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Abstract
The communication class UPPcc is a communication analog of the Turing Machine complexity
class PP. It is characterized by a matrix-analytic complexity measure called sign-rank (also called
dimension complexity), and is essentially the most powerful communication class against which we
know how to prove lower bounds.

For a communication problem f , let f ∧ f denote the function that evaluates f on two disjoint
inputs and outputs the AND of the results. We exhibit a communication problem f with UPPcc(f) =
O(log n), and UPPcc(f ∧ f) = Θ(log2 n). This is the first result showing that UPP communication
complexity can increase by more than a constant factor under intersection. We view this as a first step
toward showing that UPPcc, the class of problems with polylogarithmic-cost UPP communication
protocols, is not closed under intersection.

Our result shows that the function class consisting of intersections of two majorities on n bits has
dimension complexity nΩ(log n). This matches an upper bound of (Klivans, O’Donnell, and Servedio,
FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning intersections of
polylogarithmically many majorities. Hence, fundamentally new techniques will be needed to learn
this class of functions in polynomial time.
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1 Introduction

The unbounded-error communication complexity model UPPcc was introduced by Paturi
and Simon [21] as a natural communication analog of the Turing Machine complexity class
PP. In a UPPcc communication protocol for a Boolean function f(x, y), there are two
parties, one with input x and one with input y. The two parties engage in a private-coin
randomized communication protocol, at the end of which they are required to output f(x, y)
with probability strictly greater than 1/2. The cost of the protocol is the number of bits
exchanged by the two parties. As is standard, we use the notation UPPcc not only to denote
the communication model, but also the class of functions solvable in the model by protocols
of cost polylogarithmic in the size of the input.

Observe that success probability 1/2 can be achieved with no communication by random
guessing, so the UPPcc model merely requires a strict improvement over this trivial solution.
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30:2 Sign-Rank Can Increase Under Intersection

Owing to this liberal acceptance criterion, UPPcc is a very powerful communication model,
essentially the most powerful one against which we know how to prove lower bounds. In
particular, UPPcc is powerful enough to simulate many other models of computing, and this
makes UPPcc lower bounds highly useful. As one example, any function f(x, y) computable
by a Threshold-of-Majority circuit of size s has UPPcc complexity at most O(log s), and
this connection has been used to translate UPPcc lower bounds into state of the art lower
bounds against threshold circuits (see, for example, [10, 22, 8, 28, 6]).

UPPcc also happens to be characterized by a natural matrix-analytic complexity measure
called sign-rank [21]. Here, the sign-rank of a matrix M ∈ {−1, 1}N×N is the minimum rank
of a real matrix whose entries agree in sign with M . Equivalently, sr(M) := minA rk(A),
where the minimum is over all matrices A such that Ai,j ·Mi,j > 0 for all i, j ∈ [N ]. Paturi
and Simon [21] showed the following tight connection between UPPcc and sign-rank: if we
associate a function f(x, y) with the matrixM = [f(x, y)]x,y, then the UPPcc communication
complexity of f equals log(sr(M))±Θ(1).

While lower bounds on UPPcc complexity (equivalently, sign-rank) are useful in com-
plexity theory, upper bounds on these quantities imply state of the art learning algorithms,
including the fastest known algorithms for PAC learning DNFs and read-once formulas [17, 1].
More specifically, suppose we want to learn a concept class C of functions mapping {−1, 1}n
to {−1, 1}. C is naturally associated with a |C| × 2n matrix M , whose ith row equals the
truth table of the ith function in C. Then C can be distribution-independently PAC learned
in time polynomial in the sign-rank of M . (The sign-rank of M is often referred to in the
learning theory literature as the dimension complexity of C.) Moreover, the resulting learning
algorithm is robust to random classification noise, a property not satisfied by the handful of
known PAC learning algorithms that are not based on dimension complexity.

For the purpose of our work, one particularly important application of the dimension-
complexity approach to PAC learning was derived by Klivans et al. [16], who showed that
the concept class consisting of intersections of 2 majority functions has dimension complexity
at most

(
n

O(logn)
)
≤ nO(logn). They thereby obtained a quasipolynomial time algorithm for

PAC learning intersections of two majority functions.1 Prior to our work, it was consistent
with current knowledge that the dimension complexity of this concept class is in fact poly(n),
which would yield a polynomial time PAC learning algorithm for intersections of constantly
many majority functions.

1.1 Our Results
Despite considerable effort, progress on understanding sign-rank (equivalently, UPPcc) has
been slow. Our lack of knowledge is highlighted via the following well-known open question
(cf. Göös et al. [13]). Throughout, for any function f : {−1, 1}n → {−1, 1}, f ∧ f denotes
the function on twice as many inputs obtained by evaluating f on two disjoint inputs and
outputting −1 only if both copies of f evaluate to −1, i.e., (f ∧ f) (x1, x2) := f(x1) ∧ f(x2).

I Question 1. Is the class UPPcc closed under intersection? In other words, suppose
the function f(x, y) : {−1, 1}n × {−1, 1}n → {−1, 1} satisfies UPPcc(f) = O((logn)c) for
some constant c. Is there always some constant c1 (which may depend on c) such that
UPP(f ∧ f) ≤ O ((logn)c1)? More generally and informally, if UPPcc(f) is “small”, does
this imply any non-trivial upper bound on UPPcc(f ∧ f)?

1 In fact, their algorithm runs in quasipolynomial time for intersections of polylogarithmic many majorities.
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Prior to our work, essentially nothing was known about Question 1. In particular, we are
not aware of prior work ruling out the possibility that UPPcc(f ∧ f) ≤ O(UPPcc(f)). On
the other hand, for reasons that will become apparent in Section 1.2, there is good reason to
suspect that there exists a function f with UPPcc(f) = O(logn), yet UPPcc(f ∧ f) ≥ Ω(n).
While we do not obtain a full resolution of Question 1, we do show for the first time that
UPPcc complexity can increase significantly under intersection.

