
Approximate Counting of k-Paths: Deterministic
and in Polynomial Space
Andreas Björklund
Lund University, Lund, Sweden
andreas.bjorklund@cs.lth.se

Daniel Lokshtanov
University of California, Bergen, Santa Barbara, USA
daniello@ucsb.edu

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University, Beersheba, Israel
meiravze@bgu.ac.il

Abstract

A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)kmε−2)-time exponential-
space algorithm to approximately compute the number of paths on k vertices in a graph G up to
a multiplicative error of 1± ε. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010]
gave a deterministic exponential-space algorithm with running time (2e)k+O(log3 k)m logn whenever
ε−1 = kO(1). Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing
randomization. Specifically, they gave a randomized O(4kmε−2)-time exponential-space algorithm.
In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their
work, and with a novel twist, obtain the following results.

We present a deterministic 4k+O(
√
k(log2 k+log2 ε−1))m logn-time polynomial-space algorithm. This

matches the running time of the best known deterministic polynomial-space algorithm for deciding
whether a given graph G has a path on k vertices.

Additionally, we present a randomized 4k+O(log k(log k+log ε−1))m logn-time polynomial-space al-
gorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very
simple; we only make elementary use of the probabilistic method.

Thus, the algorithm by Brand et al. runs in time 4k+o(k)m whenever ε−1 = 2o(k), while our
deterministic and randomized algorithms run in time 4k+o(k)m logn whenever ε−1 = 2o(k

1
4) and

ε−1 = 2o(k
log k), respectively. Prior to our work, no 2O(k)nO(1)-time polynomial-space algorithm was

known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence
it immediately extends to approximate counting of graphs of bounded treewidth; in comparison,
Brand et al. note that their approach is limited to graphs of bounded pathwidth.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases parameterized complexity, approximate counting, k-Path

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.24

Category Track A: Algorithms, Complexity and Games

Funding Saket Saurabh: This work is supported by the European Research Council (ERC) via grant
LOPPRE, reference 819416.
Meirav Zehavi: This work is supported by the Israel Science Foundation individual research grant
no. 1176/18.

EA
T

C
S

© Andreas Björklund, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:andreas.bjorklund@cs.lth.se
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Approximate Counting of k-Paths

1 Introduction

The objective of the #k-Path problem is to compute the number of k-paths – that is, (simple)
paths on k vertices – in a given graph G. Unfortunately, this problem is #W[1]-hard [19],
which means that it is unlikely to be solvable in time f(k)nO(1) for any computable function
f of k. Nevertheless, this problem is long known to admit an FPT-approximation scheme
(FPT-AS), that is, an f(k, ε−1)nO(1)-time algorithm that approximately computes the number
of k-paths in a given graph G up to a multiplicative error of 1± ε. More than 15 years ago,
Arvind and Raman [6] utilized the classic method of color coding [5] to design a randomized
exponential-space FPT-AS for #k-Path with running time kO(k)nO(1) whenever ε−1 ≤ kO(k).
A few years afterwards, the development and use of applications in computational biology to
detect and analyze network motifs have already become common practice [34, 37, 36, 18, 24].
Roughly speaking, a network motif is a small pattern whose number of occurrences in a
given network is substantially larger than its number of occurrences in a random network.
Due to their tight relation to network motifs, #k-Path and other cases of the #Subgraph
Isomorphism problem became highly relevant to the study of gene transcription networks,
protein-protein interaction (PPI) networks, neural networks and social networks [31]. In light
of these developments, Alon et al. [2] revisited the method of color coding to attain a running
time whose dependency on k is single-exponential rather than slightly super-exponential.
Specifically, they designed a simple randomized O((2e)kmε−2)-time exponential-space FPT-
AS for #k-Path, which they employed to analyze PPI networks of unicellular organisms. In
particular, their algorithm has running time 2O(k)m whenever ε−1 ≤ 2O(k).

The first deterministic FPT-AS for #k-Path was found in 2007 by Alon and Gutner [4];
this algorithm has an exponential space complexity and running time 2O(k log log k)m logn
whenever ε−1 = 2o(log k). Shortly afterwards, Alon and Gutner [3] improved upon their previ-
ous work, and designed a deterministic exponential-space FPT-AS for #k-Path with running
time (2e)k+O(log3 k)m logn whenever ε−1 = kO(1). For close to a decade, this algorithm has
remained the state-of-the-art. In contrast, during this decade, the k-Path problem (the
decision version of #k-Path) has seen several improvements that were considered to be
breakthroughs at their time [14, 26, 8, 10, 21]. In 2016, Koutis and Williams [27] conjectured
that #k-Path admits an FPT-AS with running time 2knO(1). Recently, at the cost of
reintroducing randomization, Brand et al. [13] provided a speed-up towards the resolution of
this conjecture. Specifically, they gave an algebraic randomized O(4kmε−2)-time exponential-
space algorithm. In the context of Parameterized Complexity in general, and the k-Path
problem in particular, the power of randomization is an issue of wide interest [1]. Specifically
for the k-Path problem, an algebraic randomized 2knO(1)-time algorithm has been found
already a decade ago [38], and since then, the existence of a deterministic algorithm that
exhibits the same time complexity has been repeatedly posed as a major open problem in
the field. Both Koutis and Williams conjectured this question to have an affirmative answer
in several venues [38, 28, 27]. Clearly, this question is simpler than the one of the design of a
deterministic FPT-AS for #k-Path with running time 2knO(1).

In this article, we modify the foundation of the work of Alon and Gutner [4, 3], and with
a novel twist, obtain the following results (see Theorem 21 and Corollary 10).

First, we present a randomized 4k+O(log k(log k+log ε−1))m logn-time polynomial-space al-
gorithm. While Brand et al. [13] make non-trivial use of exterior algebra, our randomized
algorithm is very simple: we only make elementary use of the probabilistic method.1

1 Of course, simplicity is a subjective matter, which may depend on the background of the reader.

A. Björklund, D. Lokshtanov, S. Saurabh, and M. Zehavi 24:3

Additionally, we present a deterministic 4k+O(
√
k(log2 k+log2 ε−1))m logn-time polynomial-

space algorithm. In particular, without compromising time complexity, we attain both the
properties of having a polynomial space complexity and being deterministic simultaneously.
In fact, even though we deal with #k-Path, the running time of our algorithm matches
the best known running time of a deterministic polynomial-space algorithm for k-Path
(the decision version of #k-Path) [14].

