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Abstract
In this work, we study the k-median and k-means clustering problems when the data is distributed
across many servers and can contain outliers. While there has been a lot of work on these problems for
worst-case instances, we focus on gaining a finer understanding through the lens of beyond worst-case
analysis. Our main motivation is the following: for many applications such as clustering proteins by
function or clustering communities in a social network, there is some unknown target clustering, and
the hope is that running a k-median or k-means algorithm will produce clusterings which are close
to matching the target clustering. Worst-case results can guarantee constant factor approximations
to the optimal k-median or k-means objective value, but not closeness to the target clustering.

Our first result is a distributed algorithm which returns a near-optimal clustering assuming a
natural notion of stability, namely, approximation stability [12], even when a constant fraction of the
data are outliers. The communication complexity is Õ(sk+z) where s is the number of machines, k is
the number of clusters, and z is the number of outliers. Next, we show this amount of communication
cannot be improved even in the setting when the input satisfies various non-worst-case assumptions.
We give a matching Ω(sk + z) lower bound on the communication required both for approximating
the optimal k-means or k-median cost up to any constant, and for returning a clustering that is close
to the target clustering in Hamming distance. These lower bounds hold even when the data satisfies
approximation stability or other common notions of stability, and the cluster sizes are balanced.
Therefore, Ω(sk + z) is a communication bottleneck, even for real-world instances.
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1 Introduction

Clustering is a fundamental problem in machine learning with applications in many areas
including computer vision, text analysis, bioinformatics, and so on. The underlying goal
is to group a given set of points to maximize similarity inside a group and dissimilarity
among groups. A common approach to clustering is to set up an objective function and
then approximately find the optimal solution according to the objective. Common examples
of these objective functions include k-median and k-means, in which the goal is to find k
centers to minimize the sum of the distances (or sum of the squared distances) from each
point to its closest center. Motivated by real-world constraints, further variants of clustering
have been studied. For instance, in k-clustering with outliers, the goal is to find the best
clustering (according to one of the above objectives) after removing a specified number of
data points, which is useful for noisy data. Finding approximation algorithms to different
clustering objectives and variants has attracted significant attention in the computer science
community [7, 23, 24, 25, 28, 31, 41].

As datasets become larger, sequential algorithms designed to run on a single machine are
no longer feasible for real-world applications. Additionally, in many cases data is naturally
spread out among multiple locations. For example, hospitals may keep records of their
patients locally, but may want to cluster the entire spread of patients across all hospitals in
order to do better data analysis and inference. Therefore, distributed clustering algorithms
have gained popularity in recent years [18, 20, 42, 32, 40, 29, 27]. In the distributed setting, it
is assumed that the data is partitioned arbitrarily across s machines, and the goal is to find a
clustering which approximates the optimal solution over the entire dataset while minimizing
communication among machines. Recent work in the theoretical machine learning community
establishes guarantees on the clusterings produced in distributed settings for certain problems
[18, 20, 42]. For example, [42] provides distributed algorithms for k-center and k-center with
outliers, and [20] introduces distributed algorithms for capacitated k-clustering under any `p
objective. Along similar lines, the recent work of [32] provides constant-factor approximation
algorithms for k-median and k-means with z outliers in the distributed setting. The work
of Guha et al. also provides the best known communication complexity bound of O(sk + z)
where s is the number of machines, and z is the number of outliers.