Babai, Frankl and Simon [2] observed that there are two natural communication complexity
analogs of the Turing machine class PP, namely PPcc and UPPcc. It is well known [3] that
PPcc is closed under intersection. Our work can be viewed as a first step towards showing
that, in contrast, UPPcc is not closed under intersection.

I Theorem 1. There is a function f(x, y) : {−1, 1}n × {−1, 1}n → {−1, 1} such that
UPPcc(f) = O(logn), yet UPPcc(f ∧ f) = Θ(log2 n).

In fact, for each fixed x ∈ {−1, 1}n, the function f(x, y) from Theorem 1 simply outputs
the majority of some subset of the bits of y. This yields the following corollary.

I Corollary 2. Let C be the concept class in which each concept is the intersection of two
majorities on n bits. Then C has dimension complexity nΘ(logn).

Corollary 2 shows that the dimension complexity upper bound of Klivans et al. [16] is
tight for intersections of two majorities, and new approaches will be needed to PAC learn
this concept class in polynomial time. For context, we remark that learning intersections
of majorities is a special case of the more general problem of learning intersections of
many halfspaces.2 The latter is a central and well-studied challenge in learning theory, as
intersections of halfspaces are powerful enough to represent any convex set, and they contain
many basic problems (like learning DNFs) as special cases. In contrast to the well-understood
problem of learning a single halfspace, for which many efficient algorithms are known, no
2o(n)-time algorithm is known for PAC learning even the intersection of two halfspaces. There
have been considerable efforts devoted to showing that learning intersections of halfspaces is
a hard problem [18, 9, 15, 4], but these results apply only to intersections of many halfspaces,
or make assumptions about the form of the output hypothesis of the learner. Our work can
be seen as a new form of evidence that learning intersections of even two majorities is hard.

1.2 Our Techniques
UPPcc has a query complexity analog, denoted UPPdt and defined as follows. A UPPdt

algorithm is a randomized algorithm which on input x, queries bits of x, and must output f(x)
with probability strictly greater than 1/2; the cost of the protocol is the number of bits of x
queried. How UPPdt behaves under intersection is now well understood. More specifically,
it is known [25] that there is a function f : {−1, 1}n → {−1, 1} (in fact, a halfspace) such
that UPPdt(f) = O(1), yet UPPdt(f ∧ f) = Θ(n). Define the Majority function, which we
denote by MAJ, to be −1 if at least half of its input bits are −1. It is also known [26, 20] that
MAJ satisfies UPPdt(MAJ) = O(1), yet UPPdt (MAJ ∧MAJ) = Θ(logn). Our goal in this
paper is, to the extent possible, to show that the UPPcc communication model behaves
similarly to its query complexity analog.

2 A halfspace is any function of the form sgn
(∑n

i=1 wi · xi + w0
)
for some real numbers w0, . . . , wn.
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Over the course of the last decade, there has been considerable progress in proving lifting
theorems [23, 12, 11]. These theorems seek to show that if a function f has large complexity
in some query model C, then for some “sufficiently complicated” function g on a “small”
number of inputs, the composition f ◦g has large complexity in the associated communication
model (ideally, Ccc(f ◦ g) & Cdt(f)).

Unfortunately, a “generic” lifting theorem for UPP complexity is not known. That is,
it is not know how to take an arbitrary function f with high UPPdt complexity, and by
composing it with a function g on a small number of inputs, yield a function with high
UPPcc complexity.

However, as we now explain, some significant partial results have been shown in this
direction. It is well-known that UPPdt(f) is equivalent to an approximation-theoretic notion
called threshold degree, denoted deg±(f) (which we do not define here). The threshold degree
of f can in turn be expressed as the value of a certain (exponentially large) linear program.
Linear programming duality then implies that one can prove lower bounds on deg±(f) by
exhibiting good solutions to the dual linear program. We refer to such dual solutions as
dual witnesses for threshold degree. Sherstov [24] and Razborov and Sherstov [22] showed
that if deg±(f) is large, and moreover this can be exhibited by a dual witness satisfying a
certain smoothness condition, then there is a function g defined on a constant number of
inputs such that f ◦ g does have large UPPcc complexity. Several recent works [6, 5, 7, 28]
have managed to prove new UPPcc lower bounds by constructing, for various functions f ,
smooth dual witnesses exhibiting the fact that deg±(f) is large.

Our key technical contribution is to bring this approach to bear on the function F (x, y) =
MAJ(x) ∧MAJ(y). Specifically, we show that the (known) threshold degree lower bound
deg±(F ) ≥ Ω(logn) can be exhibited by a smooth dual witness.

We do this as follows. Sherstov [26] showed that for any function f : {−1, 1}n → {−1, 1},
the threshold degree of the function F = f ∧ f is characterized by the rational approximate
degree of f , i.e., the least total degree of real polynomials p and q such that |f(x)−p(x)/q(x)| ≤
1/3 for all x ∈ {−1, 1}n. He then showed that the rational approximate degree of MAJ is
Ω(logn), thereby concluding that F (x, y) has threshold degree Ω(logn).

From Sherstov’s arguments, one can derive a dual witness ψ for the fact that the rational
approximate degree of MAJ is Ω(logn), and then transform ψ into a dual witness φ for
the fact that F (x, y) has threshold degree Ω(logn). Unfortunately, neither ψ nor φ satisfies
the type of smoothness condition required by Razborov and Sherstov’s machinery to yield
UPPcc lower bounds.

