-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Dagstuhl Research Online Publication Server

Approximate Counting of k-Paths: Deterministic
and in Polynomial Space

Andreas Bjorklund
Lund University, Lund, Sweden

andreas.bjorklund@cs.Ith.se

Daniel Lokshtanov
University of California, Bergen, Santa Barbara, USA
daniello@Qucsb.edu

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University, Beersheba, Israel
meiravze@bgu.ac.il

—— Abstract

A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2€)*me™?)-time exponential-
space algorithm to approximately compute the number of paths on k vertices in a graph G up to
a multiplicative error of 1 & €. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010]
gave a deterministic exponential-space algorithm with running time (26)'1”0(10g3 *)mlog n whenever
e ! = k°M | Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing
randomization. Specifically, they gave a randomized O(4*me=?)-time exponential-space algorithm.
In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their
work, and with a novel twist, obtain the following results.

= We present a deterministic 4h+O(VE(10g? ktlog® e71))

m log n-time polynomial-space algorithm. This
matches the running time of the best known deterministic polynomial-space algorithm for deciding
whether a given graph G has a path on k vertices.

log k(log k+log e™ 1)) 1y log n-time polynomial-space al-

= Additionally, we present a randomized 4h+0(
gorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very
simple; we only make elementary use of the probabilistic method.

Thus, the algorithm by Brand et al. runs in time 4%+ whenever ¢! = 2°%) while our

1
4*+°®) m logn whenever et = 2°*%) and

deterministic and randomized algorithms run in time
et = 20<$>7 respectively. Prior to our work, no 20 RO _time polynomial-space algorithm was
known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence
it immediately extends to approximate counting of graphs of bounded treewidth; in comparison,

Brand et al. note that their approach is limited to graphs of bounded pathwidth.

2012 ACM Subject Classification Theory of computation — Fixed parameter tractability
Keywords and phrases parameterized complexity, approximate counting, k-Path

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.24

Category Track A: Algorithms, Complexity and Games

Funding Saket Saurabh: This work is supported by the European Research Council (ERC) via grant

LOPPRE, reference 819416.

Meirav Zehavi: This work is supported by the Israel Science Foundation individual research grant

no. 1176/18.

© Andreas Bjorklund, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi;
37 licensed under Creative Commons License CC-BY L}

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).

Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 24; pp. 24:1-24:15 N

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

souvd

https://core.ac.uk/display/222445757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:andreas.bjorklund@cs.lth.se
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2

Approximate Counting of k-Paths

1 Introduction

The objective of the #k-PATH problem is to compute the number of k-paths — that is, (simple)
paths on k vertices — in a given graph G. Unfortunately, this problem is #W/[1]-hard [19],
which means that it is unlikely to be solvable in time f (k)no(l) for any computable function
f of k. Nevertheless, this problem is long known to admit an FPT-approximation scheme
(FPT-AS), that is, an f(k, e~ ')n®M-time algorithm that approximately computes the number
of k-paths in a given graph G up to a multiplicative error of 1 £+ €. More than 15 years ago,
Arvind and Raman [6] utilized the classic method of color coding [5] to design a randomized
exponential-space FPT-AS for #k-PATH with running time A¢®)n®() whenever e~ < kOK),
A few years afterwards, the development and use of applications in computational biology to
detect and analyze network motifs have already become common practice [34, 37, 36, 18, 24].
Roughly speaking, a network motif is a small pattern whose number of occurrences in a
given network is substantially larger than its number of occurrences in a random network.
Due to their tight relation to network motifs, #k-PATH and other cases of the #SUBGRAPH
IsOMORPHISM problem became highly relevant to the study of gene transcription networks,
protein-protein interaction (PPI) networks, neural networks and social networks [31]. In light
of these developments, Alon et al. [2] revisited the method of color coding to attain a running
time whose dependency on k is single-exponential rather than slightly super-exponential.
Specifically, they designed a simple randomized O((2e)*me=2)-time exponential-space FPT-
AS for #k-PATH, which they employed to analyze PPI networks of unicellular organisms. In
particular, their algorithm has running time 2°*)m whenever =1 < 20(),

The first deterministic FPT-AS for #k-PATH was found in 2007 by Alon and Gutner [4];
this algorithm has an exponential space complexity and running time 20 10g1ogk) 1o
whenever ¢! = 2°0°8%) Shortly afterwards, Alon and Gutner [3] improved upon their previ-
ous work, and designed a deterministic exponential-space FPT-AS for #k-PATH with running
time (2@)’”0(1"g3 ¥)mlogn whenever ¢! = k(). For close to a decade, this algorithm has
remained the state-of-the-art. In contrast, during this decade, the k-PATH problem (the
decision version of #k-PATH) has seen several improvements that were considered to be
breakthroughs at their time [14, 26, 8, 10, 21]. In 2016, Koutis and Williams [27] conjectured
that #k-PATH admits an FPT-AS with running time 2¥n°(). Recently, at the cost of
reintroducing randomization, Brand et al. [13] provided a speed-up towards the resolution of
this conjecture. Specifically, they gave an algebraic randomized O(4*me=2)-time exponential-
space algorithm. In the context of Parameterized Complexity in general, and the k-PATH
problem in particular, the power of randomization is an issue of wide interest [1]. Specifically
for the k-PATH problem, an algebraic randomized 28n°()-time algorithm has been found
already a decade ago [38], and since then, the existence of a deterministic algorithm that
exhibits the same time complexity has been repeatedly posed as a major open problem in
the field. Both Koutis and Williams conjectured this question to have an affirmative answer
in several venues [38, 28, 27]. Clearly, this question is simpler than the one of the design of a
deterministic FPT-AS for #k-PATH with running time 2Fn®™),

In this article, we modify the foundation of the work of Alon and Gutner [4, 3], and with
a novel twist, obtain the following results (see Theorem 21 and Corollary 10).

First, we present a randomized 4k+Oogk(ogk+loge™) 100 time polynomial-space al-
gorithm. While Brand et al. [13] make non-trivial use of exterior algebra, our randomized
algorithm is very simple: we only make elementary use of the probabilistic method.!

L Of course, simplicity is a subjective matter, which may depend on the background of the reader.

A. Bjorklund, D. Lokshtanov, S. Saurabh, and M. Zehavi

Additionally, we present a deterministic 4k+O(Vk(log? k-+log? E_1))mlog n-time polynomial-

space algorithm. In particular, without compromising time complexity, we attain both the
properties of having a polynomial space complexity and being deterministic simultaneously.
In fact, even though we deal with #k-PATH, the running time of our algorithm matches
the best known running time of a deterministic polynomial-space algorithm for k-PATH
(the decision version of #k-PATH) [14].