Although the above results provide a constant-factor approximation to k-median or
k-means objectives, many real-world applications desire a clustering that is close to a ‘ground
truth’ clustering in terms of the structure, i.e., the way the points are clustered rather
than in terms of cost. For example, for applications such as clustering proteins by function
or clustering communities in a social network, there is some unknown target clustering,
and the hope is that running a k-median or k-means algorithm will produce clusterings
which are close to matching the target clustering. While in general having a constant
factor approximation provides no guarantees on the closeness to the optimal clustering, a
series of recent works has established that this is possible if the data has certain structural
properties [10, 11, 12, 16, 21, 30, 39, 46]. For example, the (1 + α, ε)-approximation stability
condition defined by [12] states that any (1 + α)-approximation to the clustering objective is
ε-close to the target clustering. For such instances, it is indeed possible to output a clustering
close to the ground truth in polynomial time, even for values of α such that computing a
(1+α)-approximation is NP-hard. We follow this line of research and ask whether distributed
clustering is possible for non worst-case instances, in the presence of outliers.
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1.1 Our contributions
A distributed clustering instance consists of a set of n points in a metric space partitioned
arbitrarily across s machines. The problem is to optimize the k-median/k-means objective
while minimizing the amount of communication across the machines. We consider algorithms
that approximate the optimal cost as well as computing a clustering close to the target
clustering in Hamming distance. Our contributions are as follows:
1. In Section 3, we give a centralized clustering algorithm whose output is ε-close to the

target clustering, in the presence of z outliers, assuming the data satisfies (1 + α, ε)-
approximation stability and assuming a lower bound on the size of the optimal clusters.
To the best of our knowledge, this is the first polynomial time algorithm for clustering
approximation stable instances in the presence of outliers. Our results hold for arbitrary
values of z, including when a constant fraction of the points are outliers, as long as there
is a lower bound on the minimum cluster size.

2. We then give a distributed algorithm whose output is close to the target clustering, assum-
ing the data satisfies (1 +α, ε)-approximation stability. The communication complexity is
Õ (sk), where s is the number of servers and k is the number of clusters. We also extend
this to handle z outliers, with a communication complexity Õ (sk + z). This matches the
worst-case communication of [32], while outputting a near-optimal clustering by taking
advantage of new structural guarantees specific to approximation stability with outliers.

3. While the above algorithms improve over worst-case distributed clustering algorithms
in terms of quality of the returned clustering, our algorithms use the same amount of
communication as the worst case protocols. In Section 4, we show that the Ω(sk) and
Ω(sk + z) communication costs for clustering without and with outliers are unavoidable
even if data satisfies many types of stability assumptions that have been studied in the
literature. Our lower bound of Ω(sk + z) for obtaining a c-approximation (for any c ≥ 1)
holds even when the data is arbitrarily stable, e.g., (1 + α, ε)-approximation stable for all
α ≥ 0 and 0 ≤ ε < 1.

4. We also give an Ω(sk + z) lower bound for the problem of computing a clustering whose
Hamming distance is close to the optimal clustering, even when the data is approximation-
stable. Finally, we prove that our above Ω(sk + z) lower bounds hold for finding a
clustering close to the optimal in Hamming distance even when it is guaranteed that the
optimal clusters are completely balanced, i.e., each cluster is of size n−z

k (in addition to the
guarantee that the clustering satisfies approximation stability), implying our algorithms
from Section 3 are optimal. Therefore, Ω(sk + z) is a fundamental communication
bottleneck, even for real-world clustering instances.

1.2 Related Work
There is a long line of work on approximation algorithms for k-median and k-means clustering
[24, 36, 41], and the current best approximation ratios are 2.675 [23] and 6.357 [4], respectively.
The first constant-factor approximation algorithm for k-median with z outliers was given
by Chen [28], and the current best approximation ratios for k-median and k-means with
outliers are 7.081 + ε and 53.002 + ε, respectively, given by Krishnaswamy et al. [38]. There
is also a line of work on clustering with balance constraints on the clusters [5, 3, 30]. For
k-median and k-means clustering in distributed settings, the work of Balcan et al. showed
a coreset construction for k-median and k-means, which leads to a clustering algorithm
with Õ(skd) communication, where d is the dimension, and also studied more general graph
topologies for distributed computing [18]. Huang et al. [34] showed a coreset construction for
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doubling metrics. Malkomes et al. showed a distributed 13- and 4- approximation algorithm
for k-center with and without outliers, respectively [42]. Chen et al. studied clustering under
the broadcast model of distributed computing, and also proved a communication complexity
lower bound of Ω(sk) for distributed clustering [27], building on a recent lower bound for
set-disjointness in the message-passing model [22]. Recently, [32] showed a distributed
algorithm with Õ(sk + z) communication for computing a constant-factor approximation
to k-median clustering with z outliers. They also provide bicriteria approximations that
remove (1 + ε)z outliers to get a clustering of cost O

