
Capacitated Dynamic Programming:
Faster Knapsack and Graph Algorithms
Kyriakos Axiotis
MIT, Cambridge, MA, USA
kaxiotis@mit.edu

Christos Tzamos
University of Wisconsin-Madison, USA
tzamos@wisc.edu

Abstract
One of the most fundamental problems in Computer Science is the Knapsack problem. Given a set of
n items with different weights and values, it asks to pick the most valuable subset whose total weight
is below a capacity threshold T . Despite its wide applicability in various areas in Computer Science,
Operations Research, and Finance, the best known running time for the problem is O(T n). The
main result of our work is an improved algorithm running in time O(T D), where D is the number
of distinct weights. Previously, faster runtimes for Knapsack were only possible when both weights
and values are bounded by M and V respectively, running in time O(nMV) [17]. In comparison,
our algorithm implies a bound of O(nM2) without any dependence on V , or O(nV 2) without any
dependence on M . Additionally, for the unbounded Knapsack problem, we provide an algorithm
running in time O(M2) or O(V 2). Both our algorithms match recent conditional lower bounds
shown for the Knapsack problem [10, 15].

We also initiate a systematic study of general capacitated dynamic programming, of which
Knapsack is a core problem. This problem asks to compute the maximum weight path of length
k in an edge- or node-weighted directed acyclic graph. In a graph with m edges, these problems
are solvable by dynamic programming in time O(km), and we explore under which conditions the
dependence on k can be eliminated. We identify large classes of graphs where this is possible and
apply our results to obtain linear time algorithms for the problem of k-sparse ∆-separated sequences.
The main technical innovation behind our results is identifying and exploiting concavity that appears
in relaxations and subproblems of the tasks we consider.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques

Keywords and phrases Knapsack, Fine-Grained Complexity, Dynamic Programming

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.19

Category Track A: Algorithms, Complexity and Games

Acknowledgements We are grateful to Arturs Backurs for insightful discussions that helped us
improve this work.

1 Introduction

A large number of problems in Computer Science can be formulated as finding the optimal
subset of items to pick in order to maximize a given objective subject to capacity constraints.

A core problem in this class is the Knapsack problem: In this problem, each of the n items
has a value and a weight and the objective is to maximize the total value of the selected
items while having total weight at most T .

A standard approach for solving such capacitated problems is to use dynamic programming.
Specifically, the dynamic programming algorithm keeps a state that tracks how much of the
available capacity has already been exhausted. The runtime of these algorithms typically

EA
T

C
S

© Kyriakos Axiotis and Christos Tzamos;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 19; pp. 19:1–19:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kaxiotis@mit.edu
mailto:tzamos@wisc.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Capacitated Dynamic Programming

incurs a multiplicative factor equal to the total capacity. In particular, in the case of the
Knapsack problem the classical dynamic programming algorithm due to Bellman [6] has a
runtime of O(Tn).

In contrast, uncapacitated problems do not restrict the number of elements to be selected,
but charge an extra cost for each one of them (i.e. they have a soft as opposed to a hard
capacity constraint). The best known algorithms for these problems are usually much faster
than the ones for their capacitated counterparts, i.e. for the uncapacitated version of knapsack
one would need to pick all items whose value is larger than their cost. Therefore a natural
question that arises is whether or when the additional dependence of the runtime on the
capacity is really necessary.

In this work, we make progress towards answering this question by exploring when this
dependence can be improved or completely eliminated.

Knapsack. We first revisit the Knapsack problem and explore under which conditions we
can obtain faster algorithms than the standard dynamic programming algorithm.

Despite being a fundamental problem in Computer Science, no better algorithms are
known in the general case for over 60 years and it is known to be notoriously hard to improve
upon. The best known algorithm for the special case where both the weights and the values
of the items are small and bounded by M and V respectively, is a result by Pisinger [17]
who presents an algorithm with runtime O(nMV).

Even for the subset sum problem, which is a more restricted special case of knapsack
where the value of every item is equal to its weight, the best known algorithm beyond the
textbook algorithm by Bellman [6] was also an algorithm by Pisinger [17] which runs in time
O(nM) until significant recent progress by Bringmann [7] and Koiliaris and Xu [14] was able
to bring its the complexity down to Õ(n+ T).

However, recent evidence shows that devising a more efficient algorithm for the general
Knapsack problem is much harder. Specifically, [10, 15] reduce the (max,+)-convolution
problem to Knapsack, proving that any truly subquadratic algorithm for Knapsack (i.e. O((n+
T)2−ε)) would imply a truly subquadratic algorithm for the (max,+)-convolution problem.
The problem of (max,+)-convolution is a fundamental primitive inherently embedded into a
lot of problems and has been used as evidence for hardness for various problems in the last
few years (e.g. [10, 15, 3]). However, an important open question remains here: Can we get
faster algorithms that circumvent this conditional lower bound?

