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Abstract
Asadpour, Feige, and Saberi proved that the integrality gap of the configuration LP for the restricted
max-min allocation problem is at most 4. However, their proof does not give a polynomial-time
approximation algorithm. A lot of efforts have been devoted to designing an efficient algorithm
whose approximation ratio can match this upper bound for the integrality gap. In ICALP 2018, we
present a (6 + δ)-approximation algorithm where δ can be any positive constant, and there is still a
gap of roughly 2. In this paper, we narrow the gap significantly by proposing a (4+δ)-approximation
algorithm where δ can be any positive constant. The approximation ratio is with respect to the
optimal value of the configuration LP, and the running time is poly(m,n) · npoly( 1

δ
) where n is the

number of players and m is the number of resources. We also improve the upper bound for the
integrality gap of the configuration LP to 3 + 21

26 ≈ 3.808.
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1 Introduction

Background

In the max-min fair allocation problem, we are given a set P of n players, a set R of m
indivisible resources, and a set of non-negative values {vpr}p∈P,r∈R. For each r ∈ R and each
p ∈ P , resource r is worth a value of vpr to player p. An allocation is a partition of R into
disjoint subsets {Dp}p∈P so that each player p is assigned the resources in Dp. The goal is
to find an allocation that maximizes the welfare of the least lucky player, that is, we want to
maximize minp∈P

∑
r∈Dp vpr. Unfortunately, unless P = NP, no polynomial-time algorithm

can achieve an approximation ratio smaller than 2 [6].
Bezáková and Dani [6] tried to solve the problem using the assignment LP – a technique

for the classic scheduling problem of makespan minimization [16]. However, they showed
that the integrality gap of the assignment LP is unbounded, so rounding the assignment LP
gives no guarantee on the approximation ratio. Later, Bansal and Sviridenko [4] proposed a
stronger LP relaxation, the configuration LP, for the max-min allocation problem. Asadpour
and Saberi [3] developed a polynomial-time rounding scheme for the configuration LP that
gives an approximation ratio of O(

√
n log3 n). Saha and Srinivasan [18] improved it to

O(
√
n logn). These approximation ratios almost match the lower bound of Ω(

√
n) for the

integrality gap of the configuration LP proved by Bansal and Svirodenko [4]. Bateni et al. [5]
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38:2 Restricted Max-Min Allocation

and Chakrabarty et al. [7] established a trade-off between the approximation ratio and the
running time. For any δ > 0, they can achieve an approximation ratio of O(nδ) with O(n1/δ)
running time.

In this paper, we study the restricted max-min allocation problem. In the restricted
case, we have vpr ∈ {vr, 0}. That is, each resource r has an intrinsic value vr, and it is
worth value vr to those players who desire it and value 0 to those who do not. Assuming
P 6= NP, the restricted case has a lower bound of 2 for the approximation ratio. The
integrality gap of configuration LP for the restricted case also has a lower bound of 2.
Bansal and Sviridenko [4] proposed an O

( log logn
log log logn

)
-approximation algorithm by rounding

the configuration LP. Feige [11] proved that the integrality gap of the configuration LP is
bounded by a constant, albeit large and unspecified. His proof was later made constructive
by Haeupler et al. [12], and hence a constant approximation can be found in polynomial
time. Asadpour et al. [2] viewed the restricted max-min allocation problem as a bipartite
hyper-graph matching problem. Let T ∗ be the optimal value of the configuration LP. By
adapting Haxell’s [13] alternating tree technique for bipartite hyper-graph matchings, they
proposed a local search algorithm that returns an allocation where every player receives at
least T ∗/4 worth of resources, and hence proved that the integrality gap of the configuration
LP is at most 4. However, their algorithm is not known to run in polynomial time. A lot of
efforts have been devoted to making their algorithm run in polynomial time. Polacek and
Svensson [17] showed that the local search can be done in quasi-polynomial time by building
the alternating tree in a more careful way. Annamalai, Kalaitzis and Svensson [1] carried out
the local search in a more structured way. Together with two new greedy and lazy update
strategies, they can find in polynomial time an allocation in which every player receives a
value of at least T ∗/(6 + 2

√
10 + δ). Recently, we proposed a more flexible, aggressive greedy

strategy that improves the approximation ratio to 6 + δ [9]. Davies et al. [10] claimed a
(6 + δ)-approximation algorithm for the restricted max-min allocation problem by reducing
it to the fractional matroid max-min allocation problem.

Our Contribution

We adapt the framework in [1] by introducing two new strategies: layer-level node-disjoint
paths and limited blocking. The performance of our framework is determined by three
parameters, and a trade-off between the running time and the quality of solution can be
achieved by tuning these parameters. On one extreme, our framework acts exactly the same
as the original local search in [2], which achieves a ratio of 4 but not necessarily run in
polynomial time. On the other extreme, it becomes something like the algorithm in [1],
which achieves a polynomial running time but a much worse ratio. We show that, in order
to achieve a polynomial running time, one doesn’t have to go from one extreme to the other –
a marginal movement is sufficient. As a result, a ratio slightly worse than 4 can be achieved
in polynomial time.