The smoothness condition required for the Razborov-Sherstov machinery to work essen-
tially states that the the mass of the dual witness ψ has to be “relatively large” (a reasonably
large fraction of what mass the uniform distribution would have placed) on a “large” set of
inputs (the fraction of inputs which do not have large mass has to be small).

To construct a smooth dual witness ψ′ for F , our primary technical contribution is to
construct a smooth dual witness φ′ for the fact that the rational approximate degree of MAJ
is Ω(logn). We then apply a different transformation, due to Sherstov [27], of φ′ into a
dual witness for the fact that the threshold degree of F is Ω(logn), and we show that this
transformation preserves the smoothness of ψ′.

In a nutshell, our smooth dual witness for MAJ is obtained in two steps: first we
define for all inputs x whose Hamming weight lies in [n/2 − bn2/3c, n/2 + bn2/3c], a dual
witness φ′x that places a large mass on x and not too much mass on other points. Next,
we define the final dual witness φ′(x) to be a certain weighted average over x of all the
dual witnesses thus obtained. The resulting mass on φ′(x) for each x of Hamming weight
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in [n/2− bn2/3c, n/2 + bn2/3c] is large enough, and the fraction of inputs whose Hamming
weight is not in [n/2−bn2/3c, n/2 + bn2/3c] is small enough, to allow us to use the Razborov-
Sherstov framework (Theorem 5) to prove the desired sign-rank lower bound on the pattern
matrix of F .

2 Preliminaries

All logarithms in this paper are taken base 2. We use the notation exp(x) to denote ex,
where e is Euler’s number. Given any finite set X and any functions f, g : X → R, define
‖f‖1 :=

∑
x∈X |f(x)| and 〈f, g〉 :=

∑
x∈X f(x)g(x). We refer to ‖f‖1 as the `1-norm of f .

For any x ∈ {−1, 1}n, we use the notation |x| to denote the Hamming weight of x, which is
the number of −1’s in the string x.

Paturi and Simon [21] showed the following equivalence between the sign-rank of a matrix
and the UPPcc cost of its corresponding communication game.

I Theorem 3. For any F : {−1, 1}2n×{−1, 1}n→{−1, 1}, let MF denote its communication
matrix, defined by MF (x, y) = F (x, y). Then, UPPcc(F ) = log sr(MF )±O(1).

Let n,N be positive integers such that n divides N . Partition the set [N ] := {1, . . . , N}
into n disjoint blocks {1, 2, . . . , N/n} , {N/n+ 1, . . . , 2N/n} , . . . , {(n− 1)N/n+ 1, . . . , N}.
Define the set P(N,n) to be the collection of subsets of [N ] which contain exactly one
element from each block. For x ∈ {−1, 1}n and S ∈ P(N,n), let x|S = (xs1 , . . . , xsn), where
s1 < s2 < · · · < sn are the elements of S.

I Definition 4 (Pattern matrix). For any function φ : {−1, 1}n → R, the (N,n, φ)-pattern
matrix M is defined as follows.

M = [φ(x|S)⊕ w]x∈{−1,1}N ,(S,w)∈P(N,n)×{−1,1}n .

Note that M is a 2N × (N/n)n2n matrix.

In a breakthrough result, Forster [10] proved that an upper bound on the spectral norm of
a sign matrix implies a lower bound on its sign-rank. Razborov and Sherstov [22] established
a generalization of Forster’s theorem [10] that can be used to prove sign-rank lower bounds
for pattern matrices. Specifically, we require the following result, implicit in their work [22,
Theorem 1.1].

I Theorem 5 (Implicit in [22]). Let f : {−1, 1}n → {−1, 1} be any Boolean function and
α > 1 be a real number. Suppose there exists a function φ : {−1, 1}n → R satisfying the
following conditions.∑

x∈{−1,1}n |φ(x)| = 1.
For all polynomials p of degree at most d,

∑
x∈{−1,1}n φ(x)p(x) = 0.

f(x) · φ(x) ≥ 0 ∀x ∈ {−1, 1}n .
|φ(x)| ≥ γ for all but a ∆ fraction of inputs x ∈ {−1, 1}n.

Then, the sign-rank of the (N,n, f)-pattern matrix M can be bounded below as

sr(M) ≥ γ

1
2n

(
n
N

)d/2 + γ∆
.

We require the following well-known combinatorial identity.

B Claim 6. For every polynomial p of degree less than 2n, we have
∑n
t=−n(−1)t

( 2n
n+t
)
p(t) = 0.

ICALP 2019
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Recall from Section 1.2 that the rational ε-approximate degree of f is the least degree
of two polynomials p and q such that |f(x) − p(x)/q(x)| ≤ ε for all x in the domain of f .
Sherstov [27, Theorem 6.9] showed that a dual witness to the rational approximate degree of
any function f can be converted to a threshold degree dual witness for ORn ◦ f . Implicit
in his theorem is the fact that a smooth dual witness to the rational approximate degree
of f can be converted to a smooth dual witness for the threshold degree of ORn ◦ f . More
precisely, the following result is established by the proof of [27, Theorem 6.9].

I Theorem 7 (Sherstov [27]). Let f : {−1, 1}n → {−1, 1} be any function. Let F denote
ORt ◦ f : {−1, 1}nt → {−1, 1}, and δ > ε > 0 be any real numbers.