We answer this question affirmatively by providing an algorithm running in time O(TD),
where D is the number of distinct weights. Our algorithm is deterministic and computes
the optimal Knapsack value for all capacities t from 1 to T . Since D ≤ n, its runtime either
matches (for D = Θ(n)) or yields an improvement (for D = o(n)) over Bellman’s algorithm
[6], for all parameter regimes. It also directly implies runtimes of O(TM)1, O(nM2)2,
and O(nV 2), and therefore also yields an improvement over the O(nMV) algorithm of
Pisinger [17].

1 Concurrent and independent work by Bateni, Hajiaghayi, Seddighin, and Stein [4] also obtains an
algorithm running in time Õ(T M), as well as an algorithm running in time Õ(T V). In comparison to
ours, their Õ(T M) algorithm is randomized and computes the answer only for a single capacity T .

2 Eisenbrand and Weismantel [11] develop fast algorithms for Integer Programming. Concurrently and
independently, they also obtain an algorithm for Knapsack that runs in time O(nM2). They provide a
structural property of Knapsack using the Steinitz Lemma that enables us to remove logarithmic factors
in T from our results for Unbounded Knapsack (Theorem 13), as they reduce to the case T = Θ(M2).
Combined with Theorem 8, this also implies an O(M3) algorithm for Knapsack.

K. Axiotis and C. Tzamos 19:3

Table 1 Summary of our deterministic pseudopolynomial time results on the Knapsack problem
with the corresponding known conditional lower bounds based on (min, +)-convolution.

Setting Our Results Conditional Lower bounds

Knapsack
No bounds on weights or values O(T D) [Theorem 8] Ω((T D)1−o(1)) [10, 15]

Weights bounded by M O(T M) [Corollary 11] Ω((T M)1−o(1)) [10, 15]

Values bounded by V O(nV 2) [Corollary 12] –

Unbounded Knapsack
Weights bounded by M O(M2) [Corollary 14] Ω(M2−o(1)) [10, 15]

Values bounded by V O(V 2) [Corollary 15] –

Our algorithm can be summarized as follows: First, it partitions the items into D sets
according to their weights and solves the knapsack problem in each set of the partition for
every possible capacity up to T . This can be done efficiently in O(T) time as all items in
each set have the same weight and thus knapsack can be greedily solved in those instances.
Having a sequence of solutions for every capacity level for each set of items allows us to
obtain the overall solution by performing (max,+)-convolutions among them. Even though it
is not known whether computing general (max,+)-convolutions in truly sub-quadratic time
is possible, we exploit the inherent concavity of the specific family of sequences produced by
our algorithm to perform this in linear time. We present our results in Section 3.1.

In addition to the general Knapsack problem studied above, we also consider the Unboun-
ded Knapsack problem where there are infinite copies of every item. In Section 3.2, we present
novel algorithms for Unbounded Knapsack with running times O(M2)3 and O(V 2), where
M is the maximum weight and V is the maximum value of any item. Our algorithm again
utilizes (max,+)-convolutions of short sequences to compute the answer and interestingly is
only pseudo-polynomial with respect to the maximum weight M or the maximum value V
and not the capacity T .

Our results are summarized in Table 1.
It follows from the results of [10, 15] that, under the (min,+)-convolution hardness

assumption, it is not possible to obtain faster runtimes for Knapsack under most of the
parameterizations that we consider. This is because, even though the lower bound claimed in
these results is Ω((n+ T)2−o(1)), the hardness construction uses a Knapsack instance where
T , M , and D are Θ(n).

Capacitated Dynamic Programming. In addition to our results on the knapsack problem,
we move on to study capacitated problems in a more general setting. Specifically, we consider
the problem of computing a path of maximum reward between a pair of nodes in a weighted
Directed Acyclic Graph, where the capacity constraint corresponds to an upper bound on
the length of the path.

This model has successfully been used for uncapacitated problems [19, 15], as well as
capacitated problems with weighted adjacency matrices that satisfy a specific condition,
namely the Monge property [2, 18, 5]. In [5], it is shown that under this condition, the

3 Jansen and Rohwedder [13] extend the results of [11] for Integer Programming and also concurrently
and independently obtain an algorithm for Unbounded Knapsack running in time O(M2).

ICALP 2019

19:4 Capacitated Dynamic Programming

maximum weight of a path of length k is concave in k. Whenever such a concavity property
is true, one can always solve the capacitated problem by replacing the capacity constraint
with an “equivalent” cost per edge. This cost can be identified through a binary search
procedure that checks whether the solution for the uncapacitated problem with this cost
corresponds to a path of length k.

Our second main result, Theorem 18, gives a complete characterization of such a concavity
property for transitive node-weighted graphs. We show that this holds if and only if the
following graph theoretic condition is satisfied:
For every path a→ b→ c of length 2, and every node v, at least one of the edges (a, v) and
(v, c) exists.

To illustrate the power of our characterization, we show that a linear algorithm can be
easily obtained for the problem of k-sparse ∆-separated subsequences [12] recovering recent
results of [8, 16].

To complement our positive result which allows us to obtain fast algorithms for finding
maximum weight paths of length k, we provide strong evidence of hardness for transitive
node-weighted graphs which do not satisfy the conditions of our characterization. We base
our hardness results on computational assumptions for the (max,+)-convolution problem we
described above.