(
1 + 1

ε

)
times the cost of the optimal

k-median clustering with z outliers, for any ε > 0. Even more recently, [40] showed that
there exists a bi-criteria algorithm with communication independent of z that achieves a
constant approximation to the cost. In particular, their algorithm outputs (1 + ε)z outliers
and achieves a (24 + ε)-approximation with O

(
sk
ε + s log ∆

ε

)
communication, where ∆ is the

aspect ratio of the metric.
In recent years, there has also been a focused effort towards understanding clustering

for non worst-case models [43, 1, 21, 39]. The work of Balcan et al. defined the notion of
approximation stability and showed an algorithm which utilizes the structure to output a
nearly optimal clustering [12]. Approximation stability has been studied in a wide range of
contexts, including clustering [15, 17, 14], the k-means++ heuristic [2], social networks [33],
and computing Nash-equilibria [9]. A recent paper by Chekuri and Gupta introduces the
model of clustering with outliers under perturbation resilience, a notion of stability which is
related to approximation stability [26].

2 Preliminaries

Given a set V of points of size n, a distance metric d, and an integer k, let C denote a
clustering of V , which we define as a partition of V into k subsets C1, . . . , Ck. Each cluster
Ci contains a center ci. When d is an arbitrary distance metric, we must choose the centers
from the point set. If V ⊆ Rd and the distance metric is the Euclidean distance, then the
centers can be any k points in Rd. In fact, this distinction only changes the cost of the
optimal clustering by at most a factor of 2 by the triangle inequality for any p (see, e.g., [8]).

The k-median and the k-means costs are
∑
i

∑
v∈Ci d(ci, v), and

∑
i

∑
v∈Ci d(ci, v)2

respectively. For k clustering with z outliers, the problem is to compute the minimum cost
clustering over n − z points, e.g., we must decide which z points to remove, and how to
cluster the remaining points, to minimize the cost. We will denote the optimal k-clustering
with z outliers by OPT , and we denote the set of outliers for OPT by Z. We often overload
notation and let OPT denote the objective value of the optimal clustering as well. We denote
the optimal clusters as C∗1 , . . . , C∗k , with centers c1, . . . , ck. We say that two clusterings C
and C′ are δ-close if they differ by only δ(n− z) points, i.e., minσ

∑k
i=1 |Ci \C ′σ(i)| < δ(n− z).

Let C∗min = minj∈[k] |C∗j |, i.e., the minimum cluster size. Given a point c ∈ V , we define
Vc ⊂ V to be the closest set of C∗min points to c.

We study a notion of stability called approximation stability. Intuitively, a clustering
instance satisfies this assumption if all clusterings close in value to OPT are also close in
terms of the clusters themselves. This is a desirable property when running an approximation
algorithm, since in many applications, the k-means or k-median costs are proxies for the final
goal of recovering a clustering that is close to the desired “target” clustering. Approximation
stability makes this assumption explicit. This was first defined for clustering with z = 0 [12],
however, we generalize the definition to the setting with outliers.
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IDefinition 1 (approximation stability). A clustering instance satisfies (1+α, ε)-approximation
stability for k-median or k-means with z outliers if for all k-clusterings with z outliers, denoted
by C, if cost(C) ≤ (1 + α) · OPT , then C is ε-close to OPT .

This definition implies that all clusterings close in cost to OPT must have nearly the
same set of outliers, because if C contains more than ε(n−z) points from Z, then C and OPT
cannot be ε-close. This is similar to related models of stability for clustering with outliers,
e.g. [26]. Note it is standard in this line of work to assume the value of α is known [12].