I Theorem 1. For any constant δ > 0, there is a (4 + δ)-approximation algorithm for the
restricted max-min allocation problem that runs in poly(m,n) · npoly( 1

δ ) time.

Although the algorithm we present takes the optimal value of the configuration LP as its
input, one can avoid solving the configuration LP by combining our algorithm with binary
search to zoom into the optimal value of configuration LP. The binary search technique is
similar to that in [1, 9].

We also show that the integrality gap of the configuration LP is at most 3 + 21
26 ≈ 3.808

by giving a better analysis of the AFS algorithm. This improves the bound of 3 + 5
6 ≈ 3.833

recently obtained in [8, 15].
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Primal∑
C∈Cp(T )

xp,C > 1∀p ∈ P

∑
p∈P

∑
C∈Cp(T ):r∈C

xp,C 6 1∀r ∈ R

xp,C > 0

Dual

max
∑
p∈P

yp −
∑
r∈R

zr

s.t. yp 6
∑
r∈C

zr ∀p ∈ P,∀C ∈ Cp(T )

yp > 0 ∀p ∈ P
zr > 0 ∀r ∈ R

Figure 1 The configuration LP and its dual.

I Theorem 2. The integrality gap of the configuration LP for the restricted max-min
allocation problem is at most 3 + 21

26 ≈ 3.808.

We focus on only the proof of Theorem 1 in the main text. The proof of Theorem 2 can
be found in the full version of the paper. Other omitted proofs can also be found in the full
version of the paper.

2 Preliminaries

2.1 The Configuration LP
Suppose that we hope to find an allocation where every player receives at least T worth of
resources. A configuration for a player p is a subset D of the resources desired by p such
that

∑
r∈D vr > T . Let Cp(T ) denote the set of all configurations for p.

The configuration LP is given on the left of Figure 1. Given a target T , the configuration
LP, denoted as CLP(T ), associates a variable xp,C with each player p and each configuration C
in Cp(T ). Its first constraint ensures that each player receives at least 1 unit of configurations,
and the second constraint guarantees that every resource r is used in at most 1 unit of
configurations. The optimal value of the configuration LP is the largest T for which CLP(T )
is feasible. We denote this optimal value by T ∗. Without loss of generality, we assume that
T ∗ = 1 for the rest of the paper. Although the configuration LP may have an exponential
number of variables, it can be solved within any constant relative error in polynomial time [4].
Viewing the objective function of the configuration LP as a minimization of a constant, one
can get the dual LP on the right of the Figure 1.

2.2 Fat and thin edges
Our goal is to find an allocation in which every player receives at least λ worth of resources
for some λ ∈ (0, 1). In particular, our approximation algorithm sets λ = 1

4+δ where δ is a
positive constant. For each resource r ∈ R, we call r fat if vr > λ, and thin otherwise. To
find the target allocation, it suffices to assign each player p either a fat resource desired by p
or a subset D of the thin resources desired by p with

∑
r∈D vr > λ.

For every p ∈ P and every fat resource r desired by p, we call {p, r} a fat edge. For every
p ∈ P and every subset D of the thin resources desired by p, we call (p,D) a thin edge if∑
r∈D vr > λ. Two edges are compatible if they share no common resource. We say that a

fat edge {p, r} covers p and r. Similarly, a thin edge (p,D) covers p and the resources in D.
A player or a resource is covered by a set of edges if it is covered by some edge in the set.
For any w > 0, a thin edge (p,D) is a w-minimal if

∑
r∈D vr > w and

∑
r∈D′ vr < w for any

D′ ( D. For a w-minimal thin edge (p,D), it is not hard to see that w 6
∑
r∈D vr < w + λ.

ICALP 2019



38:4 Restricted Max-Min Allocation

Given the above definitions of fat and thin edges, finding the target allocation is equivalent
to finding a set of mutually compatible edges that covers all the players.

2.3 A local search idea
The following local search idea is initially proposed by Asadpour et al. [2], and is also used
in [1, 9].

Let G be the bipartite graph formed by the players, the fat resources, and the fat edges.
We maintain a set M of fat edges and a set E of thin edges such that: (i) M is a maximum
matching of G, (ii) edges in E are λ-minimal and are mutually compatible, and (iii) each
player is covered by at most one edge in M ∪ E . We call such M and E a partial allocation.
Initially, M is an arbitrary maximum matching of G, and E is empty. The set M ∪ E is
updated and grown iteratively so that one more player is covered in each iteration. The final
set M ∪ E covers all the players and induces our target allocation.

Let p0 be a player not yet covered by M ∪ E . We need to update M ∪ E to cover p0
without losing any player that are already covered. The simplest case is that we can find
a player q0 such that q0 is covered by a thin edge a compatible with E and there is an
alternating path [14] with respect to M from p0 to q0. Let π be this alternating path. We
first update M by taking the symmetric difference M ⊕ π, i.e., remove the edges in π ∩M
from the matching and add the edges in π \M to the matching. M ⊕ π is also a maximum
matching of G. After the update, p0 becomes matched while q0 becomes unmatched. Then
we add a to E to cover q0 again. Here we slight abuse the notion of alternating paths in
the sense that wen allow an alternating path with no edge. The ⊕ can easily extend to
alternating paths with no edge.