Beyond node-weighted graphs, when there are weights on the edges, no non-trivial
algorithms are known other than for Monge graphs. Even in that case, we show that linear
time solutions exist only if one is interested in finding the max-weight path of length k

between only one pair of nodes. If one is interested in computing the solution in Monge
graphs for a single source but all possible destinations, we provide an algorithm that computes
this in near-linear time in the number of edges in the graph.

2 Preliminaries

We first describe the problems of Knapsack and Unbounded Knapsack:

I Definition 1 (Knapsack). Given N items with weights w1, . . . , wN ∈ [M] and values
v1, . . . , vN ∈ [V], and a parameter T , our goal is to find a set of items S ⊆ [N] of total
weight at most T (i.e.

∑
i∈S

wi ≤ T) that maximizes the total value
∑
i∈S

vi. We will denote the

number of distinct weights by D.

I Definition 2 (Unbounded Knapsack). Given N items with weights w1, . . . , wN ∈ [M] and
values v1, . . . , vN ∈ [V], and a parameter T , our goal is to find a multiset of items S ⊆ [N]
of total weight at most T (i.e.

∑
i∈S

wi ≤ T) that maximizes the total value
∑
i∈S

vi. We will

denote the number of distinct weights by D.

Throughout the paper we make use of the following operation between two sequences
called (max,+)-convolution.

I Definition 3 ((max,+)-convolution). Given two sequences a0, . . . , an and b0, . . . , bm, the
(max,+)-convolution a⊕ b between a and b is a sequence c0, . . . , cn+m such that for any i

ci = max
0≤j≤i

{aj + bi−j}

This operation is commutative, so it is also true that

ci = max
0≤j≤i

{ai−j + bj}

K. Axiotis and C. Tzamos 19:5

Our algorithms rely on uncovering and exploiting discrete concavity that is inherent in
the problems we consider.

I Definition 4 (Concave, k-step concave). A sequence b0, . . . , bn is concave if for all i ∈ [n−1]
we have bi − bi−1 ≥ bi+1 − bi. A sequence is called k-step concave if its subsequence
b0, bk, b2k, . . . is concave and for all i such that i mod k 6= 0, we have that bi = bi−1.

For the problems defined on graphs with edge weights, we typically assume that their
weighted adjacency matrix is given by a Monge matrix.

I Definition 5 (Monge matrices). A matrix A ∈ Rn×m is called Monge if for any i ∈ [n− 1]
and j ∈ [m− 1]

Ai,j +Ai+1,j+1 ≥ Ai+1,j +Ai,j+1

I Definition 6 (Monge weights). We will say that a Directed Acyclic Graph has Monge
weights if its weighted adjacency matrix is a Monge matrix.

In addition to our positive results, we present evidence of computational hardness assuming
for (max,+)-convolution problem.

I Definition 7 ((max,+)-convolution hardness). The (max,+)-convolution hardness hypo-
thesis states that any algorithm that computes the (max,+)-convolution of two sequences of
size n requires time Ω(n2−o(1)).

A result of [3] shows that the (max,+)-convolution problem is equivalent to the following
problem: Given an integer n and three sequences a0, . . . , an, b0, . . . , bn, and c0, . . . , cn,
compute max

i+j+k=n
{ai + bj + ck}. In our conditional lower bounds, we will be using this

equivalent form of the conjecture.

3 Knapsack

In this section we present two novel pseudo-polynomial deterministic algorithms, one for
Knapsack and one for Unbounded Knapsack. The running times of these algorithms signific-
antly improve upon the best known running times in the small-weight regime. In essence,
the main improvements stem from a more principled understanding and systematic use of
(max,+)-convolutions. Thus, we show that devising faster algorithms for special cases of
(max,+)-convolution lies in the core of improving algorithms for the Knapsack problem. In
Theorem 8, we present an algorithm for Knapsack that runs in time O(TD), where T is the
size of the knapsack and D is the number of distinct item weights. Then, in Theorem 13, we
present algorithms for Unbounded Knapsack with runtimes O(M2) and O(V 2), where M is
the maximum weight and V the maximum value of some item.

3.1 Knapsack
Given N items with weights w1, . . . , wN ∈ [M] and values v1, . . . , vN ∈ [V], and a parameter
T , our goal is to find a set of items S ⊆ [N] of total weight at most T (i.e.

∑
i∈S

wi ≤ T) that

maximizes the total value
∑
i∈S

vi. We will denote the number of distinct weights by D.

The following is the main theorem of this section.

I Theorem 8. Algorithm 1 solves Knapsack in time O(TD).

ICALP 2019

19:6 Capacitated Dynamic Programming

Algorithm 1 Knapsack.

