distances. In particular, the graph augmentation idea from our
Min-Diameter algorithm does not help for Min-Radius because although the augmentations
do not distort large distances much, they heavily distort small distances. Furthermore, the
previously mentioned DAG-like structure for general graphs does not suffice for Min-Radius.
However we use it as a starting point to define a more refined DAG-like partial ordering.
Most of our algorithm is concerned with precisely arranging vertices in this partial ordering.
Specifically, we structure the partial ordering to satisfy roughly the following property: for
every pair of vertices u, v such that u appears before v in the partial ordering, d(v, u) is
large while d(u, v) is small.

1.3 Notation
Given a graph G = (V,E), n = |V | and m = |E|. Graphs are directed and have non-negative
weights polynomial in n unless otherwise specified. For any pair of vertices u and v, the
distance from u to v d(u, v) is the length of the shortest directed path from u to v. When
the context is not clear, we write dG(u, v) to specify the graph G. The min-distance between
a pair of vertices u and v is dmin(u, v) = min{d(u, v), d(v, u)}. The min-diameter of a graph
is maxu,v∈V dmin(u, v). The min-radius of a graph is minv∈V maxu∈V dmin(u, v). For any
vertex v, the min-eccentricity of v is ε(v) = maxu∈V dmin(u, v). When the context is not
clear, we say εG(v) to specify the graph G. Note that we do not use the min subscript to
denote the min-eccentricity of a vertex. For an algorithm with input size n we use with
high probability to denote the probability > 1 − 1/nc for all constants c. We say some
quantity is poly(n) to mean it is O(nc) for some fixed constant c. We use Õ notation to hide
polylogarithmic factors.

1.4 Organization
In Section 2 we give an overview of all of our algorithms, in Section 3 we describe a graph
partitioning procedure that begins all of our algorithms, in Section 4 we describe our Min-
Diameter algorithms. We defer the time/accuracy tradeoff algorithm for Min-Diameter, the
Min-Radius algorithm and the Min-Eccentricities algorithm to the full version [16].

2 Overview of Algorithms

We use the algorithms from [2] for Min-Diameter and Min-Radius on DAGs as inspiration.
For each problem, we first outline the DAG algorithm and then provide intuition for how to
apply these ideas to general graphs.

2.1 Min-Diameter
Algorithm for DAGs
We begin by outlining the Õ(n + m) time 2-approximation algorithm for Min-Diameter
on DAGs from [2]. Consider a topological ordering of the vertices and perform Dijkstra’s
algorithm from the middle vertex v. Then recurse on the graphs induced by the vertices in

ICALP 2019



46:6 Min-Distance Problems

the first half (before v) and in the second half (after v). A key observation in the analysis is
that if the true endpoints s∗ and t∗ of the min-diameter fall on opposite sides of v in the
ordering, then the min-eccentricity ε(v) of v is a 2-approximation for the min-diameter D.
This is because if ε(v) < D/2 and s∗ and t∗ fall on opposite sides of v in the ordering, then
d(s∗, v) < D/2 and d(v, t∗) < D/2 so d(s∗, t∗) < D, a contradiction. So, suppose (without
loss of generality) that s∗ and t∗ both fall before v in the ordering. Since the graph is a
DAG, every path between s∗ and t∗ only uses vertices before v in the ordering. Thus, the
min-distance between s∗ and t∗ in the graph induced by the first half of the graph is still D.

Algorithm for general graphs

We now outline a precursor to our Min-Diameter algorithm for general graphs that mimics the
algorithm for DAGs. This Õ(n+m) time algorithm does not achieve a constant approximation
factor, however it provides intuition for our constant-factor approximation algorithms. We
begin by performing Dijkstra’s algorithm from a vertex v and constructing Sv and Tv as
defined in the previous section. Analogously to the DAG algorithm if the true min-diameter
endpoints s∗ and t∗ fall into different sets Sv, Tv then the min-eccentricity ε(v) is a 2-
approximation. This is because if ε(v) < D/2, s∗ ∈ Sv, and t∗ ∈ Tv then d(s∗, v) < D/2
and d(v, t∗) < D/2 so d(s∗, t∗) < D, a contradiction. However, unlike the DAG algorithm,
we cannot simply recurse independently on the graphs induced by Sv and Tv since the
shortest path between a pair of vertices in Sv may not be completely contained in Sv (and
analogously for Tv).