It is possible that no edge covering q0 is compatible with E . Let a be an edge covering
q0. Suppose that b is an edge in E that is not compatible with a. We say b blocks a. Let
p1 be the player covered by b. In order to add a to E , we have to release b from E . But we
cannot lose p1, so before we release b, we need to find another edge to cover p1. Now p1 has
a similar role as p0.

2.4 Node-disjoint alternating paths
In order to achieve a polynomial running time, our algorithm updates M using multiple
node-disjoint alternating paths from unmatched players to players . In this section, we define
a problem of finding a largest set of node-disjoint paths. We also extend the ⊕ operation to
a set of node-disjoint paths.

For any maximum matching M of G, we define GM to be the directed graph obtained
from G by orienting edges of G from r to p if {p, r} ∈M , and from p to r if {p, r} /∈M . Let
S be a subset of the players not matched by M . Let T be a subset of the players. Finding
the largest set of node-disjoint alternating paths from S to T is equivalent to finding the
largest set of node-disjoint paths in GM from S to T . Let GM (S, T ) denote the problem of
finding the largest set of node-disjoint paths from S to T in GM . Let fM (S, T ) denotes the
maximum number of such paths. Note that when S ∩ T 6= ∅, a path consisting of a single
node is allowed. Such path is called a trivial path. Paths with at least one edge is non-trivial.
Let Π be a feasible solution for GM (S, T ). The paths in Π originate from a subset of S,
which we call the sources and denote as srcΠ, and terminate in a subset of T , which we call
the sinks and denote as sinkΠ. We extend the ⊕ operation to Π. Viewing Π as a set of edges,
M ⊕Π stands for removing the edges in Π ∩M from the matching and adding the edges in
Π \M to the matching. One can see that M ⊕Π is a maximum matching of G.

The problem GM (S, T ) can be solved in polynomial time. Please refer to the full version
of the paper for more details.
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3 An Approximation Algorithm

We discuss below a few techniques used by our algorithm. Some of them are used in [1, 9, 10].
The limited blocking strategy is brand new, and is crucial to achieving an approximation
ratio of 4 + δ. In the following discussion, one can interpret addable edges as thin edges that
we hope to add to E , and blocking edges as edges in E that are not compatible with addable
edges. The precise definition will be given later.

Layers. As in [1, 9], we maintain a stack of layers, where each layer consists of addable
edges and their blocking edges. The key to achieving a polynomial running time is to
guarantee a geometric growth in the number of blocking edges from the bottom to the top
of the stack.

Layer-level node-disjoint paths. We require that the players covered by the addable edges
in a layer can be simultaneously reached via node-disjoint paths in GM from the players
covered by the blocking edges in the previous layers [10]. It has the same effect as the
globally node-disjoint path used in [1]: if lots of addable edges in a layer become unblocked,
then a significant update can be made. The advantage of our strategy is that it offers more
flexibility when building a new layer.

Lazy update. When having an unblocked addable edge, one may be tempted to update
M and E immediately. However, as in [1], in order to achieve a polynomial running time, we
should wait until there are lots of unblocked addable edges, and then a significant update
can be made in one step. The laziness is controlled by a small constant µ that will be
defined later.

Greedy and Limited Blocking. Recall that the key to achieving a polynomial running
time is to guarantee a geometric growth in the number of blocking edges from the bottom to
the top of the stack. In [2], every addable edge is λ-minimal, and each blocking edge blocks
exactly one addable edge. If using this strategy, in worst case, one may get a layer consisting
of one addable edge that is blocked by many blocking edges. After some of these blocking
edges are released from E , we may be left with a layer of a single addable edge that is blocked
by a single blocking edge, which breaks the geometric growth in the number of blocking
edges. To resolve this issue, Annamalai et al. [1] allow a blocking edge to block as many
addable edges as possible. However, it brings a new trouble: one may get a layer consisting
of many addable edges that are blocked by one blocking edge. As a consequence, they have
to introduce another strategy Greedy. They require every addable edge to be 1

2 -minimal. If
such an addable edge is blocked, at least 1

2 − λ worth of its resources must be occupied by
blocking edges. Provided that a blocking edge is λ-minimal and covers at most 2λ worth of
resources, the greedy strategy ensures that, in a layer, the number of blocking edges cannot
be too small comparing with the number of addable edges. Analysis shows that although
the greedy strategy makes the algorithm faster, it deteriorates the approximation ratio. Our
strategy is a generalization of those used in [2] and [1]. We allow a blocking edge to block
more than one addable edge, but once it shares strictly more than βλ worth of resources
with the addable edges blocked by it, we stop it from blocking more edges. We use greedy
too. In our algorithm, addable edges are (1 + γ)λ-minimal for some constant γ.

If we set β, γ, µ to be 0, then our algorithm acts exactly the same as the local search
in [2], which achieves a ratio of 4 but may not run in polynomial time. If β, γ are set to
be some large constant, then our algorithm acts like the algorithm in [1] which achieves a
polynomial running time but a much worse ratio. We show that carefully selected tiny β
and tiny γ guarantee a polynomial running time but barely hurt the approximation ratio.