We will study distributed algorithms under the standard framework of the coordinator
model. There are s servers, and a designated coordinator. Each server can send messages
back and forth with the coordinator. This model is very similar to the message-passing
model, also known as the point-to-point model, in which any pair of machines can send
messages back and forth. In fact, the two models are equivalent up to constant factors in the
communication complexity [22]. Most of our algorithms can be applied to the mapreduce
framework with a constant number of rounds. For more details, see [20, 42].

For our communication lower bounds, we work in the multi-party message passing model,
where there are s players, P1, P2, . . . , Ps, who receive inputs X1, X2, . . .Xs respectively.
They have access to private randomness as well as a common publicly shared random string
R, and the objective is to communicate with a central coordinator who computes a function
f : X1 ×X2 . . .×Xs → {0, 1} on the joint inputs of the players. The communication has
multiple rounds and each player is allowed to send messages to the coordinator. Note, we
can simulate communication between the players by blowing up the rounds by a factor of 2.
Given Xi as an input to player i, let Π be the random variable that denotes the transcript
between the players and the referee when they execute a protocol Π. For i ∈ [s], let Πi

denote the messages sent by Pi to the referee.
A protocol Π is called a δ-error protocol for function f if there exists a function Πout such

that for every input, Pr
[
Πout = f(X1, X2, . . . Xs)

]
≥ 1− δ. The communication cost of a

protocol, denoted by |Π|, is the maximum length of Π over all possible inputs and random
coin flips of all the s players and the referee. The randomized communication complexity of
a function f , Rδ(f), is the communication cost of the best δ-error protocol for computing f .
For our lower bounds, we also consider that the data satisfies a very strong, general notion
of stability which we call c-separation.

I Definition 2 (separation). Given c ≥ 1 and a clustering objective, a clustering instance
satisfies c-separation if c ·maxi maxu,v∈C∗

i
d(u, v) < mini minu′∈C∗

i
,v′ /∈C∗

i
d(u′, v′).

Intuitively, this definition implies the maximum distance between any two points in one
cluster is a factor c smaller than the minimum distance across clusters. This assumption
has been used in several papers (for clustering with no outliers) to show guarantees for
various algorithms [13, 44, 37]. We note that this notion of stability captures a wide class of
previously studied notions including perturbation resilience [21, 10, 16, 6] and approximation
stability.

I Definition 3 (perturbation resilience). For β > 0 , a clustering instance (V, d) satisfies
1 +α-perturbation resilience for the k-means objective, if for any function d′ : V × V → R≥0,
such that for all p, q ∈ V , d(p, q) ≤ d′(p, q) ≤ (1 + β)d(p, q), and the optimal clustering under
d′ is unique and equal to the optimal clustering under d, for the k-means objective.

We note we can replace the objective with any center based objective such as k-median
or k-center. Next, we show that separation implies approximation stability and perturbation
resilience. We defer the proof to the Appendix.

ICALP 2019



18:6 Robust Communication-Optimal Distributed Clustering

I Lemma 4. Given α, ε > 0, and a clustering objective such as k-median, let (V, d) be a
clustering instance which satisfies c-separation, for c > (1 + α)n, where n = |V |. Then (V, d)
satisfies (1 + α, ε)-approximation stability and (1 + α)-perturbation resilience.

3 Approximation Stability with Outliers

In this section, we give a centralized algorithm for clustering with z outliers under approxim-
ation stability, and then extend it to a distributed algorithm for the same problem. To the
best of our knowledge, this is the first result for clustering with outliers under approximation
stability, as well as the first distributed algorithm for clustering under approximation stability
even without outliers. We defer the details to the Appendix. Our algorithm can handle any
fraction of outliers, even when the set of outliers makes up a constant fraction of the input
points. For simplicity, we focus on k-median.