To overcome this hurdle, before recursing we first augment the graphs induced by Sv and
Tv by carefully adding edges so that distances within these augmented graphs approximate
distances in the original graph. Specifically, for every vertex u ∈ Sv, we add the directed
edge (u, v) with weight 0 and the directed edge (v, u) with weight max{0, d(v, u) − ε(v)}.
This choice of edges allows us to argue that the distances within the augmented graphs are
approximations of the distances in G up to an additive error of 2ε(v). Then, by returning the
maximum of ε(v) and the min-diameter estimates from recursing on the augmented graphs,
we get an approximation guarantee, which turns out to be a logarithmic factor. Intuitively,
the approximation factor is not constant because the recursion causes the distance distortion
to compound at each level of recursion.

To reduce the approximation factor to a constant, we would like to decrease the number
of recursion levels. To achieve this, we initially partition the graph into more than just two
parts Sv and Tv, by sampling more vertices. For our Õ(m

√
n) time 3-approximation, we

perform a full Dijkstra’s algorithm from Õ(
√
n) vertices to define an ordered partition of

the vertices into Õ(
√
n) parts of Õ(

√
n) vertices each. Then we apply the above idea of

adding weighted edges within each part, however we must refine the definition of the graph
augmentation to take into account all of the Õ(

√
n) vertices we initially perform Dijkstra’s

algorithm from, instead of just v. Finally we use brute force (without recursion) on each
part in the partition by running an exact all-pairs shortest paths algorithm.

To achieve our time-accuracy trade-off algorithm, we carefully combine ideas from the
logarithmic factor approximation and the 3-approximation algorithms. Specifically, we
initially perform Dijkstra’s algorithm from fewer than

√
n vertices to define an ordered

partition with larger parts than in the 3-approximation. Then we augment the graph induced
by each part and carry out a constant number of recursion levels to further partition the
graph before applying brute-force.
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2.2 Min-Radius
Algorithm for DAGs
We begin by outlining the Õ(m

√
n) time 3-approximation algorithm for Min-Radius on DAGs

from [2], which is very different from and more involved than the Min-Diameter algorithm
on DAGs. We begin by considering a topological ordering of the vertices and performing
Dijkstra’s algorithm from a set W of Õ(

√
n) evenly spaced vertices including the first and

last vertex. If a vertex v ∈W has min-eccentricity at most twice the true min-radius R then
we have obtained a 2-approximation. (We do not know R in advance but we repeatedly run
the algorithm with different values of R to perform a binary search on R.)

Otherwise, we will define intervals in the ordering such that the min-center c cannot be
contained in any of these intervals. A key observation is that if there is a pair of vertices
(u, v) such that u appears before v in the topological ordering and d(u, v) > 2R, then the
min-center c cannot fall between u and v in the topological ordering. This is because if
it did, then d(u, c) ≤ R and d(c, v) ≤ R, so d(u, v) ≤ 2R, a contradiction. We define the
intervals that cannot contain c as follows: for all v ∈W we let av be the first vertex in the
ordering such that d(av, v) > 2R (if it exists, otherwise av = v) and define bv to be the last
vertex in the ordering such that d(v, bv) > 2R (if it exists, otherwise bv = v). Then, the key
observation implies that c cannot fall in the interval [av, bv] in the ordering. Now, we have
a set of possibly overlapping intervals that cannot contain c. We take the union of these
intervals to get a set of disjoint intervals that cannot contain c.

Every vertex u that does not appear in such an interval, falls between two consecutive
intervals Iu and I ′u. We define the partial search graph of u to be the graph induced by the
set of vertices in Iu or I ′u or between Iu and I ′u. After performing the partial searches, the
algorithm returns 3 times the minimum min-radius of all partial search graph. Next we give
the idea of the analysis, which demystifies the factor of 3 in the returned value.