Thus, the algorithm by Brand et al. [13] runs in time 4k+o(k)m whenever ε−1 = 2o(k),
while our deterministic and randomized algorithms run in time 4k+o(k)m logn whenever
ε−1 = 2o(k

1
4) and ε−1 = 2o(k

log k), respectively.
Prior to our work, no cknO(1)-time polynomial-space (even randomized) algorithm for

#k-Path was known for any constant c. The design of polynomial-space parameterized
algorithms is an active research area in Parameterized Complexity. Even (sometimes) at a
notable compromise of time complexity, the property of having polynomial space complexity
is sought (see, e.g., [20, 30, 29, 7, 23]). Indeed, algorithms with high space complexity are
in practice more constrained because the amount of memory is not easily scaled beyond
hardware constraints whereas time complexity can be alleviated by allowing for more time
for the algorithm to finish. Furthermore, algorithms with low space complexity are typically
easier to parallelize and more cache-friendly.

Additionally, our approach is embeddable in the classic framework of divide-and-color,
hence it immediately extends to approximate counting of graphs of bounded treewidth;in
comparison, Brand et al. [13] note that their approach is limited to graphs of bounded
pathwidth. Similarly, we can approximately count various other objects such as q-dimensional
p-matchings, q-set p-packings, graph motifs, and more:

I Theorem 1. The following problems admit deterministic 4k+O(
√
k(log2 k+log2 1

ε))nO(1)-time
(resp. randomized 4k+O(log2 k)(1

ε)
O(log k)nO(1)-time) FPT-ASs with polynomial space com-

plexity: (i) #Subgraph Isomorphism for k-vertex subgraphs of treewidth O(1); (ii) #q-
Dimensional p-Matching with k = (q − 1)p; (iii) #q-Set p-Packing with k = qp; (iv)
#Graph Motif and #Module Motif with k = 2p where p is the motif size; (v) #p-
Internal Out-Branching with k = 2p; (vi) #Partial Cover for k-element solutions.2

Towards the design of our algorithms, our first conceptual contribution is the introduction
of the notion of an approximate parsimonious splitter. While a randomized construction of
such an object is simple, we do not know how (or whether it is even possible) to compute it
deterministically within the size and time bounds that we require. We believe that this gap
in knowledge of derandomization is the main reason why, for close to a decade, no progress
has been made upon the result by Alon and Gutner [4, 3]. Here, our second conceptual
contribution comes into play. We show that for recursive procedures, a weaker object that
can only split so called nice sets suffices, since the recursion itself can keep track on the
“niceness” of sets. We believe that both the concept of approximate parsimonious splitters
as well as our approach of how to weaken a randomized object (to efficiently compute it
deterministically) at the cost of simple bookkeeping might find further applications in the
future. Our ideas and methods are discussed in more detail in Section 3.

2 For problems (i) and (iv), the basis 4 is replaced by the basis 4.001 (or, more precisely, 4 + δ for any
fixed constant δ > 0).

ICALP 2019

24:4 Approximate Counting of k-Paths

Table 1 State-of-the-art of #k-Path and k-Path.

Ref. Time Counting Deterministic Poly. Space Extension

[14] 4k+o(k)nO(1) No Yes Yes Treewidth O(1)
[40] 2.597knO(1) No Yes No Treewidth O(1)
[38] 2knO(1) No No Yes Treewidth O(1)
[10] 1.657knO(1) No No Yes No Extension
[3] (2e)k+o(k)nO(1) Yes Yes No Treewidth O(1)
[13] 4knO(1) Yes No No Pathwidth O(1)

This Paper 4k+o(k)nO(1) Yes Yes Yes Treewidth O(1)

Related Work. The algorithms by Alon et al. [2] and Alon and Gutner [4, 3], just like our
algorithms, extend to approximate counting of graphs of bounded treewidth. (This remark
is also made by Alon and Gutner [4, 3].) In what follows, we briefly review works related to
exact counting and decision from the viewpoint of Parameterized Complexity. Since these
topics are not the focus of our work, the survey is illustrative rather than comprehensive.

The problem of counting the number of subgraphs of a graph G that are isomorphic to a
graph H – that is, #Subgraph Isomorphism with Pattern H – admits a dichotomy: If
the vertex cover number of H is bounded, then it is FPT [39], and otherwise it is #W[1]-
hard [16]. The #W[1]-hardness of #k-Path, originally shown by Flum and Grohe [19],
follows from this dichotomy. By using the “meet in the middle” approach, the #k-Path
problem and, more generally, #Subgraph Isomorphism with Pattern H where H has
bounded pathwidth and k vertices, was shown to admit an n k2 +O(1)-time algorithm [9]. Later,
Björklund et al. [12] showed that k

2 is not a barrier (which was considered to be the case
at that time) by designing an n0.455k+O(1)-time algorithm. Recently, a breakthrough that
resulted in substantially faster running times took place: Curticapean et al. [15] showed that
#Subgraph Isomorphism with Pattern H is solvable in time `O(`)n0.174` where ` is the
number of edges in H; in particular, this algorithm solves #k-Path in time kO(k)n0.174k.

The k-Path problem (on both directed and undirected graphs) is among the most
extensively studied parameterized problems [17, 22]. After a long sequence of works in
the past three decades, the current best known parameterized algorithms for k-Path have
running times 1.657knO(1) (randomized, polynomial space, undirected only) [10, 8] (extended
in [11]), 2knO(1) (randomized, polynomial space) [38], 2.597knO(1) (deterministic, exponential
space) [40, 21, 35], and 4k+o(k)nO(1) (deterministic, polynomial space) [14]. The 1.657knO(1)-
time algorithm of Björklund et al. [10, 8] crucially relies on the symmetric structure of
undirected k-paths. However, all other algorithms above directly extend to the detection
of subgraphs of bounded treewidth. In particular, if the running time of the algorithm is
cknO(1), then the running time of the extension is cknt+O(1) where t is the treewidth of the
sought graph. To ensure that the constant c remains the same when dealing with the two
deterministic algorithms (of [40, 21, 35] and [14]), the “division into small trees” trick by
Fomin et al. [21] can be used; for the randomized algorithm (of [38]), no trick is required.

2 Preliminaries

For the sake of readability, we ignore ceiling and floor signs. Given a graph G, we let V (G)
and E(G) denote the vertex set and edge set of G, respectively. For a positive integer k, a
k-path in G is a (simple) path on k vertices in G; in case G is directed, the path is directed
as well. We let n = |V (G)| and m = |E(G)|. For a subset U ⊆ V (G), G[U] denotes the
subgraph of U induced by G, and G− U = G[V (G) \ U].

A. Björklund, D. Lokshtanov, S. Saurabh, and M. Zehavi 24:5

For a function f : A→ B and subsets A′ ⊆ A and B′ ⊆ B, define f(A′) = {f(a) : a ∈ A′}
and f−1(B′) = {a ∈ A : f(a) ∈ B′}. For two functions f : A → B and g : B → C, the
notation g ◦ f : A→ C refers to function composition. For two tuples X = (x1, x2, . . . , xp)
and Y = (y1, y2, . . . , yq), denote their concatenation by X �Y = (x1, x2, . . . , xp, y1, y2, . . . , yq).
By standard Chernoff bounds, we have the following bounds.