ICALP 2019
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3.1 The algorithm
Let M ∪ E be the current partial allocation. Let p0 be a player that is not yet covered by
M ∪ E . The algorithm alternates between two phases to update and extend M ∪ E so that
the partial allocation covers p0 eventually without losing any covered player. In the building
phase, it pushes new layers onto a stack, where each layer stores some addable edges and
their blocking edges. In the collapse phase, it uses unblocked addable edges to release some
blocking edges in some layer from E .

Since we frequently talk about resources covered by thin edges and take sum of values
over a set of resources, we define the following notations. Given a thin edge e, Re denotes
the set of resources covered by e. Given a set S of thin edges, R(S) denotes the set of thin
resources covered by S. Given a set D of resources, define v[D] =

∑
r∈D vr.

3.1.1 Building phase
The algorithm maintains a stack of layers. The layer index starts with 1 from the bottommost
layer in the stack. The i-th layer Li is a tuple (Ai,Bi, di, zi), where Ai is a set of addable
edges that we want to add to E , Bi is a set of blocking edges that prevent us from doing
so, and di and zi are two values maintained for the sake of analysis. The algorithm also
maintains a set I of addable edges that are compatible with E . We will define addable edges
and blocking edges later. We use ` to denote the number of layers in the current stack. The
state of the algorithm is specified by (M, E , I, (L1, . . . , L`)).

For each Ai, we use Ai to denote the set of players covered by Ai. Similarly, Bi and I
denote the set of players covered by Bi and I, respectively. For i ∈ [1, `], define B6i =

⋃i
j=1 Bj ,

B6i =
⋃i
j=1Bj , and A6i =

⋃i
j=1Aj . We do not define A6i because although two addable

edges in different layers do not share any resource, they may cover the same player. This is a
consequence of the layer-level node-disjoint paths technique.

For simplicity, we define the first layer L1 to be (∅, {(p0, ∅)}, 0, 0). That is, A1 = ∅,
B1 = {(p0, ∅)}, and d1 = z1 = 0.

The layers are built inductively. Initially, there is only the layer L1 and I = ∅. Let ` be
the number of layers in the current stack. Consider the construction of the (`+ 1)-th layer.

I Definition 3. Let β > 0 be a constant to be specified later. A thin resource r is inactive
if (i) r ∈ R(A6` ∪ B6`), or (ii) r ∈ R(A`+1 ∪ I), or (iii) r ∈ Rb for some b ∈ B`+1 and
v[Rb ∩R(A`+1)] > βλ. If a thin resource is not inactive, then it is active.

We will define addable edges so that they use only active thin resources.

I Definition 4. A player p is addable if fM (B6`, A`+1 ∪ I ∪ {p}) = fM (B6`, A`+1 ∪ I) + 1.

The activeness of thin resources and the addability of the players depend on A`+1 and I
(A`+1 and I), so they may be affected as we add edges to A`+1 and I.

I Definition 5. A thin edge (p,D) is addable if p is addable and D is a set of active thin
resources desired by p with v[D] > λ. The blocking edges of an addable edge (p,D) are
{e ∈ E : Re ∩D 6= ∅ }. An addable edge (p,D) is unblocked if v[D \R(E)] > λ.

Recall that, for any w > 0, a thin edge (p,D) is a w-minimal if v[D] > w and v[D′] < w

for any D′ ( D. Our algorithm considers two kinds of addable edges. The first kind is
unblocked addable edges that are λ-minimal. It is easy to see that if an unblocked addable
edge is λ-minimal, then it must be compatible with E . We use I to keep such addable edges.
The second kind is blocked addable edges that are (1 + γ)λ-minimal, where γ is a constant
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Table 1 Some facts about I and the layers in the stack.

Fact 1 Edges in A6` ∪ I are mutually compatible.

Fact 2 Edges in I are compatible with edges in E .

Fact 3 For any i ∈ [1, `], no two edges in Ai ∪ I cover the same player.

Fact 4 {B2, . . . ,B`} are disjoint subsets of E . Note that B1 = {(p0, ∅)} does not
share any resource with Bi for i ∈ [2, `].

to be specified later. Such edges will be added to A`+1. Once a (1 + γ)λ-minimal addable
edge (p,D) becomes unblocked, we can easily extract a λ-minimal unblocked addable edge
(p,D′) with D′ ⊆ D.

Consider condition (iii) in Definition 3. Let b be a blocking edge in B`+1. When Rb and
R(A`+1) share strictly more than βλ worth of resources, all resources in Rb become inactive.
Any addable edge to be added to A`+1 in the future cannot use these inactive resources, and
hence, will not be blocked by b. This is how we achieve “limited blocking” mentioned before.

We call Build below to construct the (` + 1)-th layer. Note that after adding an
addable edge to A`+1, we immediately add its blocking edges to B`+1 in order to keep the
inactive/active status of thin resources up-to-date.

Build(M, E , I, (L1, · · · , L`))
1. Initialize A`+1 = ∅ and B`+1 = ∅.
2. While there is an unblocked addable edge that is λ-minimal, add it to I.
3. While there is an addable edge (p,D) that is (1 + γ)λ-minimal
3.1 add (p,D) to A`+1. (Note that (p,D) must be blocked; otherwise, we could

extract from it a λ-minimal unblocked addable edge, which should be added to
I in step 2.)