Thus, the algorithm by Brand et al. [13] runs in time 4*t°(®)m whenever ¢! = 2°(k),
while our deterministic and randomized algorithms run in time 4*t°(®)mlogn whenever
1 = 20(:%) and =1 = 92°(me®) | respectively.

Prior to our work, no ¢*n®M-time polynomial-space (even randomized) algorithm for
#k-PATH was known for any constant c. The design of polynomial-space parameterized
algorithms is an active research area in Parameterized Complexity. Even (sometimes) at a
notable compromise of time complexity, the property of having polynomial space complexity
is sought (see, e.g., [20, 30, 29, 7, 23]). Indeed, algorithms with high space complexity are
in practice more constrained because the amount of memory is not easily scaled beyond
hardware constraints whereas time complexity can be alleviated by allowing for more time
for the algorithm to finish. Furthermore, algorithms with low space complexity are typically
easier to parallelize and more cache-friendly.

Additionally, our approach is embeddable in the classic framework of divide-and-color,
hence it immediately extends to approximate counting of graphs of bounded treewidth;in
comparison, Brand et al. [13] note that their approach is limited to graphs of bounded
pathwidth. Similarly, we can approximately count various other objects such as g-dimensional
p-matchings, g-set p-packings, graph motifs, and more:

» Theorem 1. The following problems admit deterministic 4k+O(VE(log® k+log® 2)) pO() _time
(resp. randomized 4k+0O(log? k)(%)o(logk)no(l)—time) FPT-ASs with polynomial space com-
plexity: (1) #SUBGRAPH ISOMORPHISM for k-vertex subgraphs of treewidth O(1); (ii) #q-
DIMENSIONAL p-MATCHING with k = (¢ — 1)p; (iii) #¢-SET p-PACKING with k = ¢gp; (iv)
#GRAPH MOTIF and #MODULE MOTIF with k = 2p where p is the motif size; (v) #p-

INTERNAL OUT-BRANCHING with k = 2p; (vi) #PARTIAL COVER for k-element solutions.?

Towards the design of our algorithms, our first conceptual contribution is the introduction
of the notion of an approximate parsimonious splitter. While a randomized construction of
such an object is simple, we do not know how (or whether it is even possible) to compute it
deterministically within the size and time bounds that we require. We believe that this gap
in knowledge of derandomization is the main reason why, for close to a decade, no progress
has been made upon the result by Alon and Gutner [4, 3]. Here, our second conceptual
contribution comes into play. We show that for recursive procedures, a weaker object that
can only split so called nice sets suffices, since the recursion itself can keep track on the
“niceness” of sets. We believe that both the concept of approximate parsimonious splitters
as well as our approach of how to weaken a randomized object (to efficiently compute it
deterministically) at the cost of simple bookkeeping might find further applications in the
future. Our ideas and methods are discussed in more detail in Section 3.

2 For problems (i) and (iv), the basis 4 is replaced by the basis 4.001 (or, more precisely, 4 + § for any
fixed constant § > 0).

24:3

ICALP 2019

24:4

Approximate Counting of k-Paths

Table 1 State-of-the-art of #k-PATH and k-PATH.

’ Ref. ‘ Time ‘ Counting | Deterministic | Poly. Space Extension ‘

[14] ghtolk),O) No Yes Yes Treewidth O(1)
[40] 2,597 No Yes No Treewidth O(1)
[38] 2k O No No Yes Treewidth O(1)
[10] 1.657*n0® No No Yes No Extension
B] (2e)FFotk) O Yes Yes No Treewidth O(1)
[13] 4kp 01 Yes No No Pathwidth O(1)

This Paper gltolk) n O1) Yes Yes Yes Treewidth O(1)

Related Work. The algorithms by Alon et al. [2] and Alon and Gutner [4, 3], just like our
algorithms, extend to approximate counting of graphs of bounded treewidth. (This remark
is also made by Alon and Gutner [4, 3].) In what follows, we briefly review works related to
exact counting and decision from the viewpoint of Parameterized Complexity. Since these
topics are not the focus of our work, the survey is illustrative rather than comprehensive.
The problem of counting the number of subgraphs of a graph G that are isomorphic to a
graph H — that is, #SUBGRAPH ISOMORPHISM WITH PATTERN H — admits a dichotomy: If
the vertex cover number of H is bounded, then it is FPT [39], and otherwise it is #W[1]-
hard [16]. The #W][1]-hardness of #k-PATH, originally shown by Flum and Grohe [19],
follows from this dichotomy. By using the “meet in the middle” approach, the #k-PATH
problem and, more generally, #SUBGRAPH ISOMORPHISM WITH PATTERN H where H has
bounded pathwidth and k vertices, was shown to admit an n +©M_time algorithm [9]. Later,
Bjérklund et al. [12] showed that % is not a barrier (which was considered to be the case
at that time) by designing an n®-4**+O()_time algorithm. Recently, a breakthrough that
resulted in substantially faster running times took place: Curticapean et al. [15] showed that
#SUBGRAPH ISOMORPHISM WITH PATTERN H is solvable in time £C()n0174¢ where ¢ is the
number of edges in H; in particular, this algorithm solves #k-PATH in time k©®)p0-174k
The k-PATH problem (on both directed and undirected graphs) is among the most
extensively studied parameterized problems [17, 22]. After a long sequence of works in
the past three decades, the current best known parameterized algorithms for k-PATH have
running times 1.657*n°™) (randomized, polynomial space, undirected only) [10, 8] (extended
in [11]), 2#n°M) (randomized, polynomial space) [38], 2.597*n°(1) (deterministic, exponential
space) [40, 21, 35], and 4%+°(F) @) (deterministic, polynomial space) [14]. The 1.657*n1)-
time algorithm of Bjorklund et al. [10, 8] crucially relies on the symmetric structure of
undirected k-paths. However, all other algorithms above directly extend to the detection
of subgraphs of bounded treewidth. In particular, if the running time of the algorithm is
cF#n®M) | then the running time of the extension is ¢*n!+®M) where t is the treewidth of the
sought graph. To ensure that the constant ¢ remains the same when dealing with the two
deterministic algorithms (of [40, 21, 35] and [14]), the “division into small trees” trick by
Fomin et al. [21] can be used; for the randomized algorithm (of [38]), no trick is required.

2 Preliminaries

For the sake of readability, we ignore ceiling and floor signs. Given a graph G, we let V(G)
and E(G) denote the vertex set and edge set of G, respectively. For a positive integer k, a
k-path in G is a (simple) path on k vertices in G; in case G is directed, the path is directed
as well. We let n = |V(G)| and m = |E(G)|. For a subset U C V(G), G[U] denotes the
subgraph of U induced by G, and G — U = G[V(G) \ U].