We claim that if the min-eccentricity of a vertex with respect to its partial search graph
is at most R, then its min-eccentricity with respect to the full graph is at most 3R, and
the min-eccentricity of the true min-center with respect to its partial search graph is at
most R (because for any path in a DAG whose starting and ending points are in a certain
interval, every vertex in the path is in that interval). Thus, assuming the claim, 3R is a
3-approximation for the min-radius. We now outline the proof of the claim. Let u be the min-
center with the minimum min-radius R of all partial search graphs. Let v ∈W such that av

is the first vertex (in the topological order) of Iu, then v ∈ Iu and d(v, u) ≤ R. Furthermore,
by the definition of av, all vertices that appear before the beginning of the interval Iu have
distance at most 2R to v, and thus distance at most 3R to u. A symmetric argument holds
for vertices that appear after the end of the interval I ′u. Hence the min-eccentricity of u with
respect to the full graph is at most 3R.

This algorithm runs in time O(m
√
n) because the vertices ofW are evenly spaced so there

are no more than
√
n vertices between each pair of consecutive intervals. This implies that

in the partial searches, each edge is only scanned O(
√
n) times. (Furthermore, repeatedly

running the algorithm to binary search for R adds a logarithmic factor to the runtime.)

Algorithm for general graphs
We now give a high-level outline of our Õ(m

√
n) time 3-approximation algorithm for Min-

Radius. This algorithm is much more delicate than our Min-Diameter algorithm, hence more
of the details are deferred to the full description. We begin by running Dijkstra’s algorithm

ICALP 2019



46:8 Min-Distance Problems

from a set W of Õ(
√
n) randomly sampled vertices to recursively partition the vertices into

Sv and Tv as outlined in Section 1.2. This defines an initial DAG-like structure, however our
analysis requires constructing a much more refined DAG-like structure.

Perhaps counter-intuitively, it makes sense to place vertices that are far from each other
in the graph close to each other in the DAG-like structure. The reason for this is illuminated
by the Min-Radius algorithm on DAGs, in which we find pairs of vertices u, v that are far
from each other and apply the key observation that the min-center cannot be between u and
v in the topological ordering. Intuitively, it is as if we collapse the interval between u and
v in the DAG since we do not have to search within this interval for the min-center. An
analogous key observation is true for general graphs: if there is a pair of vertices (u, v) with
dmin(u, v) > 2R, then either c ∈ Su ∩ Sv or c ∈ Tu ∩ Tv. This is because if c ∈ Tu ∩ Sv, then
d(u, c) ≤ R and d(c, v) ≤ R so d(u, v) ≤ 2R, a contradiction; the last case c ∈ Su ∩ Tv is
symmetric. In our algorithm for general graphs, we ensure that far vertices are near each
other in the DAG-like structure by doing the following: we let the far graph Gfar be an
undirected graph on V with an edge between u ∈ W and v ∈ V if dmin(u, v) > 2R. All
vertices in W that are in the same connected component in Gfar will be grouped in the
DAG-like structure. We let Fi be the set of vertices in W that are in the ith connected
component of Gfar.

To construct the DAG-like structure, we show that precisely chosen groups of Fis can be
merged to create supercomponents, which constitute a DAG-like structure in the following
sense: there is an ordering of supercomponents such that for every pair of vertices u, v ∈W
where the supercomponent containing u appears before that containing v, d(u, v) is small and
d(v, u) is large. Specifically, we define the close graph H whose vertex set is the set of Fis. We
add a directed edge between a pair of vertices in H if there exists a short path (length ≤ 5R)
between the corresponding Fis. Then we merge all Fis that appear in the same strongly
connected component of H into a supercomponent. This contraction of strongly connected
components of H results in a DAG, which defines the ordering of the supercomponents.

Now that we have arranged the vertices in W into a DAG-like structure, we would
like to fit every vertex in the graph into this structure. Based on the precise way that we
have defined the supercomponents, we can use an intricate argument to show roughly the
following property: for every vertex v there exists an i such that for every vertex u ∈W in
the first i supercomponents, d(u, v) is small and for every vertex u ∈ W in the remaining
supercomponents, d(v, u) is small.