1: Given items with weights in {w#
1 , . . . , w

#
D}

2: Partition items into sets S1, . . . , SD, so that Si = {j | wj = w#
i }

3: for i ∈ [D] and t ∈ [T] do
4: b

(i)
t ← solution for Si with knapsack size t

5: s← empty sequence
6: for i ∈ [D] do
7: s← s⊕ b(i) using Lemma 10
8: Truncate s after the T -th entry
9: Output sT

Overview. The main ingredient of this result is an algorithm for fast (max,+)-convolution
in the case that one of the two sequences is k-step concave. Using the SMAWK algorithm [1]
it is not hard to see how to do this in linear time for k = 1. For the general case, we show
that computing the (max,+)-convolution of the two sequences can be decomposed into n

k

subproblems of computing the (max,+)-convolution between two size-k subsequences of the
two sequences. Furthermore, the subsequence that came from the k-step concave sequence is
concave and so each subproblem can be solved in time O(k) and the total time spent in the
subproblems will be O(nk k) = O(n).

I Lemma 9. Given an arbitrary sequence a0, . . . , am and a concave sequence b0, . . . , bn we
can compute the (max,+) convolution between a and b in time O(m+ n).

Proof. Consider a (zero-indexed) (n + 1) × (m + 1) matrix A with Aij = aj + bi−j for
(i, j) ∈ {0, . . . , n}× {0, . . . ,m}, where we suppose that elements of the sequences with out-of-
bounds indices have value −∞. Note now that (a⊕ b)i is by definition equal to the maximum
value of row i of A. Therefore computing a⊕ b corresponds to finding the row maxima of A.
Now note that for any (i, j) ∈ {0, 1, . . . , n− 1} × {0, 1, . . . ,m− 1}, we have

Ai,j −Ai,j+1 =aj + bi−j − aj+1 − bi−j−1
concavity

≥ aj + bi+1−j − aj+1 − bi−j
=Ai+1,j −Ai+1,j+1

therefore A is Monge. The main result of [1] is that given an (n+ 1)× (m+ 1) Monge matrix
A, one can compute all its row maxima in time O(m+ n), which implies the Lemma. J

I Lemma 10. Given an arbitrary sequence a0, . . . , am and a k-step concave sequence
b0, . . . , bn we can compute the (max,+) convolution of a and b in time O(m+ n).

Proof. We use the fact that we can compute the (max,+) convolutions of an arbitrary
sequence with a concave sequence in linear time (Lemma 9). Since b is a k-step concave
sequence, taking every k-th term of it one gets a concave sequence of size O(n/k). Then,
we do the same for a, taking k subsequences of size m/k each. Therefore we can compute
the convolution between the concave sequence and all of these subsequences of a in linear
time. The results of these convolutions can be used to compute the final sequence. We now
describe this in detail.

For ease of notation, we will again assume that our sequences take value −∞ in out-of-
bounds indices. Let x(i) := (ai, ak+i, a2k+i, . . .) denote the subsequence of a with indices
whose remainder is i when divided by k, and y := (b0, bk, b2k, . . .). Furthermore, define

fi = ∞max
q=0
{bqk + ai−qk}

K. Axiotis and C. Tzamos 19:7

Now, for any j we have
jmax

i=j−k+1
fi = jmax

i=j−k+1

∞max
q=0
{bqk + ai−qk}

= jmax
i=j−k+1

∞max
q=0
{bqk+j−i + ai−qk}

= ∞max
z=0
{bz + aj−z}

where the second equality follows from the fact that bqk+t = bqk for any t ∈ [k − 1] and
the third from the fact that z = qk + j − i can take any value in [0,∞).

This is the j-th element of the (max,+)-convolution between a and b, so the elements of
this convolution are exactly the maxima of size-k segments of f .

In order to compute f , note that for some p, the convolution between x(p) and y gives us
all values of f of the form fqk+p, for any q. This is because from the definition of f ,

fqk+p = ∞max
z=0
{bzk + aqk+p−zk}

= ∞max
z=0
{yz + x

(p)
q−z}

= (x(p) ⊕ y)q

Furthermore, y is a concave sequence and by Lemma 9 we can compute such a convolution
in time O((m+ n)/k). Doing this for all p ∈ {0, . . . , k − 1}, we can compute all values of f
in time O(m+ n).

Now, in order to compute the target sequence, we have to compute the maxima of all
size-k segments of f . We can do that using a simple sliding window technique. Specifically,
suppose that for some segment [i, i+ k− 1] we have an increasing subsequence of f[i,...,i+k−1],
containing all the potentially useful elements. The first element of this subsequence is the
maximum value of f in the segment [i, i+k−1]. Now, to move to [i+1, i+k], we remove fi if
it is in the subsequence, and then we compare fi+k with the last element in the subsequence.
Note that if that last element has value ≤ fi+k, it will never be the maximum element in
any segment. Therefore we can remove it and repeat until the last element has value greater
than fi+k, at which point we just insert fi+k in the end of the subsequence. Note that by
construction, this subsequence will always be decreasing, and the first element will be the
maximum of the respective segment. The total runtime is linear if implemented with a
standard queue. J

Now that we have these tools we can use them to prove the main result of this section:

Proof of Theorem 8. Consider any knapsack instance where D is the number of distinct
item weights w#

1 , . . . , w
#
D. Now for each i ∈ [D] let ci be the number of items with weight

w#
i and v(i)

1 ≥ v
(i)
2 · · · ≥ v

(i)
ci their respective values.