A. Bjorklund, D. Lokshtanov, S. Saurabh, and M. Zehavi

For a function f : A — B and subsets A’ C A and B’ C B, define f(A’) = {f(a) :a € A’}
and f~1(B’) = {a € A: f(a) € B'}. For two functions f : A — B and g : B — C, the
notation go f : A — C refers to function composition. For two tuples X = (z1,22,...,%p)
and Y = (y1,¥2,--.,Yq), denote their concatenation by X oY = (21,2, ..., Zp, Y1,Y2,- - -, Yq)-
By standard Chernoff bounds, we have the following bounds.

» Proposition 2 ([32]). Let Xi,...,X, be independent random variables, each assigned a
value in {0,1}. Let X =Y 1 | X;, and let u = E[X]| denote the expected value of X. Then, for
2

2
any 0 < § <1, it holds that (1) Pr(X <(1—9d)u) < e~ and (i) Pr(X > (1 +d)p) < e

Universal Families. For any k£ € N, a k-set is a set of size k. Given a universe U, denote
(g) ={S CU:|S| =k} Given a family F over U and two subsets A, B C U, denote
FlA,B]={F € F: AC F,BNF = (}. Next, we present the definition of a universal family.

» Definition 3 (Universal Family [33, 21]). Let n,p,q € N. A family F of sets over a universe
U of size n is an (n,p,q)-universal family if for each pair of disjoint sets A € (g) and

Be (g), there is a set F' € F that contains A and is disjoint from B, that is, F[A, B] # 0.

In the classic setting by Naor et al. [33], p = q. However, as shown by Fomin et al. [21],
cases where p # ¢ are also of interest. Specifically, the following well-known proposition
asserts that small representative families can be computed efficiently.

» Proposition 4 ([33, 21]). Let n,p,q € N, and k = p+q. Let U be a universe of size n.
Then, an (n,p,q)-universal family F of sets over U of size (’)((];) logn) can be computed
with success probability 1 — 1/n in time O((’;)nlog n). Additionally, an (n,p,q)-universal

family F of sets over U of size (f})Zo(k) logn can be computed (deterministically) in time
(f))Q‘)(k)nlog n. Both computations can enumerate the sets in F with polynomial delay.
Observe that the constructions above are essentially optimal since any (n, p, ¢)-universal
family must be of size at least (’;) We later extend Definition 3 to be approximately
parsimonious, and show how to compute approximate parsimonious universal families.

3 Overview of Our ldeas and Methods

In this section, we discuss our main ideas and methods. Additionally, we present a simplified
version of one of our applications in detail.

3.1 Approx. Parsimonious Universal Family: Randomized Construction

For any pair of disjoint sets A € (g) and B € (g), Definition 3 guarantees that F[A, B] # 0.
However, the number of sets in F[A, B] can be arbitrary. In our applications, the number of
sets in F[A, B] will be tightly linked to the number of solutions whose “first half” is in A
and whose “second half” is in B; thus, to avoid over-counting some solutions, we need all
families F[-,] to be roughly of the same size. For this purpose, let us first extend Definition
3 to be approximately parsimonious.

» Definition 5 (d-Parsimonious Universal Family). Let n,p,q € N and 0 < 6 < 1. Denote
k=p+q. A family F of sets over a universe U of size n is a d-parsimonious (n,p,q)-
universal family if there exists T = T (n,p,q,0) > 0 such that for each pair of disjoint sets
A€ (V) and B (7)), it holds that (1—6)-T < |F[A,B]| < (1+6)-T.

24:5

ICALP 2019

24:6

Approximate Counting of k-Paths

We call the value T above a correction factor, and suppose it to be given along with
the family F. Our randomized computation of a d-parsimonious (n, p, g¢)-universal family is
based on the probabilistic method, inspired by [33, 21]. Specifically, we prove the following.

» Theorem 6. Let n,p,qg € N and 0 < 6 < 1, and denote k = p+ q. Let U be a
universe of size n. A d-parsimonious (n,p,q)-universal family F of sets over U of size

k" 1
t=0 (-klogn -) 3 can be computed with success probability at least 1 — 1/n'%F in

pPql 5)’
time O(t - n). In particular, the sets in F can be enumerated with delay O(n).

We note that the choice of 100 is arbitrary; it can be replaced by the choice of any fixed
constant ¢. Crucially, we gain the extra property of being J-parsimonious while essentially
having the same time complexity and upper bound on the size of the output as in the
non-parsimonious construction.

3.2 Warm Up Application: Simple Randomized FPT-AS for #k-Path

Before we delve into more technical and less intuitive definitions related to our deterministic
construction, we find it important to understand the relation between Definition 5 and
#k-PATH. For this purpose, we present a simple randomized polynomial-space FPT-AS for
#k-PATH. The dependency of the time complexity on n is made almost linear in Section
3.3). While the improved algorithm is still short and simple, it is somewhat less intuitive and
hence presented separately later. For the sake of illustration, suppose that G is undirected.

Algorithm. Let € =1In(1 +¢€) and ¢ =€/(k — 1). Our algorithm is a recursive algorithm,
denoted by A. Each call to A is of the form A(G’, k) where G’ is an induced subgraph of G
and k¥’ € {1,...,k}. For all u,v € V(G’), the call A(G’, k") should output an integer a,,
that approximates the number of k’-paths with endpoints v and v in G’. The initial call to
the algorithm is with G’ = G and ¥’ = k, and the final output is (32, ,cv(q) Qu,)/2-

We turn to describe a call A(G', k). In the basis, where ¥’ = 1, we return a,, = 1 for
all v € V(G’), and ay,, = 0 for all u,v € V(G') (with u # v).

Now, suppose that ¥’ > 2. By Theorem 6, for an €-parsimonious (n, k’/2, k' /2)-universal
family F of sets over V(G), we can enumerate the sets F' € F with delay O(n). For each
set F' € F, we proceed as follows. We first perform two recursive calls: (i) we call A with
(G'[F), k' /2); (ii) we call A with (G’ — F,k'/2). For any u,v € FNV(G'), let b, denote
the number returned by the first call. Similarly, for any u,v € V(G') \ F, let ¢f, denote
the number returned by the second call. Then, for all u € F and v € V(G’) \ F, define
aiv = Z bf;p-civ.

{p,a}€E(G")
s.t. pEF,qgF

Let T be the correction factor of F. After all sets F' € F were enumerated, for all

1
u,v € V(G'), we output a,,, calculated as follows: a, , = T Z aiv. Note that we

Fer

s.t. uEF,vgF
P simultaneously, but we merely store one such value at a time

do not store all the values a;,

and delete it immediately after afzv /T is added. This completes the description of A.