Suppose there exist functions ψ0, ψ1 : {−1, 1}n → R that are not identically 0 and satisfy
the following properties:

f(x) = 1 =⇒ ψ0(x) ≥ δ|ψ1(x)|, (1)
f(x) = −1 =⇒ ψ1(x) ≥ δ|ψ0(x)|, (2)
deg(p) < d =⇒ 〈ψ0, p〉 = 0 and 〈ψ1, p〉 = 0. (3)

Then there exist functions A,B : {−1, 1}nt → R such that Ψ = 1
δA−

1
εB satisfies the following

properties.

deg(p) ≤ min
{
bε2tcd, d

}
=⇒ 〈Ψ, p〉 = 0. (4)

F (x) ·Ψ(x1, . . . , xt) ≥ (δ − ε)2t
t∏
i=1
|ψ0(xi)| for all x ∈ {−1, 1}nt . (5)

|A(x1, . . . , xt)| ≤
t∏
i=1
|ψ0(xi)| for all x = (x1, . . . , xt) ∈ {−1, 1}nt . (6)

|B(x1, . . . , xt)| ≤
∏

i:f(xi)=0

|ψ0(xi)| ·
∏

i:f(xi)=1

δψ1(xi) +
t∏
i=1

(|ψ0(xi)| − δψ1(xi))

for all x = (x1, . . . , xt) ∈ {−1, 1}nt . (7)

3 A Smooth Dual Witness for Majority

Our main technical contribution in this paper is captured in Theorem 8 below. This theorem
constructs a smooth dual witness R for the hardness of rationally approximating the sign
function on {0,±1, . . . ,±n}. We defer the proof until Section 4.

I Theorem 8. Let 1 ≤ d ≤ 1
3 logn and let n be odd. There exists a function R :

{0,±1, . . . ,±n} → R such that
n∑

t=−n
|R(t)| = 1. (8)

For δ = exp(−18/(n1/(6d))) and every t = 1, 2, . . . , n,

R(t) ≥ δ|R(−t)|. (9)

If p : {0,±1, . . . ,±n} → R is any polynomial of degree less than d− 2, then

〈R, p〉 = 0. (10)
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For every t ∈ {0,±1,±2, . . . ,±bn2/3c} we have

|R(t)| ≥ Ω
(

1
n20

)
. (11)

The following theorem shows how to convert the (univariate) function R from Theorem 8
into a dual witness for the (multivariate) MAJ function.

I Theorem 9. Let 1 ≤ d ≤ 1
3 logn and let n be odd. Let R : {0,±1, . . . ,±n} → R be any

function obtained in Theorem 8. Then, the multivariate polynomial R′ : {−1, 1}2n → R
defined by R′(x) = R(n− |x|)/

(2n
|x|
)
satisfies the following properties.

‖R′‖1 = 1. (12)
For δ = exp(−18/(n1/(6d))) and every t = 1, 2, . . . , n,

R′(x) ≥ δ|R′(y)| (13)

for any x, y ∈ {−1, 1}2n such that |x| = n− t, |y| = n+ t.
For any polynomial p of degree at most d− 2,

〈R′, p〉 = 0. (14)

For all x ∈ {−1, 1}2n such that n− bn2/3c ≤ |x| ≤ n+ bn2/3c,

|R′(x)| ≥ Ω
(

1
n20 · 22n

)
. (15)

Proof. To establish Equation (12), observe:

‖R′‖1 =
∑

x∈{−1,1}2n

|R′(x)| =
2n∑
t=0

 ∑
x∈{−1,1}2n:|x|=t

|R′(x)|


=

2n∑
t=0

(
2n
t

)
|R(n− t)|/

(
2n
t

)
=

n∑
t=−n

|R(t)| = 1,

where the last equality follows from Equation (8). Equation (13) follows directly from
Equation (9) and the definition of R′.

To establish Equation (14), consider any polynomial p : {−1, 1}2n → R of degree at
most d − 2. For any permutation σ ∈ S2n, define the polynomial pσ by pσ(x1, . . . , x2n) =
p(xσ(1), . . . , xσ(2n)). Note that, since R′ is symmetric, 〈R′, pσ〉 = 〈R′, p〉 for all σ ∈ S2n.
Define q = Eσ∈S2n

[pσ]. Note that q is symmetric and 〈R′, p〉 = 〈R′, q〉. It is a well-known
fact (cf. [19]) that q can be written as a polynomial q′ of degree at most d− 2 in the variable∑2n
i=1 xi, and so can R′. Hence, 〈R′, p〉 = 〈R′, q〉 =

∑2n
t=0
(2n
t

)R(n−t)
(2n

t ) · q
′(t) = 0, where the

final equality holds by Equation (10).
To establish Equation (15), observe that by Equation (11) and the definition of R′, we have

that for all x ∈ {−1, 1}2n such that |x| ∈
[
n− bn2/3c, n+ bn2/3c

]
, |R′(x)| ≥ Ω

(
1

n20·(2n
|x|)

)
≥

Ω
( 1
n20·22n

)
. J

We are ready to derive a lower bound on the sign-rank of the (4n2, 4n,OR2 ◦MAJ2n)-
pattern matrix.

I Theorem 10. The (4n2, 4n,OR2 ◦MAJ2n)-pattern matrix M satisfies sr(M) ≥ nΩ(logn).

ICALP 2019



30:8 Sign-Rank Can Increase Under Intersection

Proof. Let F denote the function OR2 ◦ MAJ2n in this proof. Set d = logn/100 and
consider the function R : {0,±1, . . . ,±n} → R obtained via Theorem 8. Define the function
R′ : {0,±1, . . . ,±n} → R by R′(t) = R(−t). Define the functions ψ0, ψ1 : {−1, 1}2n → R
by ψ1(x) = R(n − |x|)/

(2n
|x|
)
, and ψ0(x) = R′(n − |x|)/

(2n
|x|
)
. We now verify that ψ0, ψ1

satisfy the conditions in Theorem 7 for δ = exp(−18/(n1/(6d))) = exp(−18/n100/6 logn) =
exp(−18/2100/6) > 0.99. Set ε = δ · c, where c > 0 is a constant such that 0.98 > δ · c > 1/

√
2.