I Theorem 5 (Centralized Clustering). Algorithm 1 runs in poly
(
n,
(
α
ε

(
k + 1

α

)) 1
α

)
time and

outputs a clustering that is ε-close to OPT for k-median with z outliers under (1 + α, ε)-
approximation stability, assuming for all i, |C∗i | ≥ 2

(
1 + 5

α

)
ε(n− z).

Note that the runtime is at most poly
(
n

1
α

)
, and if αε ∈ Θ(k), the runtime is poly

(
n, k

1
α

)
.

The algorithm has two high-level steps. First, we use standard techniques from approximation
stability without outliers to find a list of clusters X , which contains clusters from the optimal
solution (with ≤

(
1 + 1

α

)
ε(n− z) mistakes), and clusters made up mostly of outlier points.

We show how all but 1/α of the outlier clusters must have high cost if their size were to
be extended to the minimum optimal cluster size, and can thus be removed from our list
X . Finally, we use brute force enumeration to remove the final 1

α outlier clusters, and after
another cluster purifying step, we are left with a k clustering which (1 + α)-approximates
the cost and thus is guaranteed to be ε-close to optimal.

We begin by outlining the key properties of (1 + α, ε)-approximation stability. Let wavg
denote the average distance from each point to its optimal center, so wavg · (n− z) = OPT .
The following lemma is the first of its kind for clustering with outliers and establishes two
key properties for approximation stable instances. Intuitively, the first property bounds the
number of points that are far away from their optimal center, and follows from Markov’s
inequality. The second property bounds the number of points that are either closer on
average to the center of a non-optimal cluster that the optimal one or are outliers that are
close to some optimal center as compared to a point belonging to that cluster.

I Lemma 6. Given a (1 + α, ε)-approximation stable clustering instance (V, d) for k-median
such that for all i, |C∗i | > 2ε(n − z), then Property 1: For all y > 0, there exist at most
yε
α (n− z) points, v, such that d(v, cv) ≥ αwavg

yε . Property 2: There are fewer than ε(n− z)
total points with one of the following two properties: the point v is in an optimal cluster C∗i ,
and there exists j 6= i such that d(v, cj)− d(v, ci) ≤ αwavg

ε , or, the point v is in Z, and there
exists i and v′ ∈ C∗i such that d(v, ci) ≤ d(v′, ci) + αwavg

ε (recall that Z denotes the set of
outliers from the optimal clustering).

We define a point as bad if it falls into the bad case of either Property 1 (with y = 5) or
Property 2, and we denote the set of bad points by B. Otherwise, a point is good. From
Properties 1 and 2, |B| ≤

(
1 + 5

α

)
ε(n − z). For each i, let Gi denote the good points

from the optimal cluster C∗i . We consider the graph G′ = (V,E′) called the neighborhood
graph, constructed by adding an edge (u, v) iff there are at least |B|+ 2 points w such that
d(u,w), d(v, w) ≤ τ = 2wavg

5 . Under approximation stability, the graph G′ has the following
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structure: there is an edge between all pairs of good points from C∗i and there is no edge
between any pair of good points belonging to distinct clusters, C∗i , C∗j . Further, these points
do not have any common neighbors. Since the set of good points in each cluster, denoted by
Gi, form cliques of size > |B| and are far away from one another, and there are ≤ |B| bad
points, it follows that each Gi is in a unique connected component C ′i of G′.

In the setting without outliers, the list of connected components of size greater than(
1 + 5

α

)
εn is exactly {C ′1, . . . , C ′k}. However, in the setting with outliers, we can only return

a set X which includes {C ′1, . . . , C ′k} but also may include many other outlier clusters which
are hard to distinguish from the optimal clusters. Although approximation stability tells us
that any set Z ′ of outliers must have a much higher cost than any optimal cluster C∗i (since
we can arrive at a contradiction by replacing the cluster C∗i with the cluster Z ′), this is not
true when the size of Z ′ is even slightly smaller than C∗i . Since the good clusters returned
are only O