3 Note that as p+¢ = k, the value % is upper bounded by 2% rather than being of the magnitude of K-,

A. Bjorklund, D. Lokshtanov, S. Saurabh, and M. Zehavi

Analysis. The main part of the analysis is done in the proof of the following lemma.

» Lemma 7. For some fized constant n > 0, any call A(G', k") has polynomial space
complexity and running time 1n'°® K 4K frlog k' (log n)logk mn (L)k’gk/. Additionally, if all
constructions of approximate universal families were successful, then for all u,v E V(G), the
number a, ., returned by A(G', k") satisfies (1 — e’)k"lxuﬂ, <y, <(1+€)k F=lp, » where
Ty, s the number of k'-paths with endpoints w and v in G'.

Proof. Let k' = k/2%. We choose n = 10max{\, 7}, where A and T are fixed constants
defined later. The proof is by backwards induction of d. In the basis (k' = 1), the claim

is trivial. Now, let d < log, k — 1, and suppose that the claim holds for d + 1. Clearly,
A(G', k') has a polynomial space complexity. By Theorem 6, for a fixed constant A > 0 (that
is independent of 1),
K / 1 Ko g 1
|Fl <A (k"/2)kl/2(k’/2)k,/2 - k"logn 2= A28 - k'logn - ek

Moreover, by the inductive hypothesis, for a fixed conbtant 7 > 0, the running time of A(G', k')

o w K 1
is upper bounded by |F| - (2 - plos 'k (= 5)log z (log n)log = mnz(2)10g = 4+ rmn?). Note

that 7 is independent of 1. By choosing n = 10 max{\, 7}, this means that the running time
of A(G', k') is upper bounded by

k/ ’ Y 1 Y
|| - <2 n'os T 4%(5)1‘%%(logn)log%an(?)log% + Tmn2>

1 1 _ n
< E2k K logn— ﬁ)logk b+ 10an>

< nlogk’4k kxlogk (1Ogn)logk mn (112)logk'

(2 . plos K — 1ok’ plos Wt (log n)'o ¥ ~Lmn?(
€

This completes the proof of the first item of the claim.
Towards the proof of the second item of the claim, suppose that all constructions of

approximate universal families were successful, and consider some u,v € V(G’). Let ;vg;q

denote the number of k’/2-paths with endpoints p and ¢ in G. By the inductive hypothesis,
we have that

1 1
_ Fr F a
Ay = T . § Ay = T : Z Z b’U«;P “Cqw
FeF Fer {p,a}€E(G’)
s.t. ueEF,vgF s.t. uEF,vgF s.t. pEF,q¢F
1
i_l G ——1 G —F
<5 > > (14€)> L1+)Tl
FeF {p,aY€E(G’)
s.t. uEF,v¢F s.t. pEF,q¢F
1 ’ ’ ’
_ L NE' =2 E E G'[F], .G~
= T (1 + €) xuap Q7

FeF

{r,a}€E(G’)
s.t. u€F,vgF

s.t. pEF,q@F

Let Py, denote the set of k'-paths in G’ with endpoints v and v. In addition, for any subset
F CV(G'), let Py [F] denote the set of paths P € P, ,, where the k’/2 vertices on P closest
to u (including u) belong to F' and the other k’/2 vertices on P do not belong to F'. Thus,

w2 2rer|PudlFll

Qy,v S (1 + 6/) T

24:7

ICALP 2019

24:8

Approximate Counting of k-Paths

Since F is an €'-parsimonious (n, k'/2, k' /2)-universal family, for any path P € P, , it holds
that the number of sets F' € F such that P € P, ,[F] is upper bounded by (1 + €')T". Thus,

. 1+)T | Py ,
au’vg(l—l—e/)k —2_(+€)T|) |:(1+€/)k _lxu,v'

Symmetrically, we derive that (1 — ¢)k/’lxu,v < @y This completes the proof. <

We now conclude the following theorem.

» Theorem 8. There is a randomized (4*+°F) mn? + mn2+o)(1)OUk) time polynomial-
space algorithm that, given a graph G, a positive integer k and an accuracy value 0 < € < 1,
outputs a number y that (with high probability, say, at least 9/10) satisfies (1 —e)x <y <
(14 €)x where x is the number of k-paths in G. In particular, zf% = 0(k/logk) " then the
running time is 4F7°F)mn2 4 mp2te),
Proof. By Lemma 7 with G’ = G and k¥’ = k, we know that the total running time of A(G, k)
is bounded by 4k+0(log” k) (log n)logkmn2(€%)loglc and uses polynomial space. Additionally, if
all constructions of approximate universal families were successful, then for all u,v € V(G),
the number a,, , computed by A(G, k) satisfies (1 —€)* 12y, < ay < (1+€)* 12, , where
Zy,p is the number of k-paths with endpoints v and v in G.

If logn < 2\/E7 then (logn)©8k < 2°(k) Otherwise, when logn > 2\/E, it holds that k <
10g2 IOg n. Tt follows that 4k+0(10g2 k)(log n)logk < 410g2 log n+O(log loglog n) (log n)Qlog loglogn <

og2 logn n
nCCHET) < o), Iy addition, by Taylor series In(1+z) = Y7 | (=1)" T2 it follows
that €/2 < ¢ — €2/2 < In(1 + €) = € < ¢, which means that (£)"°8% = 20 (log? k) (1)OUogk),
ThUS, 4k+0(10g2 k) (IOg n)log kan(l)logk _ (4k:+o(k)mn2 4 mn2+o(1))(%)0(log k:)'

€’

We now claim that with high probability, all constructions of approximate universal
families were successful. By Theorem 6, the probability that a single construction is successful
is at least 1 — 1/n'%%. Thus, the probability that all constructions are successful is at least
(1 — 1/n'9%)# where p is the number of constructions. Clearly, the number of constructions
is upper bounded by the running time of A. In turn, we can assume w.l.o.g. that the upper
bound proven on this running time is, in itself, upper bounded by n*, since otherwise the
problem can be solved exactly by brute force within it. Thus, i < n*. From this, we know
that the probability that all constructions are successful is at least (1 — 1/n'0%)n" Agp
grows larger, this value approaches 1. In particular, the success probability can be assumed
to be at least 9/10 (otherwise n is a fixed constant), which proves our claim.