By the definitions of ψ0, ψ1 and Equation (13), Properties (1) and (2) in the statement
of Theorem 7 are satisfied.
Equation (14) implies that 〈ψ0, p〉 = 〈ψ1, p〉 = 0 for any polynomial p of degree at most
d− 2, and hence Property (3) is satisfied.

Moreover, Equation (15) implies that |ψ0(x)|, |ψ1(x)| ≥ Ω
( 1
n20·22n

)
for all x ∈ {−1, 1}2n

such that n − bn2/3c ≤ |x| ≤ n + bn2/3c, and Equation (12) implies ‖ψ0‖1 = ‖ψ1‖1 = 1.
Theorem 7 now implies the existence of a function Ψ satisfying the following properties.

By Equation (4), deg(p) < min
{
b2ε2c · ((logn)/100− 2), (logn)/100− 2

}
=⇒ 〈Ψ, p〉 =

0. Since ε > 1/
√

2, this implies that

deg(p) < (logn)/100− 2 =⇒ 〈Ψ, p〉 = 0.

By Equation (5), Ψ(x) · F (x) ≥ 0 for all x ∈ {−1, 1}2n × {−1, 1}2n.
We now note that the functions A and B obtained in Theorem 7 have `1-norm at most a
constant. Since ‖ψ0‖1 = ‖ψ‖1 = 1, we use Equation (6) to conclude that∑

x1,x2∈{−1,1}2n×{−1,1}2n

|A(x1, x2)| ≤
∑

x1∈{−1,1}2n

|ψ0(x1)| ·
∑

x2∈{−1,1}2n

|ψ0(x2)| = 1.

By Equation (7), we have∑
x1,x2∈{−1,1}2n

|B(x1, x2)| ≤ max {‖ψ0‖1, δ‖ψ1‖1}2 + ‖ψ0‖21 + δ‖ψ0‖1‖ψ1‖1+

δ2‖ψ1‖21,

which is at most a constant, since δ = O(1).
Combined with the fact that ε is a constant, we conclude ‖Ψ‖1 ≤ 1

δ ‖A‖1 + 1
ε‖B‖1 ≤ O(1).

By Equation (5), F (x) · Ψ(x1, x2) ≥ (δ − ε)4|ψ0(x1)| · |ψ0(x2)| ∀x ∈ {−1, 1}4n. This
implies that for |x1|, |x2| ∈ [n− bn2/3c, n+ bn2/3c],

|Ψ(x1, x2)| ≥ Ω
(

1
n40 · 24n

)
,

since δ − ε = Ω(1).
By a standard Chernoff bound, the number of inputs in {−1, 1}2n × {−1, 1}2n such that
|x1|, |x2| ∈ [n− bn2/3c, n+ bn2/3c] is at least (1− 2 exp(−n1/3/3)) · 24n.

Plugging f = OR2 ◦MAJ2n and φ = Ψ
‖Ψ‖1 into Theorem 5, we conclude that the sign-rank

of the (4n2, 4n,OR2 ◦MAJ2n) pattern matrix M is bounded below as

sr(M) ≥ Ω
(

1
n40 · 1

24n( 1
n(log n/200)−1 · 1

24n

)
+
( 1
n40 · 1

24n · 2 exp(−n1/3/3)
)) ≥ nΩ(logn). J

We are now ready to prove Theorem 1.
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Proof of Theorem 1. Note that the function AND◦MAJ(x) = OR ◦MAJ(x). Consider the
dual witness φ = Ψ

‖Ψ‖1 obtained for the threshold degree of OR2 ◦MAJ2n in the previous
proof. Note that the function φ′ defined by φ′(x) = −φ(x) acts as a dual witness for the
threshold degree of AND2 ◦MAJ2n, and satisfies all the conditions in Theorem 5 with the
same parameters as in the proof of Theorem 10. Proceeding in exactly the same way as
in the previous proof, we conclude that sign-rank of the (4n2, 4n,AND2 ◦MAJ2n) pattern
matrix M ′ is bounded below as

sr(M ′) ≥ nΩ(logn). (16)

Denote by f the communication game corresponding to the (2n2, 2n,MAJ2n) pattern
matrix. For completeness, we now sketch a standard UPPcc protocol of cost O(logn) for f .
Note that Alice holds 2n2 input bits, and Bob holds a (2n · logn)-bit string indicating the
“relevant bits” in each block of Alice’s input and a 2n-bit string w. Bob sends Alice the index
of a uniformly random relevant bit using log(2n2) bits of communication. Alice responds
with her value b of that input bit, and Bob outputs b⊕ wi. It is easy to check that this is a
valid UPPcc protocol, and it has cost O(logn).

One can verify by the definition of pattern matrices (Definition 4) that the communication
game corresponding to the (4n2, 4n,AND2 ◦MAJ2n) pattern matrix M ′ equals f ∧ f . By
Theorem 3 and Equation (16), we obtain that

UPP(f ∧ f) = Θ(log sr(M ′)) = Ω(log2 n).

As mentioned in Section 1, the result of Klivans et al. [16] implies that sr(M ′) = nO(logn).
Thus, the function f satisfies UPPcc(f) = O(logn), but UPPcc(f ∧ f) = Θ(log2 n). J

Corollary 2 follows immediately from the previous proof and the definition of pattern
matrices.

4 Proof of Theorem 8

The rest of this paper is dedicated towards proving Theorem 8. Before proving the theorem,
we describe the main auxiliary construction and prove some preliminary facts about it.

Let ∆ = bn1/(3d)c ≥ 2. Fix any u ∈ {1, . . . , bn2/3c − 1, bn2/3c}. Define the set

Su = {±u,±u∆,±u∆2, . . . ,±u∆d−1}.

Define the polynomial ru : {0,±1, . . . ,±n} → R by

ru(t) = 1
(2n)!

d−1∏
i=0

(
t−
(
u∆i
√

∆
)) ∏

s/∈Su

(t− s).