3.2 add to B`+1 the edges in E that block (p,D).
4. Set d`+1 := fM (B6`, A`+1∪I), z`+1 := |A`+1|, and L`+1 := (A`+1,B`+1, d`+1, z`+1).
5. Update ` := `+ 1

Table 1 lists a few facts about the layers.

3.1.2 Collapse phase
When some layer becomes collapsible, the algorithm enters the collapse phase. Let (M, E , I,
(L1, · · · , L`)) be the current state of the algorithm. In order to determine whether a layer is
collapsible or not, we need to compute the following decomposition of I. Let (I1, . . . , I`−1)
be some disjoint subsets of I. Let Ii denote the set of players covered by Ii. For i ∈ [1, `− 1],
we use I6i and I6i to denote

⋃i
j=1 Ij and

⋃i
j=1 Ij , respectively.

I Definition 6. A collection of disjoint subsets (I1, . . . , I`−1) of I is a canonical decom-
position of I if for all i ∈ [1, ` − 1], fM (B6i, I6i) = fM (B6i, I) = |I6i|. A solution Γ
for GM (B6`−1, I) is a canonical solution with respect to the canonical decomposition
(I1, . . . , I`−1) if Γ can be partitioned into disjoint subsets (Γ1, . . . ,Γ`−1) such that for every
i ∈ [1, `− 1], Γi is a set of |Ii| paths from Bi to Ii in GM .

Although it is not clear from the definition, invariant 1 in Table 2 implies that (I1, . . . , I`−1)
is indeed a partition of I. The following lemma is analogous to its counterpart in [1, 9]. Its
proof is omitted.

ICALP 2019



38:8 Restricted Max-Min Allocation

I Lemma 7. Let ` be the number of layers in the stack. A canonical decomposition of I and
a corresponding canonical solution for GM (B6`−1, I) can be computed in poly(`,m, n) time.

All the edges in Ii are compatible with E , and all the players in Ii can be reached from
Bi by node-disjoint paths Γi in GM , so every edge in Ii can be used to release one blocking
edge in Bi from E . A layer is collapsible if a certain fraction of its blocking edges can be
released.

I Definition 8. Let µ be a constant to be specified later. A layer Li is collapsible if there
is a canonical decomposition (I1, . . . , I`−1) of I such that |Ii| > µ|Bi|.

Note that although there can be more than one canonical decomposition, the collapsibility
of a layer is independent of the choice of canonical decompositions, because by definition, we
always have |Ii| = fM (B6i, I)− fM (B6i−1, I).

When some layer is collapsible, we enter the collapse phase, call Collapse to shrink
collapsible layers until no layer is collapsible, and then return to the build phase.

Collapse(M, E , I, (L1, · · · , L`))
1. Compute a canonical decomposition (I1, . . . , I`−1) and a corresponding canonical

solution Γ1 ∪ · · · ∪Γ`−1 for GM (B6`−1, I). If no layer is collapsible, go to the build
phase; otherwise, let Lt be the collapsible layer with the smallest index.

2. Remove all the layers above Lt from the stack. Set I := I6t−1.
3. Recall that srcΓt ⊆ Bt by Definition 6. Let BΓ denote the set of edges in Bt that

are incident to players in srcΓt . We use It and Γt to release the edges in BΓ.
3.1 Update M by flipping the paths in Γt, i.e., set M := M ⊕ Γt.
3.2 Add to E the edges in It, i.e., set E := E ∪ It.
3.3 Each player in srcΓt is now covered by either a fat resource or a thin edge from
It. If t = 1, then p0 is already covered, and the algorithm terminates. Assume
that t > 2. Edges in BΓ can be safely released from E . Set E := E \ BΓ and
Bt := Bt \ BΓ.

4. If t > 2, we need to update At because some edges in At may become unblocked
due to the release of blocking edges. For every edge (p,D) in At that becomes
unblocked,

4.1 Remove (p,D) from At,
4.2 if fM (B6t−1, I ∪ {p}) = fM (B6t−1, I) + 1, then extract a λ-minimal unblocked

addable edge (p,D′) from (p,D), and add (p,D′) to I.
5. Update ` := t. Go to step 1.

4 Analysis of the approximation algorithm

4.1 Some invariants
Table 2 lists a few invariants, where ` is the number of layers in the stack. Lemmas 9 and 10
below have analogous versions in [1, 9] and can be proved similarly. We omit their proofs.

I Lemma 9. Build and Collapse maintain the invariants in Table 2.

I Lemma 10. Let (L1, . . . , L`) be the stack of layers. If no layer is collapsible, then
(i) |I| 6 µ|B6`−1|, and (ii) for all i ∈ [1, `], |Ai| > zi − µ|B6i−1|.
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Table 2 Invariants maintained by the algorithm.

Invariant 1 fM (B6`−1, I) = |I|.

Invariant 2 For all i ∈ [1, `− 1], fM (B6i, Ai+1 ∪ I) > di+1.

Invariant 3 For all i ∈ [1, `], |Ai| 6 zi.

Invariant 4 For all i ∈ [1, `], di > zi.