Thus, we know that for all u,v € V(G), it holds that (1 — €)* 1z, < au, < (1 +
¢)F=1x,,. Substituting € by € we have that for all u,v € V(G), it holds that (1 — €)x,, <

(1- %)k’lxuyv <y < (1+ﬁ)k’1xu,v < €Ty . Since (1—¢€) < (1—%€) and e = (1+¢),

we have that for all u,v € V(G), it holds that (1 — €)zy» < ay» < (14 €)2y . Thus,

y={ > aw |25 D (4| /2

u,veV(G) u,veV(G)

=(1+e) Z Tuw | /2= (14 ¢€)x.

u,veV(G)

Symmetrically, we obtain that (1 — €)x < y. This completes the proof. <

A. Bjorklund, D. Lokshtanov, S. Saurabh, and M. Zehavi

3.3 Improved Randomized FPT-AS for #k-Path

As our improved randomized FPT-AS is less intuitive, we first discuss the intuition behind it.
Here, in addition to G’ and &/, every call to the recursive algorithm A is given an assignment
o : V(G)\ V(G") — Ny of a non-negative integer to each vertex outside G’. Roughly
speaking, for each vertex v € V(G) \ V(G’), the value o/(v) is an approximation of the
number of E—paths that end at v and are completely contained in G — U for a certain integer
ke {1,2,...,k — k'} and a subset U C V(G) that contains V(G’). In particular, given that
now the goal of each call is to output such an assignment for G — (U \ V(G’) (a precise
definition of the goal of a call is given in the formal description of the algorithm), we do not
need to consider every pair of vertices u,v € V(G’') and compute a value a, ,; instead, we
only compute one value per vertex. Additionally, recall that in the previous algorithm in
order to compute a,, ., we considered every edge {p, ¢} € E(G’) while computing afiv and
hence divided our task into the computation of &’/2-paths between u and p in one recursive
call and k’/2-paths between ¢ and u in the other. Here, we do not store the two endpoints of
paths, but their “middle”. More precisely, the flow of information differs: to compute the
assignment we need to output in the current call, we perform one recursive call to which the
assignment o’ is given as input; this call will return an assignment that “handles” the first
k+ K /2 vertices on the paths being counted, and be sent as input to the second recursive
call to handle the next k’/2 vertices.

Algorithm. Let €=1n(1+¢€) and ¢ =€/(k —1). We add a new vertex s to G and connect
it to all vertices in GG. Thus, rather than counting the number of k-paths in the former graph
G, we can count the number of (k + 1)-paths with s as an endpoint in the new graph G. In
what follows, we focus on this goal.

Our algorithm is a recursive algorithm, denoted by A. Each call to A is of the form
A(G', k', o) where G’ is an induced subgraph of G, k' € {1,...,k}, and o/ : V(G)\V(G') —
Ny . The call A(G’, k', ') should output an assignment « : V(G') — Ny with the following
property: For each vertex v € V(G'), it holds that a(v) approximates the following number:

Z O/(p) *Tq,v,

{p.qa}€E(G)
s.t. pgV(G’),qeV(G’)

where z, , is the number of k’-paths in G’ between ¢ and v.

The initial call to the algorithm is with G’ = G — {s}, ¥’ = k, and &/(s) = 1. The final
output is Y-, ¢y (g (s} (V)

We turn to describe a call A(G’,k’,a’). In the basis, where ¥’ = 1, we return an
assignment « : V(G') — Ny defined as follows: For each vertex v € V(G’), define

a(v) = Z o (u).

ugV(G’)
s.t. {u,v}€E(GQ)

Now, suppose that k' > 2. By Theorem 6, for an ¢’-parsimonious (n, k'/2, k' /2)-universal
family F of sets over V(G), we can enumerate the sets F' € F with delay O(n). For each
set F' € F, we proceed as follows. We first recursively call A with (G'[F],k’/2,a’) where
o’ is extended to assign 0 to every vertex in V(G') \ F. Let ag be the output of this call,
and extend it to assign 0 to every vertex in V(G) \ V(G’). Then, we recursively call A with
(G' = F,k'/2,aFr). Let ap be the output of this recursive call.

24:9

ICALP 2019

24:10

Approximate Counting of k-Paths

Let T be the correction factor of F. After all sets ' € F were enumerated, the output
a: V(G'") — Ny is computed as follows. For all v € V(G’), we calculate

alv) = Z ap() | /T.

FeF
s.t. vgF

Note that we do not store all the assignments ar simultaneously, but we merely store one
such assignment at a time and delete it immediately after ap(v)/T, for every v € V(G'), is
added. This completes the description of A.

Correctness. The proof of correctness of our algorithm roughly follows the same lines as
the proof of correctness of Theorem 8. Due to space constraints, we omit the details, and
conclude this section with the statement of our result.

» Theorem 9. There is a randomized (4°T°F)m 4 mno(l))(%)o(log k) _time polynomial-space
algorithm that, given a graph G, a positive integer k and an accuracy value 0 <e<1, outputs a
number y that (with high probability) satisfies (1—€)x < y/2 < (1+€)x where x is the number
of k-paths in G. In particular, zf% = 20(k/108k) " then the running time is 4FT0F) mpo(),

Additionally, we can obtain the following corollary. (This corollary does not follow directly
from Theorem 9, but requires a simple preliminary step to shrink the universe; due to space
constraints, the details are omitted.)

» Corollary 10. There is a randomized 4k+0O(log?)mlog n(%)o(logk)-time polynomial-space
algorithm that, given a graph G, a positive integer k and an accuracy value 0 <e <1, ‘outputs a
number y that (with high probability) satisfies (1—e€)x < y/2 < (14 €)x where x is the number
of k-paths in G. In particular, zf% = 20k/108k) then the running time is 4F7°F)mlogn.

3.4 Approx. Parsimonious Universal Family: Deterministic Construction

We do not know how to deterministically construct small §-parsimonious universal families.
Indeed, the best construction that we are aware of is the one based on bipartite Paley graphs
(see Theorem 11.9 in the book by Jukna [25] and the historical notes behind the result).
This construction leads to families of size 451°(F) for p = ¢ = g, whereas we would like size
2k+o(k) - Instead, we provide an efficient deterministic computation of a small §-parsimonious
universal family that is suitable for handling so called “nice pairs”. The crucial point is
that with respect to our applications, this relaxed construction suffices. In this section, we
present the definition of this relaxation, its construction and main property. Due to space
constraints, the proofs of the two lemmas and the theorem stated in this section are omitted.
To simplify the following definitions, we introduce the following notation. To see the
intuition behind this notation in the context of applications, throughout this section h can be
thought of as a function that reduces the size of the universe from n to z, f can be thought
of as a function that splits the reduced universe into ¢ parts, and p can be thought of as a
function that tells us that each part has k/t “useful” elements (e.g., vertices of paths to be
counted in a certain recursive call) among which either p; or (k/t) — p; were “exhausted”.

» Definition 11. Letn,p,q,t,z € N, and k = p+q. Let U be a universe of sizen. A function
p:{1,2,...,t} = {0,1,...,k/t} such that 25:1 p; =D, is called (p,q,t)-compatible. When
P is clear from context, for each i € {1,2,...,t}, denote p; = P(i) and q; = (k/t) — p;.