Since n is odd, notice that sgn(ru(t)) = (−1)t, for t ∈ {u, u∆, u∆2, . . . , u∆d−1}, and
ru(t) = 0 for t /∈ Su.

Define

pu(t) =
(

2n
n+ t

)
ru(t) =



(−1)n−t ·

d−1∏
i=0

(
t−
(
u∆i
√

∆
))

∏
s∈Su
s6=t

(t− s) if t ∈ Su

0 otherwise.

ICALP 2019
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The following claim tells us that for any u ∈
{

1, . . . , bn2/3c
}
, the function pu places a

reasonably large mass on input −u.

B Claim 11.

|pu(−u)| ≥
√

∆ + 1
2 · u−(d−1) ·∆−(d−1)2/2.

Proof. We calculate

|pu(−u)| = u(
√

∆ + 1)
2u ·

d−1∏
i=1

u(∆i
√

∆ + 1)
u2(∆i + 1)(∆i − 1)

(pairing terms corresponding to u∆i and −u∆i)

=
√

∆ + 1
2 · u−(d−1) ·

d−1∏
i=1

∆i+ 1
2 + 1

∆2i − 1 ≥
√

∆ + 1
2 · u−(d−1) ·∆(d−1)/2 ·

d−1∏
i=1

∆i

∆2i

=
√

∆ + 1
2 · u−(d−1) ·∆−(d−1)2/2. C

The next claim tells us that the mass placed by pu on other points in its support is small.

B Claim 12. For every j = 1, 2, . . . , d− 1,

|pu(−u∆j)| ≤ e4 ·∆−(j2−3j−2)/2 ·

(√
∆ + 1

2 · u−(d−1) ·∆−(d−1)2/2

)
.

Proof. We calculate

|pu(−u∆j)| = u(∆j
√

∆ + ∆j)
2u∆j

·
j−1∏
i=0

u(∆i
√

∆ + ∆j)
u2(∆i + ∆j)(∆j −∆i) ·

d−1∏
i=j+1

u(∆i
√

∆ + ∆j)
u2(∆i + ∆j)(∆i −∆j)

(pairing terms corresponding to u∆i and −u∆i)

≤
√

∆ + 1
2 · u−(d−1) ·

j−1∏
i=0

√
∆

∆j −∆i
·

d−1∏
i=j+1

√
∆

∆i −∆j

≤
√

∆ + 1
2 · (

√
∆ · u−1)d−1 ·

j−1∏
i=0

∆j−i ·∆−j

∆j−i − 1 ·
d−1∏

i=j+1

∆−i ·∆i−j

∆i−j − 1

≤
√

∆ + 1
2 · (

√
∆ · u−1)d−1 ·

j−1∏
i=0

∆−j ·
d−1∏

i=j+1

∆−i ·

(
∞∏

k=1

∆k

∆k − 1

)2

≤
√

∆ + 1
2 · (

√
∆ · u−1)d−1 ·∆−j2−(d(d−1)−(j+2)(j+1))/2 · exp

(
2
∞∑

k=1

1
∆k − 1

)
(since 1 + x ≤ ex for all x ∈ R)

≤
√

∆ + 1
2 · u−(d−1) ·∆−(j2−3j−2)/2 ·∆−(d−1)2/2 · exp

(
4
∞∑

k=1

1
∆k

)
(since ∆ ≥ 2)

≤ e4 ·
√

∆ + 1
2 · u−(d−1) ·∆−(j2−3j−2)/2 ·∆−(d−1)2/2. (again using ∆ ≥ 2)

C

The following claim tells us that for each u and j, the masses placed by ru (and hence
pu) on u∆j and −u∆j are comparable.
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B Claim 13. For every j = 0, 1, . . . , d− 1, we have

|ru(−u∆j)| ≥ |ru(u∆j)| ≥ exp(−18/
√

∆)|ru(−u∆j)|

and |pu(−u∆j)| ≥ |pu(u∆j)| ≥ exp(−18/
√

∆)|pu(−u∆j)|.

Proof. We may write the ratio

|pu(u∆j)|
|pu(−u∆j)| = |ru(u∆j)|

|ru(−u∆j)| =
j−1∏
i=0

u(∆j −∆i
√

∆)
u(∆j + ∆i

√
∆)
·
d−1∏
i=j

u(∆i
√

∆−∆j)
u(∆j + ∆i

√
∆)

.

This is a product of terms smaller than 1, yielding the first inequality. For the second, we
follow Sherstov’s argument [26, Theorem 5.3] and note that this product is at least( ∞∏

i=1

∆i/2 − 1
∆i/2 + 1

)2

≥ exp
(
−5

∞∑
i=1

1
∆i/2

)
since (a− 1)/(a+ 1) > exp(−2.5/a) for a ≥

√
2

= exp
(
−5√

∆

∞∑
i=0

1
∆i/2

)
≥ exp

(
−5√

∆
· 1

1− 1/
√

2

)
since ∆ ≥ 2

≥ exp
(
− 18√

∆

)
. C

Putting the three claims together, we obtain the following conclusion, which states that
the mass placed by pu on −u and u is a relatively large fraction of its `1-norm.

I Lemma 14. |pu(−u)| ≥ ‖pu‖1/(8∆2e4) and |pu(−u)| ≥ |pu(u)| ≥ exp(−18/
√

∆−4)
8∆2 · ‖pu‖1.