4.2 Bounding the number of blocking edges
Lemma 11 – 13 are consequences of our greedy and limited blocking strategies. Basically,
they bound the number of blocking edges in a layer in terms of the number of addable edges.

I Lemma 11. Let Li = (Ai,Bi, di, zi) be an arbitrary layer in the stack. For each edge
b ∈ Bi, there is an edge a ∈ Ai such that v[Rb ∩R(Ai \ {a})] 6 βλ.

Proof. Let b be an edge in Bi. Sort the edges in Ai in chronological order of their additions
into Ai. Let a be the last edge in Ai that is blocked by b. By our choice of a, the edges in
Ai that are added after a cannot be blocked by b, so they do not share any common resource
with b. Among the edges added before a, let S be the subset of their resources that are also
covered by b. We claim that v[S] 6 βλ. If not, all resources in Rb would be inactive before
the addition of a by definition of inactive resources. So no resource in Rb could be included
in a. But Ra ∩Rb must be non-empty as b blocks a, a contradiction. J

I Lemma 12. Let Li = (Ai,Bi, di, zi) be an arbitrary layer in the stack. We have |Ai| <
(1 + β

γ )|Bi|.

Proof. By Lemma 11, for each b ∈ Bi, we can identify an edge ab ∈ Ai so that v[Rb ∩R(Ai \
{ab})] 6 βλ. Let A0

i = {ab : b ∈ Bi} be the set of edges identified. |A0
i | 6 |Bi|.

Let A1
i = Ai \ A0

i . For every b ∈ Bi, v[Rb ∩R(A1
i )] 6 v[Rb ∩R(Ai \ {ab})] 6 βλ. Taking

sum over all edges in Bi, we get v[R(Bi) ∩R(A1
i )] 6 βλ|Bi|. On the other hand, each edge a

in A1
i is (1 +γ)λ-minimal and is blocked, so it must have more than γλ worth of its resources

occupied by edges in Bi, i.e., v[R(Bi) ∩Ra] > γλ. Taking sum over all the edges in A1
i gives

v[R(Bi) ∩R(A1
i )] > γλ|A1

i |. Hence, βλ|Bi| > v[R(Bi) ∩R(A1
i )] > γλ|A1

i |.
Finally we get |Bi| = |A0

i |+ |A1
i | 6 |Bi|+

β
γ |Bi| < (1 + β

γ )|Bi|. J

I Lemma 13. Let Li = (Ai,Bi, di, zi) be an arbitrary layer in the stack. Let B′i be the set
of edges in Bi that share strictly more than βλ resources with edges in Ai. More precisely,
B′i = {e ∈ Bi : v[Re ∩R(Ai)] > βλ}. We have |B′i| <

2+γ
β |Ai|.

Proof. Taking the sum of v[Re ∩R(Ai)] over all edges e in B′i, we obtain v[R(B′i)∩R(Ai)] >
βλ|B′i|. On the other hand, v[R(B′i)∩R(Ai)] 6 v[R(Ai)] < (2 + γ)λ|Ai|. The last inequality
is because that edges in Ai are (1 + γ)λ-minimal. Combining the above two inequality, we
obtain βλ|B′i| < (2 + γ)λ|Ai| ⇒ |B′i| <

2+γ
β |Ai|. J

4.3 Geometric growth in the number of blocking edges
Now we are ready to prove that the number of blocking edges grow geometrically from
bottom to top. Lemma 14 states that there are lots of addable edges in a layer immediately
after its construction. Previous Lemma 10(ii) ensures that as long as there is no collapsible
layer, every layer cannot lose too many addable edges. Therefore, Lemma 14 implies that
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when no layer is collapsible, then every layer must have lots of addable edges, even if they are
not newly constructed. Then since the number of blocking edges in a layer is lower bounded
in terms of the number of addable edges by Lemma 12, we can conclude that there must be
lots of blocking edges in a layer when no layer in the stack is collapsible (Lemma 17).

I Lemma 14. Let (M, E , I, (L1, . . . , L`+1)) be the state of the algorithm immediately after
the construction of L`+1. If no layer is collapsible, then z`+1 = |A`+1| > 2µ|B6`|.

Proof. We give a proof by contradiction. Suppose that z`+1 = |A`+1| < 2µ|B6`|. We
will show that the dual of CLP(1) is unbounded, which implies that CLP(1) is infeasible,
contradicting the assumption that the configuration LP has optimal value T ∗ = 1.

Consider the moment immediately after we finish adding edges to A`+1 during the
construction of L`+1. At this moment, there is no (1 + γ)λ-minimal addable edge left. The
rest of the proof is with respect to this moment.

Let Π be an optimal solution for GM (B6`, A`+1 ∪ I). Note that M ⊕Π is a maximum
matching of G. Consider the directed graph GM⊕Π obtained by orienting the edges of G
according to whether they are in M ⊕Π or not. Let P+ be the set of players that can be
reached in GM⊕Π from B6` \ srcΠ. Let R+

f be the set of fat resources that can be reached
in GM⊕Π from B6` \ srcΠ. Let R+

t be the set of inactive thin resources.