After fitting every vertex into the refined DAG-like ordering, we can define each partial
search graph to be an interval in the ordering that is large enough to contain several
supercomponents. In the algorithm for DAGs, there were two important properties of the
partial search graphs: (1) the min-eccentricity of the true min-center with respect to its
partial search graph is at most R, and (2) if the min-eccentricity of a vertex with respect
to its partial search graph is at most R then its min-eccentricity with respect to the full
graph is at most 3R. We show that due to the precise structure of the supercomponents,
refinements of properties (1) and (2) are also true for general graphs.

Intuitively, property (1) is roughly true because for every pair of vertices u, v ∈W such
that u’s supercomponent appears before v’s in the ordering, d(v, u) > 5R, since otherwise
this pair of supercomponents would be in the same strongly connected component of H
and would have been merged into a single supercomponent. This implies that paths of
length at most R to or from the min-center cannot stray beyond its partial search graph.
Intuitively, property (2) is roughly true because for every pair of vertices u, v ∈W such that
u’s supercomponents appears before v’s in the ordering, d(u, v) ≤ 2R because otherwise, u
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and v would be in the same component of Gfar and thus be in the same supercomponent.
Thus, like the argument for DAGs, for all u, all vertices that appear before u’s partial search
graph Gu have distance at most 2R to each supercomponent in Gu, and thus distance at
most 3R to u. A symmetric argument holds for vertices after u in the ordering.

2.3 Min-Eccentricities
Our Min-Eccentricities algorithm is a modification of our Min-Radius algorithm. In our
Min-Radius algorithm, we identify a vertex whose min-eccentricity is at most about 3R,
where R is the true min-radius. In our Min-Eccentricities algorithm, we show that with
some extra bookkeeping, the algorithm can identify all vertices with min-eccentricity at most
about 5ρ for any ρ. We run the algorithm repeatedly, increasing ρ by a factor of (1 + δ) at
each execution until we have estimated the min-eccentricity of every vertex.

The major modification of the Min-Radius algorithm here is that if one of the vertices
that we run Dijkstra from has min-eccentricity at most 3ρ, we cannot stop running the
algorithm, as we can in the Min-Radius algorithm. Instead, we use this vertex as a tool to
find vertices with min-eccentricity at most 5ρ.

3 Preliminary Graph Partitioning

In this section we describe a graph partitioning procedure we use as a first step in our
Min-Diameter, Min-Radius, and Min-Eccentricities algorithms. The goal of this partitioning
is to define a DAG-like structure in general directed graphs.

I Definition 5. Assign each vertex a unique ID from [n]. For each vertex v, let Sv = {u ∈
V : d(u, v) < d(v, u) ∨ [d(u, v) = d(v, u) ∧ ID(u) < ID(v)]}. Let Tv = V \ (Sv ∪ {v}).

The runtime of our algorithms relies on whether the partition into Sv and Tv is balanced.
Using the observation that if u ∈ Sv, then v ∈ Tu, the following lemma shows that for most
vertices, the partition is indeed approximately balanced.

I Lemma 6. For any n-vertex graph, there are > n
2 vertices v such that |Sv|

8 ≤ |Tv| ≤ 8 · |Sv|.
More generally, for any U ⊆ V , there are more than |U |

2 vertices v ∈ U such that
|Sv∩U |

8 ≤ |Tv ∩ U | ≤ 8|Sv ∩ U |.

Lemma 6 is proved in the full version [16]. Next, we describe how we use Lemma 6 to
recursively construct a balanced partition of the vertices into a given number of of sets.

I Lemma 7. Given an n-vertex graph G = (V,E) and a constant c > 0, in Õ(mn1−c) time
one can split V into disjoint sets W,V1, V2, . . . , Vq+1, where q = |W | = n1−c, such that with
high probability:
1. for all i, |Vi| = Θ( n

q );
2. for all i 6= j, there exists w ∈W such that either Vi ⊆ Sw,Vj ⊆ Tw, or Vi ⊆ Tw,Vj ⊆ Sw;

3. for all U ⊆W , let VU =
( ⋂

w∈U

Sw

)⋂ ⋂
w∈W\U

Tw

, then VU ⊆ Vi for some i ∈ [q + 1].