Proof. We bound the ratio

‖pu‖1
|pu(−u)| ≤ 2

d−1∑
j=0

|pu(−u∆j)|
|pu(−u)| by the first inequality in Claim 13

≤ 2

1 +
d−1∑
j=0

e4∆−(j2−3j−2)/2

 by Claims 11 and 12

≤ 2 + 2e4

 3∑
j=0

∆−(j2−3j−2)/2 +
∞∑
j=4

∆−(j2−3j−2)/2


≤ 8∆2 · e4 ·

∞∑
k=1

∆−k ≤ 8 ·∆2 · e4. since ∆ ≥ 2

By the above and the second inequality in Claim 13,

|pu(u)| ≥ exp(−18/
√

∆)|pu(−u)| ≥ exp(−18/
√

∆− 4)
8∆2 · ‖pu‖1. J

We are now ready to prove Theorem 8.

Proof of Theorem 8. Define the function P (t) =
∑bn2/3c
u=1 u20 · pu(t)

‖pu‖1 . We claim that the
function R : {0,±1, . . . ,±n} → {−1, 1} defined by R(t) = (−1)tP (t)

‖P‖1 satisfies the conditions
in Theorem 8.

Clearly,
∑n
t=−n |R(t)| = 1, i.e., R satisfies Equation (8).

ICALP 2019



30:12 Sign-Rank Can Increase Under Intersection

By Claim 13, for every u = 1, . . . , bn2/3c and every t = 1, . . . , n, (−1)tpu(t) ≥ δ|pu(−t)|
for δ = exp(−18/

√
∆) = exp(−18/n(1/6d)). Therefore, for all such t we also have

(−1)tP (t) ≥ δ|P (t)|, which implies R(t) ≥ δ|R(−t)| for every t = 1, 2, . . . , n.
We have

R(t) = (−1)tP (t)
‖P‖1

= (−1)t

‖P‖

bn2/3c∑
u=1

u20 · pu(t)
‖pu‖1

= (−1)t

‖P‖1

(
2n
n+ t

) bn2/3c∑
u=1

u20 · ru(t)
‖pu‖1

.

Since each ru is a polynomial of degree at most (2n+ 1)− d, Claim 6 implies that for
any polynomial p of degree at most d− 2, 〈R, p〉 = 0.
It now remains to verify the smoothness condition. Fix a point v ∈ {1, . . . , bn2/3c}. Since
sgn(pu(v)) = (−1)v for all u and for all v > 0, we have that

|P (v)|
‖P‖1

≥ v20 · |pv(v)| · ‖pv‖−1
1∑bn2/3c

u=1 u20
≥ exp(−18/

√
∆− 4)/8∆2

bn2/3c · (bn2/3c)20 by Lemma 14

≥ exp(−18/
√

2− 4)
8n15 ≥ e−15

8n15 . since n1/3 ≥ ∆ = bn1/3dc ≥ 2

If v < 0, the argument needs some more care because we do not have the guarantee that
sgn(pu(v)) = (−1)v. The large mass placed by p−v on the point v plays a crucial role.

|P (v)| ≥ (−v)20 · |p−v(v)|
‖p−v‖1

−
bn2/3c∑

u=1
u6=v

u20 · pu(−v)
‖pu‖1

≥ (−v)20

8∆2e4 −
blog∆(−v)c∑

j=1

(−v∆−j)20 ·
p−v∆−j (v)
‖p−v∆−j‖1

by Lemma 14, the definition of pu and its support

≥ (−v)20

[
1

8∆2e4 − e4
∞∑

j=1

∆−20j ·∆(−j2+3j+2)/2

]
by Claims 11 and 12

= (−v)20

[
1

8∆2e4 − e4
∞∑

j=1

∆(−j2−37j+2)/2

]
≥ (−v)20

[
1

8∆2e4 − e4
∞∑

j=1

∆−18j

]

≥ (−v)20
[

1
8∆2e4 −

e4

∆17

]
= (−v)20

[
∆15 − 8e8

8∆17e4

]
≥ 20

∆17 ≥
20
n6

since n1/3 ≥ ∆ ≥ 2 and (−v) ≥ 1

Thus, we have that for v < 0,

|P (v)|
‖P‖1

≥ 20
n6∑bn2/3c

u=1 u20
≥ 20
n6bn2/3c · (bn2/3c)20 ≥

20
n20 . J

5 Conclusion

We have exhibited a communication problem f with UPPcc(f) = O(logn), and UPPcc(f ∧
f) = Θ(log2 n). This is the first result showing that UPP communication complexity can
increase by more than a constant factor under intersection. As a consequence, we have
concluded that the dimension-complexity-based quasipolynomial time PAC learning algorithm
of [16] for learning intersections of polylogarithmically many majorities is optimal. That is,
new learning algorithms not based on dimension complexity will be required to learn this
class in polynomial time.
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A glaring open question left by our work is whether the class of problems with polylogar-
ithmic UPPcc complexity is closed under intersection. Our results represent an important
first step in this direction. It would also be very interesting to extend our result that
dimension-complexity-based algorithms cannot PAC learn intersections of two majorities
in polynomial time, to rule out an even larger class of learning algorithms. Specifically, it
would be very interesting to show that no algorithm working in the important statistical
query model [14] can learn this concept class in polynomial time.

References

1 Andris Ambainis, Andrew M Childs, Ben W Reichardt, Robert Špalek, and Shengyu Zhang.
Any AND-OR formula of size N can be evaluated in time N1/2+o(1) on a quantum computer.
SIAM Journal on Computing, 39(6):2513–2530, 2010.

2 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity
theory (preliminary version). In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 337–347, 1986. doi:10.1109/SFCS.1986.15.

3 Richard Beigel, Nick Reingold, and Daniel A. Spielman. P P Is Closed under Intersection. J.
Comput. Syst. Sci., 50(2):191–202, 1995. doi:10.1006/jcss.1995.1017.