A triple (h, f, D) is called (n,p,q,t,z)-compatible if h: U — {1,2,...,z}, f:{1,2,...,
2z} = {1,2,...,t}, and D is (p,q,t)-compatible. (The universe U will be clear from context.)

A. Bjorklund, D. Lokshtanov, S. Saurabh, and M. Zehavi

We begin by defining what is a nice pair.

» Definition 12 (Nice Pair). Let n,p,q,t,z € N. Let U be a universe of size n. Let (h, f, D)

be (n,p,q,t,z)-compatible. A pair (A, B) is nice (with respect to (h, f,p)) if A € (g) and

B e (g) are disjoint sets, and the following conditions hold.

1. The function h is injective when restricted to AU B.

2. For each i € {1,2,...,t}, it holds that {u € A : f(h(u)) = i}| = p; and |{u € B :
f(h(u) = i}| = (k/t) — pi.

Towards the definition of a d-parsimonious universal family for nice pairs, we first present
a weaker definition of this notion where we have a triple (h, f,p) at hand.

» Definition 13 (Specific 6-Parsimonious Universal Family for Nice Pairs). Let n,p,q,t,z € N.
Let U be a universe of size n. Let (h, f,p) be (n,p,q,t,z)-compatible. Let 0 < § < 1.
A family F of sets over {1,...,z} is a d-parsimonious (h, f,Pp)-universal family (for nice
pairs) if there exists T =T (h, f,D,9) > 0 such that for every nice pair (A, B), it holds that
(1=0)-T<|Fh(A),h(B)| < (146 -T.

Before we show how to extend Definition 13 to the notion useful for applications, we
argue that small §-parsimonious (h, f, p)-universal families can be computed “efficiently”.

» Lemma 14. Let p,q,t,z € N, and denote k = p+ q and s = k/t. Let (h, f,p) be
(n,p,q,t, z)-compatible. Let 0 < § < 1. A d-parsimonious (h, f,P)-universal family F of sets

over {1,...,z} of size £ =0 ((’;) - (k-logz - %)%) can be computed in time - z5+t1 5O,

In particular, the sets in F can be enumerated with delay z°T1s®M¢,

Towards the definition of our general construction, we need to present the definitions of a
balanced splitter and a balanced hash family. Constructions of such a splitter and a family
were given by Alon and Gutner [4, 3].

» Definition 15 (Definition 2.2 [4]). Suppose that 1 < ¢ <k <n and0<e <1, and let H be
a family of functions from {1,...,n} to {1,...,£}. For a set S € (“",’g""}), let split(S)
denote the number of functions h € H that split H into equal size parts, that is, |h=1(i)NS| =
k/l. Then, H is an e-balanced (n, k, £)-splitter if there exists T = T(n,k,¢,¢) > 0 such that
for every set S € ({1"i€""}), we have (1 —€)T < splity(S) < (1—¢€)T.

» Definition 16 (Definition 2.1 [4]). Suppose that 1 <k <{<n and0<e<1. A family
H of functions from {1,...,n} to {1,...,£} is an (e, k)-balanced family of hash functions
if there exists T = T(n,k,l,€) > 0 such that for every set S € (“"k"”), the number of
functions in H that are injective when restricted to S is between (1 —€)T and (1 +¢€)T.

We are now ready to define our general derandomization tool.

» Definition 17 ((General) d-Parsimonious Universal Family for Nice Pairs). Let n,p,q € N
and 0 < 0 <1, and denote k = p+q, z:@,t:\/%, s=k/t =k, and e = /3. Let U
be a universe of size n. A d-parsimonious (n, p, ¢)-universal tuple (for nice pairs) is a tuple
(H, S, {F"IPY| e resp)* that satisfies the following conditions.

H is an (e, k)-balanced family of hash functions from {1,...,n} to {1,...,z} (with

correction factor T).

S is an e-balanced (z, k,t)-splitter (with correction factor Ts).

For every hash function h € H, splitter f € S and (p, ¢,t)-compatible function p, it holds

that FP1P is a §-parsimonious (h, f,P)-universal family (with correction factor T5).

4 The enumeration is over every (p, g,t)-compatible p.

24:11

ICALP 2019

24:12

Approximate Counting of k-Paths

By enumerating the quadruples of (H, S, {fh’f’5}|h€H’f€S’5), we refer to the enumeration
of every quadruple (h, f,p, F) such that h € H, f € S and F € F"/P. We remark that
below, for the sake of brevity, when we write k, 2,t,s,¢,Ty, Ty and 1§, we refer to the
notations given in Definition 17. Let us now state our construction.

» Theorem 18. Let n,p,q € N and 0 < § < 1. Denote k = p+q. Let U be a universe of size
n. A §-parsimonious (n,p,q)-universal tuple (H, S, {fh’f’5}|h€H7f6575) with ¢ quadruples

L o . . . om
can be computed in time % +/¢-A. In particular, after preprocessing time %,

the quadruples of (H, S, {]—'h’f>5}|heH’f€S’5) can be enumerated with delay . Here,

¢ _ k .20(\/E(log2 k+log?

p
A = 20(\/E(logk+log%))'

o). logn, and

In order to state the property of a §-parsimonious (n, p, ¢)-universal tuple that makes it
useful for applications, we need one last definition.

» Definition 19. Let n,p,g € N and 0 < § < 1. Let U be a universe of size n. Furthermore,
let (H, S, {fh’f’5}|h€H’fes’5) be a &-parsimonious (n,p, q)-universal tuple. Finally, let A €
(g) and B € (g) be disjoint sets. We say that the pair (A, B) fits a quadruple (h, f, D, F)
of (H,S,{F"I'PY|em resp) if (A, B) is mice with respect to (h, f,), and h(A) C F and
fOh(B)=0.

Finally, we state the promised property.

» Lemma 20. Let n,p,q € N and 0 < § < 1. Let U be a universe of size n. Furthermore,

let (H, S, {]:h’f’ﬁ}‘heH,feS,ﬁ) be a §-parsimonious (n,p, q)-universal tuple. Then, there exist

T =T(n,p,q,0) >0 and for every P that is (p,q,t)-compatible, Ty = T5(n, p,q,0) > 0, such

that for any A € (Z) and B € (g) that are disjoint, the following conditions hold.

1. The number of triples (h, f, D) with respect to whom (A, B) is nice, where h € H, f € S
and P is (p, q,t)-compatible, is between (1 —)T and (14 6)T.