I Proposition 2 ([32]). Let X1, . . . , Xn be independent random variables, each assigned a
value in {0, 1}. Let X =

∑n
i=1 Xi, and let µ = E[X] denote the expected value of X. Then, for

any 0 ≤ δ ≤ 1, it holds that (i) Pr(X≤(1− δ)µ) ≤ e−
δ2µ

2 and (ii) Pr(X≥(1 + δ)µ) ≤ e−
δ2µ

3 .

Universal Families. For any k ∈ N, a k-set is a set of size k. Given a universe U , denote(
U
k

)
= {S ⊆ U : |S| = k}. Given a family F over U and two subsets A,B ⊆ U , denote

F [A,B] = {F ∈ F : A ⊆ F,B ∩F = ∅}. Next, we present the definition of a universal family.

I Definition 3 (Universal Family [33, 21]). Let n, p, q ∈ N. A family F of sets over a universe
U of size n is an (n, p, q)-universal family if for each pair of disjoint sets A ∈

(
U
p

)
and

B ∈
(
U
q

)
, there is a set F ∈ F that contains A and is disjoint from B, that is, F [A,B] 6= ∅.

In the classic setting by Naor et al. [33], p = q. However, as shown by Fomin et al. [21],
cases where p 6= q are also of interest. Specifically, the following well-known proposition
asserts that small representative families can be computed efficiently.

I Proposition 4 ([33, 21]). Let n, p, q ∈ N, and k = p + q. Let U be a universe of size n.
Then, an (n, p, q)-universal family F of sets over U of size O(

(
k
p

)
logn) can be computed

with success probability 1 − 1/n in time O(
(
k
p

)
n logn). Additionally, an (n, p, q)-universal

family F of sets over U of size
(
k
p

)
2o(k) logn can be computed (deterministically) in time(

k
p

)
2o(k)n logn. Both computations can enumerate the sets in F with polynomial delay.

Observe that the constructions above are essentially optimal since any (n, p, q)-universal
family must be of size at least

(
k
p

)
. We later extend Definition 3 to be approximately

parsimonious, and show how to compute approximate parsimonious universal families.

3 Overview of Our Ideas and Methods

In this section, we discuss our main ideas and methods. Additionally, we present a simplified
version of one of our applications in detail.

3.1 Approx. Parsimonious Universal Family: Randomized Construction
For any pair of disjoint sets A ∈

(
U
p

)
and B ∈

(
U
q

)
, Definition 3 guarantees that F [A,B] 6= ∅.

However, the number of sets in F [A,B] can be arbitrary. In our applications, the number of
sets in F [A,B] will be tightly linked to the number of solutions whose “first half” is in A
and whose “second half” is in B; thus, to avoid over-counting some solutions, we need all
families F [·, ·] to be roughly of the same size. For this purpose, let us first extend Definition
3 to be approximately parsimonious.

I Definition 5 (δ-Parsimonious Universal Family). Let n, p, q ∈ N and 0 < δ < 1. Denote
k = p + q. A family F of sets over a universe U of size n is a δ-parsimonious (n, p, q)-
universal family if there exists T = T (n, p, q, δ) > 0 such that for each pair of disjoint sets
A ∈

(
U
p

)
and B ∈

(
U
q

)
, it holds that (1− δ) · T ≤ |F [A,B]| ≤ (1 + δ) · T .

ICALP 2019

24:6 Approximate Counting of k-Paths

We call the value T above a correction factor, and suppose it to be given along with
the family F . Our randomized computation of a δ-parsimonious (n, p, q)-universal family is
based on the probabilistic method, inspired by [33, 21]. Specifically, we prove the following.

I Theorem 6. Let n, p, q ∈ N and 0 < δ < 1, and denote k = p + q. Let U be a
universe of size n. A δ-parsimonious (n, p, q)-universal family F of sets over U of size

t = O
(
kk

ppqq
· k logn · 1

δ2

)
,3 can be computed with success probability at least 1− 1/n100k in

time O(t · n). In particular, the sets in F can be enumerated with delay O(n).

We note that the choice of 100 is arbitrary; it can be replaced by the choice of any fixed
constant c. Crucially, we gain the extra property of being δ-parsimonious while essentially
having the same time complexity and upper bound on the size of the output as in the
non-parsimonious construction.

3.2 Warm Up Application: Simple Randomized FPT-AS for #k-Path

Before we delve into more technical and less intuitive definitions related to our deterministic
construction, we find it important to understand the relation between Definition 5 and
#k-Path. For this purpose, we present a simple randomized polynomial-space FPT-AS for
#k-Path. The dependency of the time complexity on n is made almost linear in Section
3.3). While the improved algorithm is still short and simple, it is somewhat less intuitive and
hence presented separately later. For the sake of illustration, suppose that G is undirected.

Algorithm. Let ε̂ = ln(1 + ε) and ε′ = ε̂/(k − 1). Our algorithm is a recursive algorithm,
denoted by A. Each call to A is of the form A(G′, k′) where G′ is an induced subgraph of G
and k′ ∈ {1, . . . , k}. For all u, v ∈ V (G′), the call A(G′, k′) should output an integer au,v
that approximates the number of k′-paths with endpoints u and v in G′. The initial call to
the algorithm is with G′ = G and k′ = k, and the final output is (

∑
u,v∈V (G) au,v)/2.

We turn to describe a call A(G′, k′). In the basis, where k′ = 1, we return av,v = 1 for
all v ∈ V (G′), and au,v = 0 for all u, v ∈ V (G′) (with u 6= v).

Now, suppose that k′ ≥ 2. By Theorem 6, for an ε′-parsimonious (n, k′/2, k′/2)-universal
family F of sets over V (G), we can enumerate the sets F ∈ F with delay O(n). For each
set F ∈ F , we proceed as follows. We first perform two recursive calls: (i) we call A with
(G′[F], k′/2); (ii) we call A with (G′ − F, k′/2). For any u, v ∈ F ∩ V (G′), let bFu,v denote
the number returned by the first call. Similarly, for any u, v ∈ V (G′) \ F , let cFu,v denote
the number returned by the second call. Then, for all u ∈ F and v ∈ V (G′) \ F , define
aFu,v =

∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

bFu,p · cFq,v.

Let T be the correction factor of F . After all sets F ∈ F were enumerated, for all
u, v ∈ V (G′), we output au,v calculated as follows: au,v = 1

T
·

∑
F∈F

s.t. u∈F,v/∈F

aFu,v. Note that we

do not store all the values aFu,v simultaneously, but we merely store one such value at a time
and delete it immediately after aFu,v/T is added. This completes the description of A.

3 Note that as p+ q = k, the value kk

ppqq is upper bounded by 2k rather than being of the magnitude of kk.

A. Björklund, D. Lokshtanov, S. Saurabh, and M. Zehavi 24:7

Analysis. The main part of the analysis is done in the proof of the following lemma.