(
ε
α

)
-close to optimal, many good clusters may be smaller than outlier clusters,

and so a key challenge is to distinguish outlier clusters Z ′ from good clusters C ′i.
To accomplish this task, we compute the minimum cost of each cluster, pretending that

its size is at least C∗min (the size of the minimum optimal cluster, which we can guess in
polynomial time). In our key structural lemma (Lemma 7), we show that nearly all outlier
components will have large cost. Given a set of points Q, we define costmin(Q) to be the
minimum cost of Q if it were extended to C∗min points. Note, costmin(Q) can be computed in
polynomial time by iterating over all points c ∈ Q, for each such point constructing Vc by
adding the the C∗min − |Q| points closest to c, computing the resulting cost, and taking the
minimum over all such costs.

Algorithm 1 k-median with z-outliers under Approximation Stability.
Input: Clustering instance (V, d), cost wavg, value C∗min, integer x > 0.
1. Create the neighborhood graph on V with parameters τ = 2wavg

5ε and b = C∗min − (1 +
5
α )ε(n−z) as follows: for each u, v ∈ V , add an edge (u, v) iff there exist ≥ b points w ∈ V
such that d(u,w), d(w, v) ≤ τ . Denote the connected components by X = {Q1, . . . , Qd}.

2. For each Qi, compute costmin(Qi) = minc∈Qi minVc
∑
v∈Vc d(c, v), where Vc must satisfy

|Vc| ≥ C∗min and Qi ⊆ Vc. Create a new set X ′ = {Qi | costmin(Qi) <
(
3 + 2α

5
) 1
x ·OPT }.

.
3. For all 0 ≤ t ≤ x, for each size t subset X ′t ⊆ X ′ and size (k − |X ′| − t) subset Xt ⊆

(X \ X ′),
a. Create a new clustering C = X ′ ∪ Xt \ X ′t .
b. For each point v ∈ V , define I(v) as the index of the cluster in C with minimum median

distance to v, e.g., I(v) = argmini (dmed(v,Qi)) where dmed(v,Qi) denotes the median
distance from v to Qi.

c. Let V ′ ⊆ V denote the n− z points with the smallest values of d(v, cI(v)). For all i,
set Q′i = {v ∈ V ′ | I(v) = i}.

d. If
∑
i cost(Q′i) ≤ (1 + α)OPT , return {Q1, . . . , Qk}.

I Lemma 7. Given an instance of k-median clustering with z outliers such that each
optimal cluster |C∗i | > 2

(
1 + 5

α

)
ε(n − z), for any x ∈ N, the instance satisfies (1 + α, ε)-

approximation stability for α > 35
5x−4 , and there are at most x disjoint sets of outliers Z ′

such that |Z ′| > mini |C∗i | −
(
1 + 5

α

)
ε(n− z) and costmin(Z ′) ≤

(
3 + 2α

5
) 1
xOPT .

The key ideas behind the proof are as follows. If there are two sets of outliers Z1 and Z2
both with fewer than C∗min points, then we can obtain a contradiction by taking into account
both sets of outliers. Set 1 ≤ z1, z2 ≤

(
1 + 5

α

)
ε(n − z) such that |Z1| = C∗min − z1 and

ICALP 2019
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|Z2| = C∗min − z2, and assume without loss of generality that z1 < z2. We design a different
clustering C′ by first replacing the minimum-sized cluster in the optimal clustering with
Z1. The cost of the points in Z2 is low by assumption. However, we have now potentially
assigned more than z points to be outliers by an additive z1 amount. Hence, in order to
create a valid clustering that is far from OPT we need to add back at least z1 more outlier
points. We do this by choosing z1 outlier points from Z2 that are closest to an optimal center
in OPT . To bound the additional cost incurred, we use the fact that Z2 must be close to at
least z2 points from V \ Z, by the assumption that costmin(Z2) is low, and use these points
to bound the distance from centers in OPT to the z1 points that were added back. In the
full proof, we extend this idea to x sets Z1, . . . , Zx to achieve a tradeoff between x and α.