If we only consider items with weights w#
i , the knapsack problem is easy to solve,

since we will just greedily pick the most valuable items until the knapsack fills up. More
specifically, if bs is the maximum value obtainable with a knapsack of size s, we have that
b0 = 0, bwi = v

(i)
1 , b2wi = v

(i)
1 + v

(i)
2 , . . . , and also bj = bj−1 for any j not divisible by w#

i .
Therefore b is a w#

i -step concave sequence.
In order to compute the full solution, we have to compute the (max,+) convolution of D

such sequences. Since by Lemma 10 each convolution takes linear time and we only care
about the first T values of the resulting sequence (i.e. we will only ever keep the first T
values of the result of a convolution), the total runtime is O(TD), where T is the size of
the knapsack. J

ICALP 2019

19:8 Capacitated Dynamic Programming

I Corollary 11. Knapsack can be solved in O(TM) time.

I Corollary 12. Knapsack can be solved in time O(nM2) or O(nV 2).

Proof. The first bound directly follows by Corollary 11 and the fact that T ≤ nM . For the
second bound, note that by swapping the role of the weights and the values in Algorithm 1,
replacing all (max,+)-convolutions by (min,+)-convolutions, and setting the knapsack
capacity to nV as opposed to T , this algorithm runs in time O(nV 2) and outputs for every
possible value, the minimum weight of items that can achieve this value. The answer
can then be recovered by finding the minimum value that gives a corresponding weight of
at most T . J

3.2 Unbounded Knapsack
Given N items with weights w1, . . . , wN and values v1, . . . , vN , and a parameter T , our goal
is to find a multiset of items S ⊆ [N] of total weight at most T (i.e.

∑
i∈S

wi ≤ T) that

maximizes the total value
∑
i∈S

vi. We will denote the largest item weight by M .

Note that this problem is identical to Knapsack except for the fact that there is no limit
on the number of times each item can be picked. This means that we can assume that there
are no two items with the same weight, since we would only ever pick the most valuable
of the two.

Algorithm 2 Unbounded Knapsack.

1: Let v(0) be a sequence where v(0)
x is the value of the element with weight x or −∞ if no

such element exists
2: for z = 1, . . . , dlogMe do
3: v(z) ← v(z−1) ⊕ v(z−1)

4: a[0,M] ← v(dlogMe)

5: for i = dlog T
M e, . . . , 1 do

6: a[T

2i−M, T

2i +M] ← a[T

2i−M, T

2i] ⊕ a[0,M]
7: a[T

2i−1−M, T

2i−1] ← a[T

2i−M, T

2i +M] ⊕ a[T

2i−M, T

2i +M]
8: Output aT

The following is the main theorem of this section:

I Theorem 13. Algorithm 2 solves Unbounded knapsack in time O(M2 log T).

Overview. As in the algorithm for Knapsack our algorithm utilizes (max,+)-convolutions,
but with a different strategy. We aren’t using any concavity arguments here, but in fact we
will use the straightforward quadratic-time algorithm for computing (max,+)-convolutions.
The main argument here is that if all the weights are relatively small, one can always partition
any solution in two, so that the weights of the two parts are relatively close to each other.
Therefore, for any knapsack size we only have to compute the optimal values for a few
knapsack sizes around its half, and not for all possible knapsack sizes.

We can now proceed to the proof of this result.

Proof of Theorem 13. Consider any valid solution to the unbounded knapsack instance.
Since every item has weight at most M , we can partition the items of that solution into
two multisets with respective weights W1 and W2, so that |W1 −W2| < M (one can obtain

K. Axiotis and C. Tzamos 19:9

this by repeatedly moving any item from the larger part to the smaller one). This implies
the following, which is the main fact used in our algorithm: If as is the maximum value
obtainable with a knapsack of size s, then we have that

as =
[
(as/2−M/2, . . . , as/2+M/2)⊕2]

s

where ⊕2 denotes (max,+)-convolution squaring, i.e. applying (max,+)-convolution between
a sequence and itself.

First, we compute the values a1, . . . , aM in O(M2 logM) time as follows: We start with
the sequence v(0), where v(0)

x is the value of the element with weight x, or −∞ if such an
item does not exist. Now define v(i+1) = (v(i) ⊕ v(i))[0,M]. This convolution can be applied
in time O(M2) for any i, since we are always only keeping the first M entries. By induction,
it is immediate that v(i) contains the optimal values achievable for all knapsack sizes in [M]
using at most 2i items. Therefore a0,...,M ≡ v(dlogMe)

0,...,M , which as we argued can be computed
in time O(M2 logM).