B Claim 15. (i) Players in P+ are still addable after we finish adding edges to A`+1
(ii) Players in P+ have in-degree at most 1 in GM⊕Π. (iii) Resources in R+

f have out-degree
exactly 1 in GM⊕Π.

We define a dual solution ({y∗p}p∈P , {z∗r}r∈R) as follows.

y∗p =

 1− (1 + γ)λ if p ∈ P+,

0 otherwise.
z∗r =


1− (1 + γ)λ if r ∈ R+

f ,

vr if r ∈ R+
t ,

0 otherwise.

B Claim 16. ({y∗p}p∈P , {z∗r}r∈R) is a feasible solution, and it has a positive objective function
value.

Suppose that Claim 16 holds. Then ({αy∗p}p∈P , {αz∗r}r∈R) is also a feasible solution for
any α > 0. As α goes to infinity, the objective function value goes to infinity, yielding the
contradiction that we look for. J

We omit the proof of Claim 15. We give the proof of Claim 16 below.

Feasibility. We need to show that ∀ p ∈ P, ∀C ∈ Cp(1), y∗p 6
∑
r∈C z

∗
r . If p /∈ P+, then

y∗p = 0, and the inequality holds since z∗r is non-negative. Assume that p ∈ P+. So
y∗p = 1− (1 + γ)λ. Let C be any configuration for p. We show that

∑
r∈C z

∗
r > 1− (1 + γ)λ.

Case 1: C contains a fat resource rf . Since p desires rf , GM⊕Π has either an edge (p, rf )
or an edge (rf , p). By the definition of P+, there is a path π in GM⊕Π from B6` \ srcΠ
to p. If GM⊕Π has an edge (p, rf ), we can reach rf from B6` \ srcΠ by following π and
then (p, rf ). So rf ∈ R+

f . If GM⊕Π has an edge (rf , p), then p is matched by M ⊕ Π.
Since players in B6` \ srcΠ are not matched by M ⊕Π, p /∈ (B6` \ srcΠ). By Claim 15,
in GM⊕Π, the in-degree of p is at most one, so (rf , p) is the only edge entering p. To
reach p, π must reach rf first. Hence, we can follow π to reach rf from B6` \ srcΠ, which
implies rf ∈ R+

f . In both cases, we have
∑
r∈C z

∗
r > z∗rf = 1− (1 + γ)λ.
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Case 2: C contains only thin resources. By Claim 15, p is still addable after we finish adding
edges to A`+1. However, when we finish adding edges to A`+1, there is no (1 + γ)λ-
minimal addable edge left. It must be that p does not have enough active resources to
form an addable edge. The active thin resources in C must have a total value less than
(1 + γ)λ. Recall that v[C] > 1. At least 1 − (1 + γ)λ worth of thin resources in C are
inactive. Since z∗r = vr for inactive thin resources,

∑
r∈C z

∗
r > 1− (1 + γ)λ. C

Positive Objective Function Value. We need to show that
∑
p∈P y

∗
p −

∑
r∈R z

∗
r > 0. By our

setting of y∗p and z∗r ,
∑
p∈P y

∗
p −

∑
r∈R z

∗
r =

∑
p∈P+ y∗p −

∑
r∈R+

f
z∗r −

∑
r∈R+

t
z∗r .

First consider
∑
p∈P+ y∗p −

∑
r∈R+

f
z∗r . Since y∗p and z∗r have the same value 1− (1 + γ)λ

for p ∈ P+ and r ∈ R+
f , it suffices to bound |P+| − |R+

f | from below. For each rf ∈ R+
f , by

Claim 15, rf has exactly one out-going edge to some player p in GM⊕Π. Since rf is reachable
from B6` \ srcΠ, so is p. That is, p ∈ P+. We charge rf to p. By Claim 15, each player in
P+ has in-degree at most 1 in GM⊕Π, so each of them is charged at most once. Note that
players in B6` \ srcΠ obviously belong to P+ because they can be reached by themselves.
Moreover, they have zero in-degree in GM⊕Π as they are not matched by M ⊕Π, so they
are not charged. Therefore, |P+| − |R+

f | > |B6` \ srcΠ| > |B6`| − |A`+1| − |I|. The last
inequality is because Π is an optimal solution for GM (B6`, A`+1 ∪ I). In summary,

∑
p∈P+

y∗p −
∑
r∈R+

f

z∗r > (1− (1 + γ)λ) (|B6`| − |A`+1| − |I|) . (1)

Now consider
∑
r∈R+

t
z∗r . By definition of inactive resources, R+

t can be divided into
three parts: those covered by A6` ∪ B6`, those covered by A`+1 ∪ I, and those covered by
B′`+1 = {e ∈ B`+1 : v[Re ∩R(A`+1)] > bλ}. We handle these three parts separately.