2. For any triple (h, f, D) with respect to whom (A, B) is nice, where h€ H, f € S and p
is (p, q,t)-compatible, the number of quadruples (h, f,p, F) of (H, S, {}"h’f’ﬁ}|h€H7f6575)
that fit (A, B) is between (1 — 6)T5 and (14 0)T5.

3.5 Deterministic FPT-AS for #k-Path

Our deterministic FPT-AS builds upon the scheme of our second randomized FPT-AS, but it
is more technical. Due to space constraints, the full details of the description of the algorithm
and its proof of correctness is omitted. Here, we only discuss the main idea that underlies
the design of this algorithm. Like our previous algorithm, this algorithm (denoted by .A) is
recursive. However, in addition to G’, k' and o/, every call to A is also given two tuples R
and W. The number of elements in R and W equals the depth d of the current recursive
call in the recursion tree.

Roughly speaking, every element in R is a quadruple (h;, fi,P;,0:) where (i) the
triple (hi, fi,P;) corresponds to the interpretation preceding Definition 11, and (%) o; €
{left,right} indicates whether we should count paths that consist of p,;(j) (in case
0; = left) or s; — P,;(j) (in case o; = right) vertices of the j-th part of the reduced
universe split by f;. Thus, we “keep track” of all triples considered along the current re-
cursion branch. The reason why we have to store this information is to ensure that, in the
current recursive call, we only count paths P whose vertex set has the following property:

A. Bjorklund, D. Lokshtanov, S. Saurabh, and M. Zehavi

when we will return to the i-th recursive call, the partition (A4, B) of V(P) where A consists
of the first k vertices of P (for a certain ke {1,2,...,k} that depends on the location of
this i-th call in the recursion tree) is nice with respect to (h;, fi, P;), see Definition 12. This
simple (though perhaps slightly tedious) bookkeeping sidesteps the fact that Lemma 20 only
suits nice pairs.

The tuple W is meant to keep track of how many vertices the paths that we currently
count have used “so far” from the j-th part of the universe split by f; for every choice of
¢ and j. For this purpose, W is defined to have the form (wWy,wa,...,Wg) such that for
each 7 € {1,2,...,d}, the following condition holds: For each j € {1,2,...,¢}, if 0; = left
then W;(j) < p;(j), and otherwise W;(j) < s; — p;(j). Here, s; = 1/(k/2?) is the number of
vertices the paths that we currently count should use (in total) from each part split by f;.

Accordingly, the objective of a call A(G',k',a’,R,W) is to output an assignment
a : V(G) — Ny with the following property: For each vertex v € V(G'), it holds that
a(v) approximates Z o (p) - |Pf;’k/’7z’w . Roughly speaking, P,f;’k,’R’W is the

{r,qa}€E(G)
s.t. pgV(G’),qeV(G')

collection of all k’-paths in G’ with endpoints ¢ and v that “comply” with the constraints
imposed by R and W. (Due to space constraints, the formal definition is omitted.)
We conclude this section with the formal statement of our main result.

» Theorem 21. There is a deterministic 4x+0(Vk(0g® k+log®)i 100 1 _time polynomial-space
algorithm that, given a graph G, a positive integer k and an accuracy value 0 < € < 1, outputs
a number y that satisfies (1 — e)x < y/2 < (1 + €)x where x is the number of k-paths in G.

In particular, zf% = 2°6T) then the running time is 4FT°F)mlogn.

Due to space constraints, the discussion on extensions and other applications is omitted.

—— References

1 Randomization in Parameterized Complexity. www.dagstuhl.de/de/programm/kalender/
semhp/?semnr=17041.

2 Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and Siileyman Cenk
Sahinalp. Biomolecular network motif counting and discovery by color coding. In Proceedings
16th International Conference on Intelligent Systems for Molecular Biology (ISMB), Toronto,
Canada, July 19-23, 2008, pages 241-249, 2008. doi:10.1093/bioinformatics/btn163.

3 Noga Alon and Shai Gutner. Balanced Hashing, Color Coding and Approximate Count-
ing. In Parameterized and Fxact Computation, 4th International Workshop, IWPEC 2009,
Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, pages 1-16, 2009.
d0i:10.1007/978-3-642-11269-0_1.

4 Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their applications.
ACM Trans. Algorithms, 6(3):54:1-54:12, 2010. doi:10.1145/1798596.1798607.

5 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844-856, 1995.
doi:10.1145/210332.210337.

6 Vikraman Arvind and Venkatesh Raman. Approximation Algorithms for Some Parameterized
Counting Problems. In Algorithms and Computation, 13th International Symposium, ISAAC
2002 Vancouwver, BC, Canada, November 21-23, 2002, Proceedings, pages 453464, 2002.
doi:10.1007/3-540-36136-7_40.

7 André Berger, Laszlé Kozma, Matthias Mnich, and Roland Vincze. A time- and space-optimal
algorithm for the many-visits TSP. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 1770-1782, 2019. doi:10.1137/1.9781611975482.106.

24:13

ICALP 2019

www.dagstuhl.de/de/programm/kalender/semhp/?semnr=17041
www.dagstuhl.de/de/programm/kalender/semhp/?semnr=17041
http://dx.doi.org/10.1093/bioinformatics/btn163
http://dx.doi.org/10.1007/978-3-642-11269-0_1
http://dx.doi.org/10.1145/1798596.1798607
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1007/3-540-36136-7_40
http://dx.doi.org/10.1137/1.9781611975482.106

24:14

Approximate Counting of k-Paths

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Andreas Bjorklund. Determinant Sums for Undirected Hamiltonicity. SIAM J. Comput.,
43(1):280-299, 2014. doi:10.1137/110839229.

Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting Paths
and Packings in Halves. In Algorithms - ESA 2009, 17th Annual European Symposium,
Copenhagen, Denmark, September 7-9, 2009. Proceedings, pages 578-586, 2009. doi:10.1007/
978-3-642-04128-0_52.

Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. J. Comput. Syst. Sci., 87:119-139, 2017. doi:10.1016/j.
jcss.2017.03.003.

Andreas Bjorklund, Vikram Kamat, Lukasz Kowalik, and Meirav Zehavi. Spotting Trees with
Few Leaves. SIAM J. Discrete Math., 31(2):687-713, 2017. doi:10.1137/15M1048975.
Andreas Bjorklund, Petteri Kaski, and Lukasz Kowalik. Counting Thin Subgraphs via
Packings Faster than Meet-in-the-Middle Time. ACM Trans. Algorithms, 13(4):48:1-48:26,
2017. doi:10.1145/3125500.

Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 151-164, 2018. doi:10.1145/3188745.3188902.

J. Chen, J. Kneis, S. Lu, D. Molle, S. Richter, P. Rossmanith, S. Sze, and F. Zhang. Randomized
Divide-and-Conquer: Improved Path, Matching, and Packing Algorithms. SIAM Journal on
Computing, 38(6):2526-2547, 2009.