I Lemma 7. For some fixed constant η > 0, any call A(G′, k′) has polynomial space
complexity and running time ηlog k′4k′k′log k′(logn)log k′mn2(1

ε′2
)log k′ . Additionally, if all

constructions of approximate universal families were successful, then for all u, v ∈ V (G′), the
number au,v returned by A(G′, k′) satisfies (1− ε′)k′−1xu,v ≤ au,v ≤ (1 + ε′)k′−1xu,v where
xu,v is the number of k′-paths with endpoints u and v in G′.

Proof. Let k′ = k/2d. We choose η = 10 max{λ, τ}, where λ and τ are fixed constants
defined later. The proof is by backwards induction of d. In the basis (k′ = 1), the claim
is trivial. Now, let d ≤ log2 k − 1, and suppose that the claim holds for d + 1. Clearly,
A(G′, k′) has a polynomial space complexity. By Theorem 6, for a fixed constant λ > 0 (that
is independent of η),

|F| ≤ λ · k′
k′

(k′/2)k
′/2(k′/2)k

′/2 · k
′ logn · 1

ε′2
= λ · 2k

′
· k′ logn · 1

ε′2
.

Moreover, by the inductive hypothesis, for a fixed constant τ > 0, the running time ofA(G′, k′)

is upper bounded by |F| ·
(

2 · ηlog k′
2 4 k

′
2 (k

′

2)log k′
2 (logn)log k′

2 mn2(1
ε′2

)log k′
2 + τmn2

)
. Note

that τ is independent of η. By choosing η = 10 max{λ, τ}, this means that the running time
of A(G′, k′) is upper bounded by

|F| ·
(

2 · ηlog k′
2 4 k

′
2 (k

′

2)log k′
2 (logn)log k′

2 mn2(1
ε′2

)log k′
2 + τmn2

)
≤ η

102k
′
k′ logn 1

ε′2
·
(

2 · ηlog k′−12k
′
k′

log k′−1(logn)log k′−1mn2(1
ε′2

)log k′−1 + η

10mn
2
)

≤ ηlog k′4k
′
k′

log k′(logn)log k′mn2(1
ε′2

)log k′ .

This completes the proof of the first item of the claim.
Towards the proof of the second item of the claim, suppose that all constructions of

approximate universal families were successful, and consider some u, v ∈ V (G′). Let xĜp,q
denote the number of k′/2-paths with endpoints p and q in Ĝ. By the inductive hypothesis,
we have that

au,v = 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

aFu,v = 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

bFu,p · cFq,v

≤ 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

(1 + ε′) k
′

2 −1xG
′[F]

u,p · (1 + ε′) k
′

2 −1xG
′−F

q,v

= 1
T
· (1 + ε′)k

′−2 ·
∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

xG
′[F]

u,p · xG
′−F

q,v

Let Pu,v denote the set of k′-paths in G′ with endpoints u and v. In addition, for any subset
F ⊆ V (G′), let Pu,v[F] denote the set of paths P ∈ Pu,v where the k′/2 vertices on P closest
to u (including u) belong to F and the other k′/2 vertices on P do not belong to F . Thus,

au,v ≤ (1 + ε′)k
′−2 ·

∑
F∈F |Pu,v[F]|

T
.

ICALP 2019

24:8 Approximate Counting of k-Paths

Since F is an ε′-parsimonious (n, k′/2, k′/2)-universal family, for any path P ∈ Pu,v it holds
that the number of sets F ∈ F such that P ∈ Pu,v[F] is upper bounded by (1 + ε′)T . Thus,

au,v ≤ (1 + ε′)k
′−2 · (1 + ε′)T |Pu,v|

T
= (1 + ε′)k

′−1xu,v.

Symmetrically, we derive that (1− ε′)k′−1xu,v ≤ au,v. This completes the proof. J

We now conclude the following theorem.

I Theorem 8. There is a randomized (4k+o(k)mn2 +mn2+o(1))(1
ε)O(log k)-time polynomial-

space algorithm that, given a graph G, a positive integer k and an accuracy value 0 < ε < 1,
outputs a number y that (with high probability, say, at least 9/10) satisfies (1− ε)x ≤ y ≤
(1 + ε)x where x is the number of k-paths in G. In particular, if 1

ε = 2o(k/ log k), then the
running time is 4k+o(k)mn2 +mn2+o(1).

Proof. By Lemma 7 with G′ = G and k′ = k, we know that the total running time of A(G, k)
is bounded by 4k+O(log2 k)(logn)log kmn2(1

ε′)
log k and uses polynomial space. Additionally, if

all constructions of approximate universal families were successful, then for all u, v ∈ V (G),
the number au,v computed by A(G, k) satisfies (1− ε′)k−1xu,v ≤ au,v ≤ (1+ ε′)k−1xu,v where
xu,v is the number of k-paths with endpoints u and v in G.

If logn ≤ 2
√
k, then (logn)log k ≤ 2o(k). Otherwise, when logn > 2

√
k, it holds that k <

log2 logn. It follows that 4k+O(log2 k)(logn)log k ≤ 4log2 logn+O(log log logn)(logn)2 log log logn ≤
nO(log2 logn

logn) ≤ no(1). In addition, by Taylor series ln(1 + x) =
∑∞
n=1(−1)n+1 xn

n , it follows
that ε/2 ≤ ε − ε2/2 ≤ ln(1 + ε) = ε̂ ≤ ε, which means that (1

ε′)
log k = 2O(log2 k)(1

ε)
O(log k).

Thus, 4k+O(log2 k)(logn)log kmn2(1
ε′)

log k = (4k+o(k)mn2 +mn2+o(1))(1
ε)O(log k).

We now claim that with high probability, all constructions of approximate universal
families were successful. By Theorem 6, the probability that a single construction is successful
is at least 1− 1/n100k. Thus, the probability that all constructions are successful is at least
(1− 1/n100k)µ where µ is the number of constructions. Clearly, the number of constructions
is upper bounded by the running time of A. In turn, we can assume w.l.o.g. that the upper
bound proven on this running time is, in itself, upper bounded by nk, since otherwise the
problem can be solved exactly by brute force within it. Thus, µ ≤ nk. From this, we know
that the probability that all constructions are successful is at least (1− 1/n100k)nk . As n
grows larger, this value approaches 1. In particular, the success probability can be assumed
to be at least 9/10 (otherwise n is a fixed constant), which proves our claim.

Thus, we know that for all u, v ∈ V (G), it holds that (1 − ε′)k−1xu,v ≤ au,v ≤ (1 +
ε′)k−1xu,v. Substituting ε′ by ε̂, we have that for all u, v ∈ V (G), it holds that (1− ε̂)xuv ≤
(1− ε̂

k−1)k−1xu,v ≤ au,v ≤ (1+ ε̂
k−1)k−1xu,v ≤ eε̂xu,v. Since (1− ε) ≤ (1− ε̂) and eε̂ = (1+ ε),

we have that for all u, v ∈ V (G), it holds that (1− ε)xu,v ≤ au,v ≤ (1 + ε)xu,v. Thus,

y =

 ∑
u,v∈V (G)

au,v

/2 ≤
 ∑
u,v∈V (G)

(1 + ε)xu,v

 /2

= (1 + ε)

 ∑
u,v∈V (G)

xu,v

 /2 = (1 + ε)x.