From Lemma 7, we show a threshold of costmin for the components of X , such that
all but x optimal clusters are below the cost threshold, and all but x outlier clusters are
above the cost threshold. Then we can brute force over all ways of excluding x low-cost sets
and including x high-cost sets, and we will be guaranteed that one combination contains
a clustering which is O

(
ε
α

)
-close to the optimal. However, we still need to recognize the

right clustering when we see it. To do this, we show that after performing one more cluster
purifying step which is inspired by arguments in [12] - reassigning all points to the component
with the minimum median distance - we will reduce our error to ε(n−z) in Hamming distance
and we show how to bound the total cost of these mistakes by 4α

5 OPT . Therefore, during
brute force enumeration, we return immediately when we find a clustering with cost at most
(1 + α)OPT (and thus must be ε-close to OPT ). Then we can try all possible values of
C∗min while only incurring a polynomial increase in the runtime of the algorithm. For wavg,
we first run an approximation algorithm for k-median with z outliers to obtain a constant
approximation to wavg (e.g., [38]). The constant in the minimum allowed optimal cluster
size then increases by a factor of 7. This is because we need to use a smaller value of τ when
constructing the neighborhood graph G′, and so the number of “bad” points increases. In
order to show all the good connected components from G′ contain a majority of good points,
we merely increase the bound on the minimum cluster size.

Distributed Setting. Next, we give a distributed algorithm for approximation stability with
outliers using Õ (sk + z) communication. However, as opposed to worst case, we can get
close to the ground truth (target) clustering. In Section 4, we show a matching lower bound.

I Theorem 8 (Distributed Clustering). Given a (1 + α, ε)-approximation stable clustering
instance, there exists an algorithm that runs in poly

(
n

1
α

)
time and with high probability

outputs a clustering that is O(ε)-close to OPT for k-median with Õ (sk + z) communication
if each optimal cluster C∗i has cardinality at least max

{
2
(
1 + 22

α

)
ε(n− z),Ω

(
(n−z)
sk

)}
.

We start by giving intuition for our algorithm where there are no outliers. The high-level
structure of the algorithm can be thought of as a two-round version of the centralized
algorithm from approximation stability with no outliers [12]. Each machine effectively creates
a coreset of its input, consisting of a weighted set of points, and sends these weighted points
to the coordinator. The coordinator runs the same algorithm on these sets of weighted
centers, to output the final solution.

In the analysis, we define good and bad points using Property (1) above with y = 20 as
opposed to y = 5, so that there are more bad points than in the non-distributed setting,
|B| =

(
1 + 1

20
)
ε(n− z), but for each optimal cluster C∗i , the good points Gi are even more

tightly concentrated. In the first round, each machine computes the neighborhood graph
described above with parameter τ = wavg

10 . This more stringent definition of τ ensures that
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Claims (1) and (2) above are not only true for the input point set, but also true for a
summarized version of the point set, where each point represents a ball of data points within
a radius of τ . Therefore, there is still enough structure present such that the coordinator can
compute a near-optimal clustering, and finally the coordinator sends the k resulting (near
optimal) centers to each machine.

Now we expand this approach to the case with outliers. The starting point of the algorithm
is the same: we perform two rounds of the sequential approximation stability algorithm with
no outliers, so that each machine computes a summary of its point set, and the coordinator
clusters the points it receives. Recall that in the centralized setting, running the non-outlier
algorithm produces a list of clusters X , some of which are near-optimal and some of which
are outlier clusters, and then we crucially computed the costmin of each potential cluster to
distinguish the near-optimal clusters from the outlier clusters. In the distributed setting, we
can construct the set X using the two-round approach.

However, the costmin computation is sensitive to small sets of input points, and, as a
result, the coresets will not give the coordinator enough information to perform this step
correctly. In particular, this involves finding the closest points to a component that increase
the cardinality to C∗min, and these points may be arbitrarily partitioned across the machines.
Furthermore, the centralized algorithm can easily try all possible centers to compute the
minimum cost of a given component Q, but it is much harder in the distributed setting to even
find an approximately optimal center. Even with a center c chosen, the coordinator needs a
near-exact estimate of the minimum cost of Q, however, it does not know the C∗min closest
points to c. Therefore our distributed algorithm must balance accuracy with communication.