Proof. We begin with W = ∅ and we will iteratively populate W with vertices. We let
V0 = {V } and for all i ∈ [q] when we add the ith vertex to W , we will construct Vi from
Vi−1 by partitioning the largest set in Vi−1 into two parts. After adding q vertices to W we
will have constructed Vq = {V1 . . . Vq+1}.
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For all i ∈ [q], let Ai, Bi be the largest and smallest sets in Vi, respectively.
We describe how to construct W and Vq inductively. Suppose |W | = r − 1 and we

have constructed Vr−1. By Lemma 6, if we randomly sample O(log2 n) vertices from Ar−1,
with probability at least 1 − 2− log2 n = 1 − n− log n we will sample a vertex wr such that
AS = Ar−1 ∩ Swr and AT = Ar−1 ∩ Twr differ by a factor of at most 8. We add wr to W
and let Vr = Vr−1 ∪ {AS , AT } \ {Ar−1}.

By union bound over the q = n1−c partitionings, with probability at least 1− n1−c−log n,
every partitioning produces two sets that differ in size by a factor of at most 8.

We prove property 1 by induction on |W | = r. Specifically, we will show that for all r ∈ [q],
|Ar| ≤ 9|Br|. This implies that |Aq| = O(|Bq|), and property 1 follows. Lemma 6 implies
that |A1| ≤ 9|B1|. Assume inductively that |Ar−1| ≤ 9|Br−1|. Since no subset grows in size,
|Ar| ≤ |Ar−1| and |Br| ≤ |Br−1|. If |Br| = |Br−1|, then |Ar| ≤ |Ar−1| ≤ 9|Br−1| = 9|Br|.
Otherwise, |Br| < |Br−1|, which implies that Br is one of the two sets obtained by partitioning
Ar−1. Then by Lemma 6, |Ar−1| ≤ 9|Br|. Hence |Ar| ≤ |Ar−1| ≤ 9|Br|, completing
the induction.

Property 2 follows from the partitioning procedure: for any i 6= j, if for all w ∈ W ,
Vi, Vj ⊆ Sw or Vi, Vj ⊆ Tw then Vi ∪ Vj would never have been partitioned.

Property 3 also follows from the partitioning procedure: observe that for all w ∈ W
and all U ⊆ W , VU ⊆ Sw or VU ⊆ Tw, so VU is never partitioned and thus VU ⊆ Vi for
some i ∈ [q + 1].

Since we sample n1−c log2 n vertices and for all v finding Sv, Tv takes O(m) time, the
runtime is Õ(mn1−c). J

4 Min-Diameter Algorithm

Throughout this section, let D be the min-diameter, and let s∗, t∗ the endpoints of the min-
diameter. In this section we prove the time/accuracy trade-off theorem for Min-Diameter.

I Theorem 8. For any integer 0 < ` ≤ O(logn), there is an Õ(mn1/(`+1)) time randomized
algorithm that, given a directed weighted graph G with edge weights non-negative and polyno-
mial in n, can output an estimate D̃ such that D/(4`− 1) ≤ D̃ ≤ D with high probability,
where D is the min-diameter of G.

We first prove a special case of Theorem 8 where ` = 1, and the rest of the proof can be
found in the full version [16].

4.1 An Õ(m
√

n) time 3-approximation
I Theorem 9 (Theorem 8 with ` = 1). There is an Õ(m

√
n) time randomized algorithm, that

given a directed weighted graph G = (V,E) with edge weights non-negative and polynomial in
n, can output an estimate D̃ such that D/3 ≤ D̃ ≤ D with high probability, where D is the
min-diameter of G.

4.1.1 Algorithm Description
Applying Lemma 7 with q =

√
n we obtain a partition of the vertices intoW,V1, V2, . . . , V√n+1.

We perform Dijkstra’s algorithm from every vertex in W and define D′ = maxw∈W ε(w).
We will later show that D′ is a good approximation of the Min-Diameter when s∗ and t∗ are
not in the same vertex set Vi.
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w

u

v
x

Sw Tw

≤ D′

≤ D′

Figure 1 The case where u, v ∈ Sw and the shortest path from u to v contains a node x ∈ Tw∪{w}.

For every i ∈ [
√
n+ 1], define WS

i = {w ∈W : Vi ⊆ Sw}, and WT
i = {w ∈W : Vi ⊆ Tw}.