Symmetrically, we obtain that (1− ε)x ≤ y. This completes the proof. J

A. Björklund, D. Lokshtanov, S. Saurabh, and M. Zehavi 24:9

3.3 Improved Randomized FPT-AS for #k-Path

As our improved randomized FPT-AS is less intuitive, we first discuss the intuition behind it.
Here, in addition to G′ and k′, every call to the recursive algorithm A is given an assignment
α′ : V (G) \ V (G′) → N0 of a non-negative integer to each vertex outside G′. Roughly
speaking, for each vertex v ∈ V (G) \ V (G′), the value α′(v) is an approximation of the
number of k̂-paths that end at v and are completely contained in G−U for a certain integer
k̂ ∈ {1, 2, . . . , k − k′} and a subset U ⊆ V (G) that contains V (G′). In particular, given that
now the goal of each call is to output such an assignment for G − (U \ V (G′) (a precise
definition of the goal of a call is given in the formal description of the algorithm), we do not
need to consider every pair of vertices u, v ∈ V (G′) and compute a value au,v; instead, we
only compute one value per vertex. Additionally, recall that in the previous algorithm in
order to compute au,v, we considered every edge {p, q} ∈ E(G′) while computing aFu,v and
hence divided our task into the computation of k′/2-paths between u and p in one recursive
call and k′/2-paths between q and u in the other. Here, we do not store the two endpoints of
paths, but their “middle”. More precisely, the flow of information differs: to compute the
assignment we need to output in the current call, we perform one recursive call to which the
assignment α′ is given as input; this call will return an assignment that “handles” the first
k̂ + k′/2 vertices on the paths being counted, and be sent as input to the second recursive
call to handle the next k′/2 vertices.

Algorithm. Let ε̂ = ln(1 + ε) and ε′ = ε̂/(k − 1). We add a new vertex s to G and connect
it to all vertices in G. Thus, rather than counting the number of k-paths in the former graph
G, we can count the number of (k + 1)-paths with s as an endpoint in the new graph G. In
what follows, we focus on this goal.

Our algorithm is a recursive algorithm, denoted by A. Each call to A is of the form
A(G′, k′, α′) where G′ is an induced subgraph of G, k′ ∈ {1, . . . , k}, and α′ : V (G)\V (G′)→
N0 . The call A(G′, k′, α′) should output an assignment α : V (G′)→ N0 with the following
property: For each vertex v ∈ V (G′), it holds that α(v) approximates the following number:∑

{p,q}∈E(G)
s.t. p/∈V (G′),q∈V (G′)

α′(p) · xq,v,

where xq,v is the number of k′-paths in G′ between q and v.
The initial call to the algorithm is with G′ = G− {s}, k′ = k, and α′(s) = 1. The final

output is
∑
v∈V (G)\{s} α(v).

We turn to describe a call A(G′, k′, α′). In the basis, where k′ = 1, we return an
assignment α : V (G′)→ N0 defined as follows: For each vertex v ∈ V (G′), define

α(v) =
∑

u/∈V (G′)
s.t. {u,v}∈E(G)

α′(u).

Now, suppose that k′ ≥ 2. By Theorem 6, for an ε′-parsimonious (n, k′/2, k′/2)-universal
family F of sets over V (G), we can enumerate the sets F ∈ F with delay O(n). For each
set F ∈ F , we proceed as follows. We first recursively call A with (G′[F], k′/2, α′) where
α′ is extended to assign 0 to every vertex in V (G′) \ F . Let α̂F be the output of this call,
and extend it to assign 0 to every vertex in V (G) \ V (G′). Then, we recursively call A with
(G′ − F, k′/2, α̂F). Let αF be the output of this recursive call.

ICALP 2019

24:10 Approximate Counting of k-Paths

Let T be the correction factor of F . After all sets F ∈ F were enumerated, the output
α : V (G′)→ N0 is computed as follows. For all v ∈ V (G′), we calculate

α(v) =

 ∑
F∈F

s.t. v/∈F

αF (v)

 /T .

Note that we do not store all the assignments αF simultaneously, but we merely store one
such assignment at a time and delete it immediately after αF (v)/T , for every v ∈ V (G′), is
added. This completes the description of A.

Correctness. The proof of correctness of our algorithm roughly follows the same lines as
the proof of correctness of Theorem 8. Due to space constraints, we omit the details, and
conclude this section with the statement of our result.

I Theorem 9. There is a randomized (4k+o(k)m+mno(1))(1
ε)O(log k)-time polynomial-space

algorithm that, given a graph G, a positive integer k and an accuracy value 0<ε<1, outputs a
number y that (with high probability) satisfies (1− ε)x ≤ y/2 ≤ (1+ ε)x where x is the number
of k-paths in G. In particular, if 1

ε = 2o(k/ log k), then the running time is 4k+o(k)mno(1).

Additionally, we can obtain the following corollary. (This corollary does not follow directly
from Theorem 9, but requires a simple preliminary step to shrink the universe; due to space
constraints, the details are omitted.)

I Corollary 10. There is a randomized 4k+O(log2 k)m logn(1
ε)O(log k)-time polynomial-space

algorithm that, given a graph G, a positive integer k and an accuracy value 0<ε<1,‘outputs a
number y that (with high probability) satisfies (1− ε)x ≤ y/2 ≤ (1+ ε)x where x is the number
of k-paths in G. In particular, if 1

ε = 2o(k/ log k), then the running time is 4k+o(k)m logn.

3.4 Approx. Parsimonious Universal Family: Deterministic Construction
We do not know how to deterministically construct small δ-parsimonious universal families.
Indeed, the best construction that we are aware of is the one based on bipartite Paley graphs
(see Theorem 11.9 in the book by Jukna [25] and the historical notes behind the result).
This construction leads to families of size 4k+o(k) for p = q = k

2 , whereas we would like size
2k+o(k). Instead, we provide an efficient deterministic computation of a small δ-parsimonious
universal family that is suitable for handling so called “nice pairs”. The crucial point is
that with respect to our applications, this relaxed construction suffices. In this section, we
present the definition of this relaxation, its construction and main property. Due to space
constraints, the proofs of the two lemmas and the theorem stated in this section are omitted.

To simplify the following definitions, we introduce the following notation. To see the
intuition behind this notation in the context of applications, throughout this section h can be
thought of as a function that reduces the size of the universe from n to z, f can be thought
of as a function that splits the reduced universe into t parts, and p can be thought of as a
function that tells us that each part has k/t “useful” elements (e.g., vertices of paths to be
counted in a certain recursive call) among which either pi or (k/t)− pi were “exhausted”.