Every edge in A6` is blocked by some edges in B6`, so it has less than λ worth of thin
resources not used by B6`. Every edge in B6` is λ-minimal, so it covers less than 2λ worth
of thin resources. Thus, v[R(A6` ∪ B6`)] < λ|A6`|+ 2λ|B6`| 6

(
3 + β

γ

)
λ|B6`|. The last

inequality is by Lemma 12. Edges in A`+1 are (1 + γ)λ-minimal, so each of them covers less
than (2 + γ)λ worth of resources. Edges in I are λ-minimal, so each of them covers less than
2λ worth of thin resources. Therefore, v[R(A`+1 ∪ I)] < (2 + γ)λ|A`+1|+ 2λ|I|. Edges in
B′`+1 are λ-minimal, so v[R(B′`+1)] < 2λ|B′`+1| <

4+2γ
β λ|A`+1|. The second inequality is by

Lemma 13. Combining the above three parts gives

∑
r∈R+

t

z∗r =
∑
r∈R+

t

vr <

(
3 + β

γ

)
λ|B6`|+ 2λ|I|+

(
2 + γ + 4 + 2γ

β

)
λ|A`+1|. (2)

Combining (1) and (2) gives that∑
p∈P+

y∗p −
∑
r∈R+

f

z∗r −
∑
r∈R+

t

z∗r

>

(
1−

(
4 + γ + β

γ

)
λ

)
|B6`| −

(
1 +

(
1 + 4 + 2γ

β

)
λ

)
|A`+1| − (1 + (1− γ)λ) |I|.

By the contrapositive assumption at the beginning of the proof of Lemma 14, |A`+1| <
2µ|B6`|. Moreover, since no layer is collapsible, by Lemma 10(i), |I| 6 µ|B6`|. Substituting
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these two inequalities into the above gives∑
p∈P+

y∗p −
∑
r∈R+

f

z∗r −
∑
r∈R+

t

z∗r

>

(
(1− 3µ)−

(
4 + γ + β

γ
+ 3µ+ (8 + 4γ)µ

β
− γµ

)
λ

)
|B6`|.

Let β = γ2 and µ = γ3. We have∑
p∈P+

y∗p −
∑
r∈R+

f

z∗r −
∑
r∈R+

t

z∗r >
((

1− 3γ3)− (4 + 10γ + 4γ2 + 3γ3 − γ4)λ) |B6`|.

Recall that λ = 1
4+δ for some δ > 0. As γ → 0, 1−3γ3

4+10γ+4γ2+3γ3−γ4 → 1
4 . Hence, there is a

sufficiently small γ that makes 1−3γ3

4+10γ+4γ2+3γ3−γ4 >
1

4+δ = λ, thereby proving
∑
p∈P+ y∗p −∑

r∈R+
f
z∗r −

∑
r∈R+

t
z∗r > 0. Moreover, one can verify that 1

γ = O( 1
δ ). C

I Lemma 17. Let (M, E , I, (L1, . . . , L`)) be a state of the algorithm. If no layer is collapsible,
then for i ∈ [1, `− 1], |Bi+1| > γ3

1+γ |B6i|.

Proof. Fix an i ∈ [1, ` − 1]. Consider the period from the most recent construction of
layer Li+1 until now. During this period, none of the layers below Li+1 has ever been
collapsed; otherwise, Li+1 would be removed, contradiction. Hence, blocking edges in the
layers below Li+1 have never been touched during this period. In other words, at the
time Li+1 was constructed, the set of blocking edges in the layers below Li+1 was exactly
B6i. Also the constant zi+1 is unchanged. By Lemma 14, zi+1 > 2µ|B6i|. Although
addable edges may be removed from the Li+1 during this period, there are still lots of
addable edges left. By Lemma 10(ii), |Ai+1| > zi+1 − µ|B6i| > µ|B6i|. By Lemma 12,
|Bi+1| > 1

(1+β/γ) |Ai+1| > µ
(1+β/γ) |B6i|. Recall that we set β = γ2 and µ = γ3 in the proof

of Claim 16. Replacing β by γ2 and µ by γ3 proves the lemma. J

I Lemma 18. In poly(m,n) · npoly( 1
δ ) time, the algorithm extends M ∪ E to cover one more

player.

Given Lemma 17, Lemma 18 can be proved in a way similar to that of [1, 9]. We sketch
the proof here. Consider all non-collapsible states ever reached by the algorithm. By
non-collapsible, we mean that no layer is collapsible in this state. Let h = γ3

1+γ . For each
non-collapsible state (M, E , I, (L1, . . . , L`)), we define its signature vector (s1, . . . , s`,∞)
where si = log1/(1−µ)

|Bi|
hi+1 . One can verify that the coordinates of the signature vector are

non-decreasing, and that as the algorithm goes from one non-collapsible state to another,
the signature vector decreases lexicographically. Moreover, the sum of the coordinates is
bounded by U2 where U = logn ·O( 1

µh log 1
h ). Each signature can be regarded as a partition

of an integer less than or equal to U2. Summing up the number of partitions of an integer
i over all i ∈ [1, U2], we get the upper bound of nO( 1

uh log 1
h ) on the number of distinct

signatures. Recall that u = γ3, h = γ3

1+γ , and
1
γ = O( 1

δ ). As a consequence, the number of
non-collapsible states ever reached by the algorithm is bounded by npoly( 1

δ ). Between two
consecutive non-collapsible states, there is one Build and at most logh+1 n Collapse, which
take poly(m,n) · npoly( 1

δ ) time in total. The total running time is thus poly(m,n) · npoly( 1
δ ).
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