Then, for every i, we construct two graphs GS
i and GT

i . The first graph GS
i contains all

vertices of Vi and an additional node wS
i . It has the following edges:

1. For every directed edge (u, v) ∈ E such that u, v ∈ Vi, add this edge to GS
i .

2. Add a directed edge from wS
i to every v ∈ Vi, with weight max

{
minw∈W S

i
d(w, v)−D′, 0

}
,

and a directed edge from every v ∈ Vi to wS
i with weight 0.

The second graph GT
i is symmetric to GS

i . It contains all vertices in Vi and an additional
node wT

i . It has the following edges:
1. For every directed edge (u, v) ∈ E such that u, v ∈ Vi, add this edge to GT

i .
2. Add a directed edge from every v ∈ Vi to wT

i , with weight max
{

minw∈W T
i

d(v, w)−D′, 0
}
,

and add a directed edge from wT
i to every v ∈ Vi with weight 0.

For all i, we run an exact all-pairs shortest paths algorithm on GS
i and GT

i . This allows
us to compute for all i and all u, v ∈ Vi the quantity min{dGS

i
(u, v), dGT

i
(u, v)}, which we

denote by d′i(u, v).
We choose the larger between D′ and maxi∈[

√
n+1],u,v∈Vi

min{d′i(u, v), d′i(v, u)} as our
final estimate for the min-diameter.

4.1.2 Analysis
The following lemma will be used to show that D′ is a good estimate for the min-diameter if
s∗ and t∗ happen to fall into different sets Vi

I Lemma 10. For all vertices v, if either s∗ ∈ Sv, t∗ ∈ Tv, or t∗ ∈ Sv, s∗ ∈ Tv, then
ε(v) ≥ D/2.

Proof. We only consider the case when s∗ ∈ Sv and t∗ ∈ Tv as the other case is symmetric.
By way of contradiction, assume that ε(v) < D/2, then we have dmin(s∗, v) < D/2 and
dmin(t∗, v) < D/2. Since s∗ ∈ Sv, d(s∗, v) = dmin(s∗, v) < D/2; similarly, since t∗ ∈
Tv, d(v, t∗) = dmin(t∗, v) < D/2. Therefore, by the triangle inequality, d(s∗, t∗) < D,
a contradiction. J

The next two lemmas are used for the case where s∗ and t∗ fall into the same set Vi.

I Lemma 11. For every i, and every pair of vertices u, v ∈ Vi, d′i(u, v) ≤ d(u, v); that is,
min{dGS

i
(u, v), dGT

i
(u, v)} ≤ d(u, v).

Proof. Take any shortest path in the original graph G from u to v. If this path does not
leave Vi, then this path also exists in GS

i and GT
i , and thus the inequality is true.

It remains to prove for the case when the shortest u, v path in the original graph leaves
Vi. Let x 6∈ Vi be any vertex on a shortest u, v path. By Lemma 7, property 2, there exists
w ∈W such that x ∈ Sw ∪{w} and Vi ⊆ Tw, or x ∈ Tw ∪{w} and Vi ⊆ Sw. We first assume
x ∈ Tw ∪ {w} and Vi ⊆ Sw as shown in Figure 1, and the other case is symmetric.
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Vi

u

v

wS
i

x

0

Figure 2 A shortest u, v path in GS
i that contains wS

i . The path goes from u, directly to wS
i

using a weight 0 edge, then directly to a vertex x, and finally reaches v.

Since x is on the shortest path from u to v, we have d(u, v) ≥ d(x, v). Also, we have
d(w, x) ≤ D′, by definition of D′. Therefore,

d(u, v) ≥ d(x, v) ≥ d(x, v) + (d(w, x)−D′) ≥ d(w, v)−D′. (1)

Now consider the path u → wS
i → v in GS

i . The first part u → wS
i costs 0, because

there is an edge from u to wS
i with weight 0; the second part wS

i → v costs at most
max{0, d(w, v) − D′}. If d(w, v) < D′, then d′i(u, v) ≤ dGS

i
(u, v) = 0 ≤ d(u, v); otherwise,

d′i(u, v) ≤ dGS
i
(u, v) ≤ d(w, v)−D′ ≤ d(u, v), where the last step is Equation 1.