Radu Curticapean, Holger Dell, and Déaniel Marx. Homomorphisms Are a Good Basis for
Counting Small Subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, pages 210-223, New York, NY, USA, 2017. ACM.
doi:10.1145/3055399.3055502.

Radu Curticapean and Déniel Marx. Complexity of Counting Subgraphs: Only the Bounded-
ness of the Vertex-Cover Number Counts. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 201/, pages 130-139,
2014. doi:10.1109/F0CS.2014.22.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna, and Roded Sharan.
QNet: A Tool for Querying Protein Interaction Networks. Journal of Computational Biology,
15(7):913-925, 2008. doi:10.1089/cmb.2007.0172.

Jorg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems. SIAM
J. Comput., 33(4):892-922, 2004.

Fedor V. Fomin, Petteri Kaski, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh.
Parameterized Single-Exponential Time Polynomial Space Algorithm for Steiner Tree. In
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 494-505, 2015. doi:10.1007/
978-3-662-47672-7_40.

Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient Computation
of Representative Families with Applications in Parameterized and Exact Algorithms. J. ACM,
63(4):29:1-29:60, 2016. doi:10.1145/2886094.

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory
of Parameterized Preprocessing. Cambridge University Press, 2018.

Gregory Z. Gutin, Felix Reidl, Magnus Wahlstréom, and Meirav Zehavi. Designing deterministic
polynomial-space algorithms by color-coding multivariate polynomials. J. Comput. Syst. Sci.,
95:69-85, 2018. doi:10.1016/j.jcss.2018.01.004.

Falk Hiiffner, Sebastian Wernicke, and Thomas Zichner. Algorithm Engineering for Color-
Coding with Applications to Signaling Pathway Detection. Algorithmica, 52(2):114-132, 2008.
doi:10.1007/s00453-007-9008-7.

http://dx.doi.org/10.1137/110839229
http://dx.doi.org/10.1007/978-3-642-04128-0_52
http://dx.doi.org/10.1007/978-3-642-04128-0_52
http://dx.doi.org/10.1016/j.jcss.2017.03.003
http://dx.doi.org/10.1016/j.jcss.2017.03.003
http://dx.doi.org/10.1137/15M1048975
http://dx.doi.org/10.1145/3125500
http://dx.doi.org/10.1145/3188745.3188902
http://dx.doi.org/10.1145/3055399.3055502
http://dx.doi.org/10.1109/FOCS.2014.22
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1089/cmb.2007.0172
http://dx.doi.org/10.1007/978-3-662-47672-7_40
http://dx.doi.org/10.1007/978-3-662-47672-7_40
http://dx.doi.org/10.1145/2886094
http://dx.doi.org/10.1016/j.jcss.2018.01.004
http://dx.doi.org/10.1007/s00453-007-9008-7

A. Bjorklund, D. Lokshtanov, S. Saurabh, and M. Zehavi

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Stasys Jukna. Fxtremal Combinatorics: With Applications in Computer Science. Springer
Publishing Company, Incorporated, 1st edition, 2010.

Ioannis Koutis. Faster Algebraic Algorithms for Path and Packing Problems. In Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland,
July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games,
pages 575586, 2008. doi:10.1007/978-3-540-70575-8_47.

Toannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commun.
ACM, 59(1):98-105, 2016. doi:10.1145/2742544.

Toannis Koutis and Ryan Williams. LIMITS and applications of group algebras for parameter-
ized problems. ACM Trans. Algorithms, 12(3):31:1-31:18, 2016. doi:10.1145/2885499.
Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Planar k-Path in Subexponential
Time and Polynomial Space. In Graph-Theoretic Concepts in Computer Science - 37th
International Workshop, WG 2011, Tepld Monastery, Czech Republic, June 21-24, 2011.
Revised Papers, pages 262-270, 2011. doi:10.1007/978-3-642-25870-1_24.

Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 321-330, 2010. doi:10.1145/1806689.1806735.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
Motifs: Simple Building Blocks of Complex Networks. Science, 298(5594):824-827, 2002.
doi:10.1126/science.298.5594.824.

Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and Near-Optimal
Derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, 23-25 October 1995, pages 182-191, 1995. doi:10.1109/SFCS.1995.492475.
Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. Efficient Algorithms for
Detecting Signaling Pathways in Protein Interaction Networks. Journal of Computational
Biology, 13(2):133-144, 2006. doi:10.1089/cmb.2006.13.133.

Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach.
J. Comput. Syst. Sci., 82(3):488-502, 2016. doi:10.1016/j.jcss.2015.11.008.

Roded Sharan and Trey Ideker. Modeling cellular machinery through biological network
comparison. Nat. Biotechnol. 24, 427-433. Nature biotechnology, 24:427-33, May 2006.
Tomer Shlomi, Daniel Segal, Eytan Ruppin, and Roded Sharan. QPath: a method for
querying pathways in a protein-protein interaction network. BMC Bioinformatics, 7:199, 2006.
doi:10.1186/1471-2105-7-199. N

Ryan Williams. Finding paths of length k in O (2k) time. Inf. Process. Lett., 109(6):315-318,
2009. doi:10.1016/j.ipl.2008.11.004.

Virginia Vassilevska Williams and Ryan Williams. Finding, Minimizing, and Counting
Weighted Subgraphs. SIAM J. Comput., 42(3):831-854, 2013. doi:10.1137/09076619X.
Meirav Zehavi. Mixing Color Coding-Related Techniques. In Algorithms - ESA 2015 - 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
1037-1049, 2015. doi:10.1007/978-3-662-48350-3_86.

24:15

ICALP 2019

http://dx.doi.org/10.1007/978-3-540-70575-8_47
http://dx.doi.org/10.1145/2742544
http://dx.doi.org/10.1145/2885499
http://dx.doi.org/10.1007/978-3-642-25870-1_24
http://dx.doi.org/10.1145/1806689.1806735
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1109/SFCS.1995.492475
http://dx.doi.org/10.1089/cmb.2006.13.133
http://dx.doi.org/10.1016/j.jcss.2015.11.008
http://dx.doi.org/10.1186/1471-2105-7-199
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1137/09076619X
http://dx.doi.org/10.1007/978-3-662-48350-3_86

	Introduction
	Preliminaries
	Overview of Our Ideas and Methods
	Approx. Parsimonious Universal Family: Randomized Construction
	Warm Up Application: Simple Randomized FPT-AS for #k-Path
	Improved Randomized FPT-AS for #k-Path
	Approx. Parsimonious Universal Family: Deterministic Construction
	Deterministic FPT-AS for #k-Path