Now, suppose that we have computed the values a T

2i−M
, . . . , a T

2i
for some i. By convolving

this sequence with a0, . . . , aM we can compute in time O(M2) the values a T

2i +1, . . . , a T

2i +M .
Now, convolving the sequence a T

2i−M
, . . . , a T

2i +M with itself gives us a T

2i−1−M
, . . . , a T

2i−1

(here we used the fact that to compute a2j we only need the values aj−M/2, . . . , aj+M/2).
Doing this for i = dlog T e, . . . , 2, 1, we are able to compute the values aT−M , . . . , aT in
total time O(M2 log T). The answer to the problem, i.e. the maximum value achievable, is
max{aT−M , . . . , aT }. J

Recent work of [11] shows, using the Steinitz lemma, that an optimal Knapsack solution
for a capacity in [T −M,T] can be turned into an optimal solution for capacity T by inserting
or removing at most M elements, where M is a bound on weight of the items. In the case
of Unbounded Knapsack, a solution that only uses the best item until it exceeds capacity
T −M2 can always be extended into an optimal solution with capacity T . Therefore the
capacity can be assumed to be O(M2). Combining this with the M2

2Ω(√log M) -time randomized

algorithm of [20] (or the deterministic algorithm of [9]) for (max,+)-convolution implies an
algorithm that runs in time M2

2Ω(√log M)O (logM) = M2

2Ω(√log M) .

I Corollary 14. Unbounded Knapsack can be solved in time O(M2).

A similar argument can be used to get a more efficient algorithm when we have a bound
on the values of the items. In particular, using the item j with the highest value-to-weight
ratio vj/wj , k = b Twj

c+ 1 times, until we exceed the capacity we get both a lower bound of
(k − 1)vj and a upper bound of kvj on the value of the optimal solution. In addition, again
by the Steinitz Lemma, there exists an optimal solution that uses item j at least k−V times.
This allows us to start from value (k − V)vj and compute the minimum weight required to
achieve values in [(k − 1)vj , kvj]. This gives an algorithm that runs in O(V 2 log V) using
the naive algorithm for (min,+)-convolutions, and O V 2

2Ω(√log V) , again using the improved

algorithms in [20] or [9].

I Corollary 15. Unbounded Knapsack can be solved in time O(V 2).

ICALP 2019

19:10 Capacitated Dynamic Programming

4 k-link path in Node-weighted graphs

We now move on to study more general capacitated dynamic programming settings, described
by computing the maximum reward k-link path in a directed acyclic graph. This setting
can capture a lot of natural capacitated problems, either directly or indirectly, such as the
Knapsack problem, k-sparse ∆-separated sequences, max-weight increasing subsequence of
length k, and so on. Therefore a better understanding of these special cases might lead to
improved algorithms for other capacitated problems.

More specifically, we study the problem of finding maximum-reward paths in node-
weighted transitive DAGs. In Lemma 16, we show that in general this problem is hard, by
reducing (max,+)-convolution to it. We then proceed to show our second main result, which
provides a family of graphs for which the problem can be efficiently solved.

I Lemma 16 ((max,+)-hardness of Node-weighted graphs). Given a transitive DAG, a pair
of vertices s and t, and an integer k, the problem of computing a maximum reward path from
s to t with at most k edges is (max,+)-convolution hard, i.e. requires Ω((mk)1−o(1)) time
assuming (max,+)-convolution hardness.

As we saw in the introduction, one can solve the problem if the optimal value as a function
of the capacity is concave. This is made formal in the following lemma:

I Lemma 17 (Concave functions). Let G be a node-weighted transitive DAG with n vertices
and m edges, whose weights’ absolute values are bounded by M , and let f(x) be the maximum
reward obtainable in a path of length x. If f is a concave function, then one can reduce the
capacitated problem (i.e. computing f(k) for some k) to solving O(log(nM)) uncapacitated
problems with some fixed extra cost per item. Since each one of these problems can be solved
in O(m) time, the total runtime is O(m log(nM)).

In Lemma 18 we give a complete graph-theoretic characterization of the graphs that have
this concavity property and therefore can be solved efficiently.

I Lemma 18 (Concavity characterization). The problem of finding a maximum reward path
with at most k edges in a transitive DAG is concave for all choices of node weights if and
only if for any path u1 → u2 → u3 and any node v either u1 → v or v → u3 (Property P).

Proof. Let f(k) be the maximum reward obtainable with a path of exactly k edges.
⇒: Let G be a DAG for which property P doesn’t hold. Let u1 → u2 → u3 be the path of
length 2 and v be the vertex that has no edge to or from any of u1, u2, u3. We set the node
values as val(u1) = val(u2) = val(u3) = 1, val(v) = 1 + ε, and −∞ for all other vertices.
Then, f(1) = 1 + ε, f(3) = 3, but f(2) = 2 < f(1)+f(3)

2 , therefore f is not concave.
⇐: Suppose that property P is true. Now, let P = (s, p1, p2, . . . , pk−1, t) be a path of length
k such that val(P) = f(k) and Q = (s, q1, q2, . . . , qk+1, t) be a path of length k+ 2 such that
val(Q) = f(k + 2), where P and Q can potentially have common vertices other than s and
t. Since property P is true, we know that for any i ∈ [k − 1], there is either an edge from
one of qi, qi+1, qi+2 to pi, or from pi to one of qi, qi+1, qi+2. By transitivity, this implies that
either qi → pi, or pi → qi+2. We distinguish three cases. In all three cases we will be able to
find paths P ′ and Q′ with k + 1 edges each, that contain all vertices of the form pi and qi.