I Definition 11. Let n, p, q, t, z ∈ N, and k = p+q. Let U be a universe of size n. A function
p : {1, 2, . . . , t} → {0, 1, . . . , k/t} such that

∑t
i=1 pi = p, is called (p, q, t)-compatible. When

p is clear from context, for each i ∈ {1, 2, . . . , t}, denote pi = p(i) and qi = (k/t)− pi.
A triple (h, f,p) is called (n, p, q, t, z)-compatible if h : U → {1, 2, . . . , z}, f : {1, 2, . . . ,

z} → {1, 2, . . . , t}, and p is (p, q, t)-compatible. (The universe U will be clear from context.)

A. Björklund, D. Lokshtanov, S. Saurabh, and M. Zehavi 24:11

We begin by defining what is a nice pair.

I Definition 12 (Nice Pair). Let n, p, q, t, z ∈ N. Let U be a universe of size n. Let (h, f,p)
be (n, p, q, t, z)-compatible. A pair (A,B) is nice (with respect to (h, f,p)) if A ∈

(
U
p

)
and

B ∈
(
U
q

)
are disjoint sets, and the following conditions hold.

1. The function h is injective when restricted to A ∪B.
2. For each i ∈ {1, 2, . . . , t}, it holds that |{u ∈ A : f(h(u)) = i}| = pi and |{u ∈ B :

f(h(u)) = i}| = (k/t)− pi.

Towards the definition of a δ-parsimonious universal family for nice pairs, we first present
a weaker definition of this notion where we have a triple (h, f,p) at hand.

I Definition 13 (Specific δ-Parsimonious Universal Family for Nice Pairs). Let n, p, q, t, z ∈ N.
Let U be a universe of size n. Let (h, f,p) be (n, p, q, t, z)-compatible. Let 0 < δ < 1.
A family F of sets over {1, . . . , z} is a δ-parsimonious (h, f,p)-universal family (for nice
pairs) if there exists T = T (h, f,p, δ) > 0 such that for every nice pair (A,B), it holds that
(1− δ) · T ≤ |F [h(A), h(B)]| ≤ (1 + δ) · T .

Before we show how to extend Definition 13 to the notion useful for applications, we
argue that small δ-parsimonious (h, f,p)-universal families can be computed “efficiently”.

I Lemma 14. Let p, q, t, z ∈ N, and denote k = p + q and s = k/t. Let (h, f,p) be
(n, p, q, t, z)-compatible. Let 0 < δ < 1. A δ-parsimonious (h, f,p)-universal family F of sets
over {1, . . . , z} of size ` = O

((
k
p

)
· (k · log z · O(1)

δ)2t
)
can be computed in time ` · zs+1sO(1)t.

In particular, the sets in F can be enumerated with delay zs+1sO(1)t.

Towards the definition of our general construction, we need to present the definitions of a
balanced splitter and a balanced hash family. Constructions of such a splitter and a family
were given by Alon and Gutner [4, 3].

I Definition 15 (Definition 2.2 [4]). Suppose that 1 ≤ ` ≤ k ≤ n and 0 < ε < 1, and let H be
a family of functions from {1, . . . , n} to {1, . . . , `}. For a set S ∈

({1,...,n}
k

)
, let splitH(S)

denote the number of functions h ∈ H that split H into equal size parts, that is, |h−1(i)∩S| =
k/`. Then, H is an ε-balanced (n, k, `)-splitter if there exists T = T (n, k, `, ε) > 0 such that
for every set S ∈

({1,...,n}
k

)
, we have (1− ε)T ≤ splitH(S) ≤ (1− ε)T .

I Definition 16 (Definition 2.1 [4]). Suppose that 1 ≤ k ≤ ` ≤ n and 0 < ε < 1. A family
H of functions from {1, . . . , n} to {1, . . . , `} is an (ε, k)-balanced family of hash functions
if there exists T = T (n, k, `, ε) > 0 such that for every set S ∈

({1,...,n}
k

)
, the number of

functions in H that are injective when restricted to S is between (1− ε)T and (1 + ε)T .

We are now ready to define our general derandomization tool.

I Definition 17 ((General) δ-Parsimonious Universal Family for Nice Pairs). Let n, p, q ∈ N
and 0 < δ < 1, and denote k = p+ q, z = 2k2

ε , t =
√
k, s = k/t =

√
k, and ε = δ/3. Let U

be a universe of size n. A δ-parsimonious (n, p, q)-universal tuple (for nice pairs) is a tuple
(H,S, {Fh,f,p}|h∈H,f∈S,p)4 that satisfies the following conditions.

H is an (ε, k)-balanced family of hash functions from {1, . . . , n} to {1, . . . , z} (with
correction factor TH).
S is an ε-balanced (z, k, t)-splitter (with correction factor TS).
For every hash function h ∈ H, splitter f ∈ S and (p, q, t)-compatible function p, it holds
that Fh,f,p is a δ-parsimonious (h, f,p)-universal family (with correction factor Tp).

4 The enumeration is over every (p, q, t)-compatible p.

ICALP 2019

24:12 Approximate Counting of k-Paths

By enumerating the quadruples of (H,S, {Fh,f,p}|h∈H,f∈S,p), we refer to the enumeration
of every quadruple (h, f,p, F) such that h ∈ H, f ∈ S and F ∈ Fh,f,p. We remark that
below, for the sake of brevity, when we write k, z, t, s, ε, TH , TS and Tp, we refer to the
notations given in Definition 17. Let us now state our construction.

I Theorem 18. Let n, p, q ∈ N and 0 < δ < 1. Denote k = p+ q. Let U be a universe of size
n. A δ-parsimonious (n, p, q)-universal tuple (H,S, {Fh,f,p}|h∈H,f∈S,p) with ` quadruples
can be computed in time kO(1)n logn

δO(1) + ` ·∆. In particular, after preprocessing time kO(1)n logn
δO(1) ,

the quadruples of (H,S, {Fh,f,p}|h∈H,f∈S,p) can be enumerated with delay ∆. Here,

` =
(
k

p

)
· 2O(

√
k(log2 k+log2 1

δ)) · logn, and

∆ = 2O(
√
k(log k+log 1

δ)).

In order to state the property of a δ-parsimonious (n, p, q)-universal tuple that makes it
useful for applications, we need one last definition.

I Definition 19. Let n, p, q ∈ N and 0 < δ < 1. Let U be a universe of size n. Furthermore,
let (H,S, {Fh,f,p}|h∈H,f∈S,p) be a δ-parsimonious (n, p, q)-universal tuple. Finally, let A ∈(
U
p

)
and B ∈

(
U
q

)
be disjoint sets. We say that the pair (A,B) fits a quadruple (h, f,p, F)

of (H,S, {Fh,f,p}|h∈H,f∈S,p) if (A,B) is nice with respect to (h, f,p), and h(A) ⊆ F and
f ∩ h(B) = ∅.