When x ∈ Sw ∪ {w}, and Vi ⊆ Tw, we have a symmetric argument: d(u, v) ≥ d(u, x) ≥
d(u, x) + (d(x,w)−D′) ≥ d(u,w)−D′. Consider the path u→ wT

i → v in GT
i . The second

part wT
i → v costs 0, because there is an edge from wT

i to v with weight 0; the first part
u → wT

i costs at most max{0, d(u,w) −D′}. If d(u,w) < D′, then d′i(u, v) ≤ dGT
i

(u, v) =
0 ≤ d(u, v); otherwise, d′i(u, v) ≤ dGT

i
(u, v) ≤ d(u,w)−D′ ≤ d(u, v). J

I Lemma 12. For every i, and every pair of vertices u, v ∈ Vi, d′i(u, v) ≥ d(u, v)− 2D′; that
is, dGS

i
(u, v) ≥ d(u, v)− 2D′ and dGT

i
(u, v) ≥ d(u, v)− 2D′.

Proof. We only provide full proof for dGS
i

(u, v) ≥ d(u, v)− 2D′. The inequality for GT
i can

be proved by a symmetrical argument. If the shortest path from u to v in GS
i does not

contain wS
i , then this path also exists in the original graph G, and thus the inequality is true.

Otherwise, the shortest path from u to v in GS
i contains wS

i , as shown in Figure 2. All
edges on the shortest path from wS

i to v exist in the original graph G except for the first
edge from wS

i to some node x, since a shortest path cannot use the vertex wS
i more than

once. That is, dGS
i
(x, v) = d(x, v).

By the definition of wS
i and the edges incident to it, there exists a w ∈ WS

i such that
d(w, x) ≤ dGS

i
(wS

i , x) +D′. Thus, we have

dGS
i
(u, v) = dGS

i
(u,wS

i ) + dGS
i
(wS

i , x) + dGS
i
(x, v)

= dGS
i
(wS

i , x) + dGS
i
(x, v) since dGS

i
(u, wS

i ) = 0 by construction

= dGS
i
(wS

i , x) + d(x, v) from argument above

≥ d(w, x)−D′ + d(x, v) by the definition of w

≥ d(w, v)−D′ by the triangle inequality

≥ (d(w, v)−D′) + (d(u,w)−D′) since d(u, w) ≤ D′ by definition

≥ d(u, v)− 2D′ by the triangle inequality J
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We are now ready to prove our approximation ratio guarantee: D/3 ≤ D̃ ≤ D. Clearly
D′ ≤ D because D′ is the min-eccentricity of a vertex. By Lemma 11
maxi,u∈Vi,v∈Vi

min{d′i(u, v), d′i(v, u)} ≤ maxi,u∈Vi,v∈Vi
dmin(u, v) ≤ D . Therefore, we never

over estimate the Min-Diameter.
If s∗ ∈W or t∗ ∈W , then since we run Dijkstra from all vertices in W we have D′ = D.

So assuming that s∗, t∗ /∈W , we have two cases.

Case 1: s∗ and t∗ are not in the same vertex set Vi. By Lemma 7, property 2, there exists
w ∈ W such that one of s∗ and t∗ is in Sw and the other is in Tw, so by Lemma 10,
ε(w) ≥ D/2. Since D′ ≥ ε(w), we have D′ ≥ D/2.

Case 2: s∗ and t∗ are in the same vertex set Vi for some i. By Lemma 12,
min (d′i(s∗, t∗), d′i(t∗, s∗)) ≥ dmin(s∗, t∗)−2D′ = D−2D′. Since max{D−2D′, D′} ≥ D/3,
we get a 3-approximation.

Runtime analysis

It takes Õ(m
√
n) time to perform the partitioning from Lemma 7 and to perform Dijkstra’s

algorithm from all w ∈W since |W | = O(
√
n).

For all i, the number of vertices in GS
i is |Vi| + 1 = O(

√
n) with high probability by

property 1 of Lemma 7 and the number of edges is mi +O(
√
n) where mi is the number of

edges in the graph induced by Vi. Hence we can run an all-pairs shortest paths algorithm on
GS

i in time Õ((mi +
√
n)
√
n). Summing over all i gives us Õ(m

√
n). The same analysis also

works for Gi
T .
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