Case 1: q1 → p1
We pick P ′ = (s, q1, p1, . . . , pk−1, t) and Q′ = (s, q2, . . . , qk+1, t).

Case 2: ∀i : pi → qi+2
We pick P ′ = (s, p1, . . . , pk−1, qk+1, t) and Q′ = (s, q1, . . . , qk, t)

Case 3: ∃i : pi → qi+2, qi+1 → pi+1
We pick P ′ = (s, p1, . . . , pi, qi+2, . . . , qk+1, t) and Q′ = (s, q1, . . . , qi+1, pi+1, . . . , pk−1, t).

K. Axiotis and C. Tzamos 19:11

Therefore we established that in any case there exist such paths P ′ and Q′. Now note that

max {val(P ′), val(Q′)} ≥ 1
2 (val(P ′) + val(Q′)) = 1

2 (val(P) + val(Q))

and therefore f is a concave function. J

As mentioned before, even very simple special cases of the model capture a lot of important
problems. In the following lemma, we show that we can solve the k-sparse ∆-separated
subsequence problem [12] in near-linear time using the main result of this section, thus
recovering recent results of [8, 16].

I Lemma 19 (Max-weight k-sparse ∆-separated subsequence). Given a sequence a1, . . . , an,
find indices i1, i2, . . . , ik such that for all j ∈ [k − 1], ij+1 ≥ ij + ∆ and the sum

∑
j∈[k]

aij is

maximized. This problem can be solved in O(n log (nmaxi |ai|)) time.

Proof. Let’s define a simple node-weighted DAG for this problem. We define a sequence of
vertices u1, . . . , un each one of which corresponds to picking an element from the sequence.
Then, we add an edge ui → uj iff j−i ≥ ∆. Furthermore, for all i, val(ui) = ai. It remains to
prove that it satisfies the property of Lemma 18. Consider any length-2 path ui → uj → uk.
We know that both k − j and j − i are at least ∆. Now, for any up we have that

max{|up − uk| , |up − ui|} ≥
1
2 (|up − uk|+ |up − ui|) ≥

1
2 (|uk − ui|) ≥

1
22∆ = ∆

so there is an edge between up and either ui or uk. Therefore by Lemma 17 the problem can
be solved in time O(m log(nmaxi |ai|)) = O(n2 log(nmaxi |ai|)).

The quadratic runtime stems from the fact that the DAG we constructed is dense. In
fact, we can do better by defining some auxiliary vertices v1, . . . , vn. The values of these
extra vertices will be set to −∞ to ensure that they aren’t used in any solution and thus
don’t break the concavity. Instead of edges between vertices ui, we only add the following
edges

ui → vi for all i
vi → ui+∆ for all i+ ∆ ≤ n
vi → vi+1 for all i+ 1 ≤ n

Now, the number of edges is O(n) and so the runtime becomes O(n log(nmaxi |ai|)). J

As another example of a problem that can be modeled as a capacitated maximum-reward
path problem in a DAG, we consider the Max-Weight Increasing Subsequence of length k
problem. In contrast to its uncapacitated counterpart, which is solvable in linear time, the
capacitated version requires quadratic time, assuming (max,+)-convolution hardness, as
witnessed in the following lemma.

I Lemma 20 (Max-Weight Increasing Subsequence of length k). Given a sequence a1, . . . , an
with respective weights w1, . . . , wn, find indices i1 < i2 < · · · < ik such that for all j ∈ [k− 1],
aij ≤ aij+1 and the sum

∑
j∈[k]

wij is maximized. This problem is (max,+)-convolution hard,

i.e. requires Ω((nk)1−o(1)) time assuming (max,+)-convolution hardness.

Proof. Consider the construction used in Lemma 16. We define an instance of the Max-
Weight Increasing Subsequence of length k problem which contains an element for each node
of the DAG. Specifically, let’s define our sequence to be

x0, x
′
0, x1, x

′
1, . . . , xk, x

′
k, y0, y

′
0, . . . , yk, y

′
k, z0, z

′
0, . . . , zk, z

′
k

ICALP 2019

19:12 Capacitated Dynamic Programming

with xi = i x′i = 2k + 1− i
yi = 2k + 2 + i y′i = 4k + 3− i
zi = 4k + 4 + i z′i = 6k + 5− i

where the weight of each element is equal to the weight of the corresponding node in the
DAG (i.e. x? ↔ a?, x′? ↔ a′?, y? ↔ b?, y′? ↔ b′?, z? ↔ c?, z′? ↔ c′?)