Finally, we state the promised property.

I Lemma 20. Let n, p, q ∈ N and 0 < δ < 1. Let U be a universe of size n. Furthermore,
let (H,S, {Fh,f,p}|h∈H,f∈S,p) be a δ-parsimonious (n, p, q)-universal tuple. Then, there exist
T = T (n, p, q, δ) > 0 and for every p that is (p, q, t)-compatible, Tp = Tp(n, p, q, δ) > 0, such
that for any A ∈

(
U
p

)
and B ∈

(
U
q

)
that are disjoint, the following conditions hold.

1. The number of triples (h, f,p) with respect to whom (A,B) is nice, where h ∈ H, f ∈ S
and p is (p, q, t)-compatible, is between (1− δ)T and (1 + δ)T .

2. For any triple (h, f,p) with respect to whom (A,B) is nice, where h ∈ H, f ∈ S and p
is (p, q, t)-compatible, the number of quadruples (h, f,p, F) of (H,S, {Fh,f,p}|h∈H,f∈S,p)
that fit (A,B) is between (1− δ)Tp and (1 + δ)Tp.

3.5 Deterministic FPT-AS for #k-Path
Our deterministic FPT-AS builds upon the scheme of our second randomized FPT-AS, but it
is more technical. Due to space constraints, the full details of the description of the algorithm
and its proof of correctness is omitted. Here, we only discuss the main idea that underlies
the design of this algorithm. Like our previous algorithm, this algorithm (denoted by A) is
recursive. However, in addition to G′, k′ and α′, every call to A is also given two tuples R
and W. The number of elements in R and W equals the depth d of the current recursive
call in the recursion tree.

Roughly speaking, every element in R is a quadruple (hi, fi,pi, σi) where (i) the
triple (hi, fi,pi) corresponds to the interpretation preceding Definition 11, and (ii) σi ∈
{left, right} indicates whether we should count paths that consist of pi(j) (in case
σi = left) or si − pi(j) (in case σi = right) vertices of the j-th part of the reduced
universe split by fi. Thus, we “keep track” of all triples considered along the current re-
cursion branch. The reason why we have to store this information is to ensure that, in the
current recursive call, we only count paths P whose vertex set has the following property:

A. Björklund, D. Lokshtanov, S. Saurabh, and M. Zehavi 24:13

when we will return to the i-th recursive call, the partition (A,B) of V (P) where A consists
of the first k̂ vertices of P (for a certain k̂ ∈ {1, 2, . . . , k} that depends on the location of
this i-th call in the recursion tree) is nice with respect to (hi, fi,pi), see Definition 12. This
simple (though perhaps slightly tedious) bookkeeping sidesteps the fact that Lemma 20 only
suits nice pairs.

The tuple W is meant to keep track of how many vertices the paths that we currently
count have used “so far” from the j-th part of the universe split by fi for every choice of
i and j. For this purpose, W is defined to have the form (w1,w2, . . . ,wd) such that for
each i ∈ {1, 2, . . . , d}, the following condition holds: For each j ∈ {1, 2, . . . , ti}, if σi = left
then wi(j) ≤ pi(j), and otherwise wi(j) ≤ si − pi(j). Here, si =

√
(k/2i) is the number of

vertices the paths that we currently count should use (in total) from each part split by fi.
Accordingly, the objective of a call A(G′, k′, α′,R,W) is to output an assignment

α : V (G′) → N0 with the following property: For each vertex v ∈ V (G′), it holds that
α(v) approximates

∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

α′(p) · |PG
′,k′,R,W

q,v |. Roughly speaking, PG′,k′,R,Wq,v is the

collection of all k′-paths in G′ with endpoints q and v that “comply” with the constraints
imposed by R and W. (Due to space constraints, the formal definition is omitted.)

We conclude this section with the formal statement of our main result.

I Theorem 21. There is a deterministic 4k+O(
√
k(log2 k+log2 1

ε))m logn-time polynomial-space
algorithm that, given a graph G, a positive integer k and an accuracy value 0 < ε < 1, outputs
a number y that satisfies (1− ε)x ≤ y/2 ≤ (1 + ε)x where x is the number of k-paths in G.
In particular, if 1

ε = 2o(k
1
4), then the running time is 4k+o(k)m logn.

Due to space constraints, the discussion on extensions and other applications is omitted.

References
1 Randomization in Parameterized Complexity. www.dagstuhl.de/de/programm/kalender/

semhp/?semnr=17041.
2 Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and Süleyman Cenk

Sahinalp. Biomolecular network motif counting and discovery by color coding. In Proceedings
16th International Conference on Intelligent Systems for Molecular Biology (ISMB), Toronto,
Canada, July 19-23, 2008, pages 241–249, 2008. doi:10.1093/bioinformatics/btn163.

3 Noga Alon and Shai Gutner. Balanced Hashing, Color Coding and Approximate Count-
ing. In Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009,
Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, pages 1–16, 2009.
doi:10.1007/978-3-642-11269-0_1.

4 Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their applications.
ACM Trans. Algorithms, 6(3):54:1–54:12, 2010. doi:10.1145/1798596.1798607.

5 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

6 Vikraman Arvind and Venkatesh Raman. Approximation Algorithms for Some Parameterized
Counting Problems. In Algorithms and Computation, 13th International Symposium, ISAAC
2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, pages 453–464, 2002.
doi:10.1007/3-540-36136-7_40.

7 André Berger, László Kozma, Matthias Mnich, and Roland Vincze. A time- and space-optimal
algorithm for the many-visits TSP. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 1770–1782, 2019. doi:10.1137/1.9781611975482.106.

ICALP 2019

www.dagstuhl.de/de/programm/kalender/semhp/?semnr=17041
www.dagstuhl.de/de/programm/kalender/semhp/?semnr=17041
http://dx.doi.org/10.1093/bioinformatics/btn163
http://dx.doi.org/10.1007/978-3-642-11269-0_1
http://dx.doi.org/10.1145/1798596.1798607
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1007/3-540-36136-7_40
http://dx.doi.org/10.1137/1.9781611975482.106

24:14 Approximate Counting of k-Paths

8 Andreas Björklund. Determinant Sums for Undirected Hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014. doi:10.1137/110839229.

9 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting Paths
and Packings in Halves. In Algorithms - ESA 2009, 17th Annual European Symposium,
Copenhagen, Denmark, September 7-9, 2009. Proceedings, pages 578–586, 2009. doi:10.1007/
978-3-642-04128-0_52.

10 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. doi:10.1016/j.
jcss.2017.03.003.

11 Andreas Björklund, Vikram Kamat, Lukasz Kowalik, and Meirav Zehavi. Spotting Trees with
Few Leaves. SIAM J. Discrete Math., 31(2):687–713, 2017. doi:10.1137/15M1048975.