4 Arnab Bhattacharyya, Suprovat Ghoshal, and Rishi Saket. Hardness of Learning Noisy
Halfspaces using Polynomial Thresholds. In Conference On Learning Theory, COLT 2018,
Stockholm, Sweden, 6-9 July 2018., pages 876–917, 2018. URL: http://proceedings.mlr.
press/v75/bhattacharyya18a.html.

5 Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and Prashant Nalini Vasudevan. On
the Power of Statistical Zero Knowledge. In 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 708–719,
2017. doi:10.1109/FOCS.2017.71.

6 Mark Bun and Justin Thaler. Improved Bounds on the Sign-Rank of AC0. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy, pages 37:1–37:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.37.

7 Mark Bun and Justin Thaler. The Large-Error Approximate Degree of AC0. Elec-
tronic Colloquium on Computational Complexity (ECCC), 25:143, 2018. URL: https:
//eccc.weizmann.ac.il/report/2018/143.

8 Arkadev Chattopadhyay and Nikhil S. Mande. A Short List of Equalities Induces Large Sign
Rank. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 47–58, 2018. doi:10.1109/FOCS.2018.00014.

9 Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New
results for learning noisy parities and halfspaces. In 2006 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06), pages 563–574. IEEE, 2006.

10 Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication com-
plexity. J. Comput. Syst. Sci., 65(4):612–625, 2002. doi:10.1016/S0022-0000(02)00019-3.

11 Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-Communication
Lifting for P NP . In 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017,
Riga, Latvia, pages 12:1–12:16, 2017. doi:10.4230/LIPIcs.CCC.2017.12.

12 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-Communication Lifting for BP P .
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 132–143, 2017. doi:10.1109/FOCS.2017.21.

13 Mika Göös, Toniann Pitassi, and Thomas Watson. The Landscape of Communication
Complexity Classes. Computational Complexity, 27(2):245–304, 2018. doi:10.1007/
s00037-018-0166-6.

14 Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983–1006, 1998.

ICALP 2019

http://dx.doi.org/10.1109/SFCS.1986.15
http://dx.doi.org/10.1006/jcss.1995.1017
http://proceedings.mlr.press/v75/bhattacharyya18a.html
http://proceedings.mlr.press/v75/bhattacharyya18a.html
http://dx.doi.org/10.1109/FOCS.2017.71
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.37
https://eccc.weizmann.ac.il/report/2018/143
https://eccc.weizmann.ac.il/report/2018/143
http://dx.doi.org/10.1109/FOCS.2018.00014
http://dx.doi.org/10.1016/S0022-0000(02)00019-3
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.12
http://dx.doi.org/10.1109/FOCS.2017.21
http://dx.doi.org/10.1007/s00037-018-0166-6
http://dx.doi.org/10.1007/s00037-018-0166-6


30:14 Sign-Rank Can Increase Under Intersection

15 Subhash Khot and Rishi Saket. On the hardness of learning intersections of two halfspaces.
Journal of Computer and System Sciences, 77(1):129–141, 2011.

16 Adam R. Klivans, Ryan O’Donnell, and Rocco A. Servedio. Learning intersections and
thresholds of halfspaces. J. Comput. Syst. Sci., 68(4):808–840, 2004. doi:10.1016/j.jcss.
2003.11.002.

17 Adam R Klivans and Rocco A Servedio. Learning DNF in time 2O(n1/3). Journal of Computer
and System Sciences, 68(2):303–318, 2004.

18 Adam R Klivans and Alexander A Sherstov. Cryptographic hardness for learning intersections
of halfspaces. Journal of Computer and System Sciences, 75(1):2–12, 2009.

19 Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, 1969.
20 Ryan O’Donnell and Rocco A Servedio. New degree bounds for polynomial threshold functions.

In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages
325–334. ACM, 2003.

21 Ramamohan Paturi and Janos Simon. Probabilistic Communication Complexity. J. Comput.
Syst. Sci., 33(1):106–123, 1986. doi:10.1016/0022-0000(86)90046-2.

22 Alexander A. Razborov and Alexander A. Sherstov. The Sign-Rank of AC0. SIAM J. Comput.,
39(5):1833–1855, 2010. doi:10.1137/080744037.

23 Alexander A. Sherstov. The Pattern Matrix Method. SIAM J. Comput., 40(6):1969–2000,
2011. doi:10.1137/080733644.

24 Alexander A Sherstov. The unbounded-error communication complexity of symmetric functions.
Combinatorica, 31(5):583–614, 2011.

25 Alexander A. Sherstov. Optimal bounds for sign-representing the intersection of two halfspaces
by polynomials. Combinatorica, 33(1):73–96, 2013. doi:10.1007/s00493-013-2759-7.

26 Alexander A. Sherstov. The Intersection of Two Halfspaces Has High Threshold Degree. SIAM
J. Comput., 42(6):2329–2374, 2013. doi:10.1137/100785260.

27 Alexander A Sherstov. Breaking the Minsky–Papert Barrier for Constant-Depth Circuits.
SIAM Journal on Computing, 47(5):1809–1857, 2018.

28 Alexander A. Sherstov and Pei Wu. Near-Optimal Lower Bounds on the Threshold Degree and
Sign-Rank of AC0. CoRR, abs/1901.00988, 2019. To appear in STOC 2019. arXiv:1901.00988.

http://dx.doi.org/10.1016/j.jcss.2003.11.002
http://dx.doi.org/10.1016/j.jcss.2003.11.002
http://dx.doi.org/10.1016/0022-0000(86)90046-2
http://dx.doi.org/10.1137/080744037
http://dx.doi.org/10.1137/080733644
http://dx.doi.org/10.1007/s00493-013-2759-7
http://dx.doi.org/10.1137/100785260
http://arxiv.org/abs/1901.00988

	Introduction
	Our Results
	Our Techniques

	Preliminaries
	A Smooth Dual Witness for Majority
	Proof of Theorem 8
	Conclusion