By definition of the sequence, the fact that we are looking for increasing subsequences
implies that there is a 1− 1 correspondence between length-k increasing subsequences and
(k − 1)-hop paths of the original DAG. Therefore any O((nk)1−ε) algorithm for the Max-
Weight Increasing Subsequence of length k problem implies a truly subquadratic algorithm
for the (max,+)-convolution problem. J

5 k-link path in graphs with Monge Weights

In this section we study the problem of computing maximum-reward paths with at most k
edges in a DAG with edge weights satisfying the Monge property. Using the elegant algorithm
of [5], one can compute a single such path in Õ(n) time.

I Lemma 21 (From [5]). Given a DAG with Monge weights, with n vertices, a pair of
vertices s and t, and a positive integer k, we can compute a maximum reward path from s to
t that uses at most k edges, in time Õ(n).

Given the adjacency matrix A of the DAG, one can see this equivalently as computing
one element of the matrix power Ak in the tropical semiring (i.e. we replace (+, ·) with
(max,+)). Therefore, an important question is whether a whole row or column of Ak can
be computed efficiently rather. This corresponds to finding maximum reward paths with
k edges from some vertex s to all other vertices, or finding maximum reward paths with k
edges from some vertex s to some vertex t for all k. In Lemma 22 we show that one needs
Ω(n3/2) time to compute a column of Ak in general.

I Lemma 22. Given a DAG with Monge weights, with n vertices, computing the maximum
weight path of length k from a given s to all other nodes t requires Ω(n1.5) time.

On the positive side, by further exploiting the Monge property, in Lemma 23 we present
an algorithm that can compute any row or column of Ak in Õ(nnz(A)) = Õ(m) time.

I Lemma 23. Let G be a DAG of n vertices and m edges equipped with Monge weights that
are integers of absolute value at most M . Given a vertex s, and a positive integer k, we
can compute a maximum reward path from s to t that uses at most k edges, for all t, in
time O(m logn log(nM)). Furthermore, if we are given a pair of vertices s and t, we can
compute as maximum reward path from s to t that uses at most k edges, for all k ∈ [n], in
time O(m logn log(nM)).

References
1 Alok Aggarwal, Maria M Klawe, Shlomo Moran, Peter Shor, and Robert Wilber. Geometric

applications of a matrix-searching algorithm. Algorithmica, 2(1-4):195–208, 1987.
2 Alok Aggarwal, Baruch Schieber, and Takeshi Tokuyama. Finding a minimum-weightk-link

path in graphs with the concave monge property and applications. Discrete & Computational
Geometry, 12(3):263–280, 1994.

K. Axiotis and C. Tzamos 19:13

3 Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree sparsity in
nearly-linear time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2215–2229. SIAM, 2017.

4 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and Cliff Stein.
Fast algorithms for knapsack via convolution and prediction. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, pages 1269–1282, 2018.

5 WW Bein, LL Larmore, and JK Park. The d-edge shortest-path problem for a Monge graph.
Technical report, Sandia National Labs., Albuquerque, NM (United States), 1992.

6 Richard Bellman. Dynamic Programming (DP). Princeton University Press, 1957.
7 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Proceedings

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1073–1084.
Society for Industrial and Applied Mathematics, 2017.

8 Henning Bruhn and Oliver Schaudt. Fast Algorithms for Delta-Separated Sparsity Projection.
arXiv preprint, 2017. arXiv:1712.06706.

9 Timothy M Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete algorithms, pages 1246–1255. Society for Industrial and
Applied Mathematics, 2016.

10 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On Problems
Equivalent to (min, +)-Convolution. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 22:1–22:15, 2017.

11 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the steinitz lemma. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 808–816. Society for Industrial and
Applied Mathematics, 2018.

12 Chinmay Hegde, Marco F Duarte, and Volkan Cevher. Compressive sensing recovery of spike
trains using a structured sparsity model. In SPARS’09-Signal Processing with Adaptive Sparse
Structured Representations, 2009.

13 Klaus Jansen and Lars Rohwedder. On Integer Programming and Convolution. arXiv preprint,
2018. arXiv:1803.04744.

14 Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for subset sum.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1062–1072. SIAM, 2017.

15 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-Grained Com-
plexity of One-Dimensional Dynamic Programming. In 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
pages 21:1–21:15, 2017.

16 Aleksander Mądry, Slobodan Mitrović, and Ludwig Schmidt. A Fast Algorithm for Separated
Sparsity via Perturbed Lagrangians. In International Conference on Artificial Intelligence and
Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain,
pages 20–28, 2018.

17 David Pisinger. Linear time algorithms for knapsack problems with bounded weights. Journal
of Algorithms, 33(1):1–14, 1999.

18 Baruch Schieber. Computing a minimum weightk-link path in graphs with the concave monge
property. Journal of Algorithms, 29(2):204–222, 1998.

19 Robert Wilber. The concave least-weight subsequence problem revisited. Journal of Algorithms,
9(3):418–425, 1988.

20 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 664–673. ACM, 2014.

ICALP 2019

http://arxiv.org/abs/1712.06706
http://arxiv.org/abs/1803.04744

	Introduction
	Preliminaries
	Knapsack
	Knapsack
	Unbounded Knapsack

	k-link path in Node-weighted graphs
	k-link path in graphs with Monge Weights