12 Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Counting Thin Subgraphs via
Packings Faster than Meet-in-the-Middle Time. ACM Trans. Algorithms, 13(4):48:1–48:26,
2017. doi:10.1145/3125500.

13 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 151–164, 2018. doi:10.1145/3188745.3188902.

14 J. Chen, J. Kneis, S. Lu, D. Mölle, S. Richter, P. Rossmanith, S. Sze, and F. Zhang. Randomized
Divide-and-Conquer: Improved Path, Matching, and Packing Algorithms. SIAM Journal on
Computing, 38(6):2526–2547, 2009.

15 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms Are a Good Basis for
Counting Small Subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, pages 210–223, New York, NY, USA, 2017. ACM.
doi:10.1145/3055399.3055502.

16 Radu Curticapean and Dániel Marx. Complexity of Counting Subgraphs: Only the Bounded-
ness of the Vertex-Cover Number Counts. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 130–139,
2014. doi:10.1109/FOCS.2014.22.

17 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

18 Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna, and Roded Sharan.
QNet: A Tool for Querying Protein Interaction Networks. Journal of Computational Biology,
15(7):913–925, 2008. doi:10.1089/cmb.2007.0172.

19 Jörg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems. SIAM
J. Comput., 33(4):892–922, 2004.

20 Fedor V. Fomin, Petteri Kaski, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh.
Parameterized Single-Exponential Time Polynomial Space Algorithm for Steiner Tree. In
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 494–505, 2015. doi:10.1007/
978-3-662-47672-7_40.

21 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient Computation
of Representative Families with Applications in Parameterized and Exact Algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

22 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory
of Parameterized Preprocessing. Cambridge University Press, 2018.

23 Gregory Z. Gutin, Felix Reidl, Magnus Wahlström, and Meirav Zehavi. Designing deterministic
polynomial-space algorithms by color-coding multivariate polynomials. J. Comput. Syst. Sci.,
95:69–85, 2018. doi:10.1016/j.jcss.2018.01.004.

24 Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm Engineering for Color-
Coding with Applications to Signaling Pathway Detection. Algorithmica, 52(2):114–132, 2008.
doi:10.1007/s00453-007-9008-7.

http://dx.doi.org/10.1137/110839229
http://dx.doi.org/10.1007/978-3-642-04128-0_52
http://dx.doi.org/10.1007/978-3-642-04128-0_52
http://dx.doi.org/10.1016/j.jcss.2017.03.003
http://dx.doi.org/10.1016/j.jcss.2017.03.003
http://dx.doi.org/10.1137/15M1048975
http://dx.doi.org/10.1145/3125500
http://dx.doi.org/10.1145/3188745.3188902
http://dx.doi.org/10.1145/3055399.3055502
http://dx.doi.org/10.1109/FOCS.2014.22
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1089/cmb.2007.0172
http://dx.doi.org/10.1007/978-3-662-47672-7_40
http://dx.doi.org/10.1007/978-3-662-47672-7_40
http://dx.doi.org/10.1145/2886094
http://dx.doi.org/10.1016/j.jcss.2018.01.004
http://dx.doi.org/10.1007/s00453-007-9008-7

A. Björklund, D. Lokshtanov, S. Saurabh, and M. Zehavi 24:15

25 Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science. Springer
Publishing Company, Incorporated, 1st edition, 2010.

26 Ioannis Koutis. Faster Algebraic Algorithms for Path and Packing Problems. In Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland,
July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games,
pages 575–586, 2008. doi:10.1007/978-3-540-70575-8_47.

27 Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commun.
ACM, 59(1):98–105, 2016. doi:10.1145/2742544.

28 Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras for parameter-
ized problems. ACM Trans. Algorithms, 12(3):31:1–31:18, 2016. doi:10.1145/2885499.

29 Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Planar k-Path in Subexponential
Time and Polynomial Space. In Graph-Theoretic Concepts in Computer Science - 37th
International Workshop, WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011.
Revised Papers, pages 262–270, 2011. doi:10.1007/978-3-642-25870-1_24.

30 Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 321–330, 2010. doi:10.1145/1806689.1806735.

31 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
Motifs: Simple Building Blocks of Complex Networks. Science, 298(5594):824–827, 2002.
doi:10.1126/science.298.5594.824.

32 Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

33 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and Near-Optimal
Derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, 23-25 October 1995, pages 182–191, 1995. doi:10.1109/SFCS.1995.492475.

34 Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. Efficient Algorithms for
Detecting Signaling Pathways in Protein Interaction Networks. Journal of Computational
Biology, 13(2):133–144, 2006. doi:10.1089/cmb.2006.13.133.

35 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach.
J. Comput. Syst. Sci., 82(3):488–502, 2016. doi:10.1016/j.jcss.2015.11.008.

36 Roded Sharan and Trey Ideker. Modeling cellular machinery through biological network
comparison. Nat. Biotechnol. 24, 427-433. Nature biotechnology, 24:427–33, May 2006.

37 Tomer Shlomi, Daniel Segal, Eytan Ruppin, and Roded Sharan. QPath: a method for
querying pathways in a protein-protein interaction network. BMC Bioinformatics, 7:199, 2006.
doi:10.1186/1471-2105-7-199.

38 Ryan Williams. Finding paths of length k in O*(2k) time. Inf. Process. Lett., 109(6):315–318,
2009. doi:10.1016/j.ipl.2008.11.004.

39 Virginia Vassilevska Williams and Ryan Williams. Finding, Minimizing, and Counting
Weighted Subgraphs. SIAM J. Comput., 42(3):831–854, 2013. doi:10.1137/09076619X.

40 Meirav Zehavi. Mixing Color Coding-Related Techniques. In Algorithms - ESA 2015 - 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
1037–1049, 2015. doi:10.1007/978-3-662-48350-3_86.

ICALP 2019

http://dx.doi.org/10.1007/978-3-540-70575-8_47
http://dx.doi.org/10.1145/2742544
http://dx.doi.org/10.1145/2885499
http://dx.doi.org/10.1007/978-3-642-25870-1_24
http://dx.doi.org/10.1145/1806689.1806735
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1109/SFCS.1995.492475
http://dx.doi.org/10.1089/cmb.2006.13.133
http://dx.doi.org/10.1016/j.jcss.2015.11.008
http://dx.doi.org/10.1186/1471-2105-7-199
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1137/09076619X
http://dx.doi.org/10.1007/978-3-662-48350-3_86

	Introduction
	Preliminaries
	Overview of Our Ideas and Methods
	Approx. Parsimonious Universal Family: Randomized Construction
	Warm Up Application: Simple Randomized FPT-AS for #k-Path
	Improved Randomized FPT-AS for #k-Path
	Approx. Parsimonious Universal Family: Deterministic Construction
	Deterministic FPT-AS for #k-Path