For each component Q, the coordinator simulates logn random draws from Q by querying
its own weighted points, and then querying the machine of the corresponding point. This
allows the coordinator to find a center c whose cost is only a constant factor away from the
best center. To compute costmin(c), the coordinator runs a binary-search procedure with all
machines to find the minimum distance t such that Bt(c) contains more than C∗min points.

Given a random point v from Q, by a Markov inequality, there is a 1/2 chance that the
cost of center v on Vc is at most twice the cost with center c. From a Chernoff bound, by
sampling 10 logn points for each component, each component will find a good center with
high probability. Therefore, the coordinator can evaluate the cost of each component up to a
factor of 2, which is sufficient to (nearly) distinguish the outlier clusters from the near-optimal
clusters. The rest of the algorithm is similar to the centralized setting. We brute-force all
combinations of removing x low-cost clusters from X and adding back x high-cost clusters
from x. We perform one more cluster purifying step, and then check the cost of the resulting
clustering. If the cost is smaller than (1 + α)wavg(n− z), then we return this clustering.

Similar to the centralized setting, we can use existing algorithms (e.g. [32]) to approximate
wavg, and we can use binary search to find C∗min. The algorithm communicates Õ(sk + z)
bits to approximate wavg. The communication in the first step is O (sk logn), since there are
at most min

{
s
ε , O(sk)

}
sets of size at least max

{
εn
s ,

n
sk

}
, each of which are communicated

to the coordinator. The total communication to compute costmin for every component is
Õ(sk). The binary search wrapper to find C∗min adds a logn multiplicative factor. Therefore,
the total communication is Õ (sk + z).
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4 Communication Complexity Lower Bounds

In this section, we show lower bounds for the communication complexity of distributed
clustering with and without outliers. We prove Ω(sk + z) lower bounds for two types of
clustering problems: computing a clustering whose cost is at most a c-approximation to the
optimal (or even just to determine the cost up to a factor of c) for any c ≥ 1, and computing
a clustering which is δ-close to OPT , for any δ < 1

4 . This shows prior work of [32] is tight.
Our lower bounds hold even under c-separation (Definition 2). Furthermore, our lower

bounds for δ-close clustering hold even under a weaker version of clustering, which we
call locally-consistent clustering. In this problem, instead of assigning a globally consistent
index in {1, . . . , k} for each point, each player only needs to assign indices to its points
that is consistent in a local manner, e.g., the assignment of index set {1, . . . , k} to clusters
{C1, . . . , Ck} chosen by player 1 might be a permutation of the assignment chosen by player
2. We work in the communication model described in Section 2.

I Definition 9 (Multi-party set disjointness (DISJs,`)). Given s players, denoted by P1, P2,
. . .Ps, player Pj receives as input a bit vector Xj of length `. Let X denote the a binary
matrix such that each Xj is a column of X. Let Xi denote the i-th row of X and Xj [i]
denote the (i, j)-th entry of X. Then, DISJs,` =

∨
i∈[`]

∧
j∈[s]X

j [i], i.e., DISJs,` = 0 if at
least one row of X corresponds to the all ones vector and 1 otherwise.

We note that set disjointness is a fundamental problem in communication complexity
and we use the following lower bound for DISJs,` in the message-passing model by [22]:

I Theorem 10 (Communication complexity of DISJs,` [22]). For any δ > 0, s = Ω(log(n)) and
` ≥ 1, the randomized communication complexity of multi-party set disjointness, Rδ(DISJs,`),
is Ω(s`).

We use the above theorem to show a lower bound of Ω(sk + z) for distributed clustering
algorithms that attain an approximation to the cost of the optimal clustering under center-
based clustering objectives such as k- median and k-means even if the instance satisfies
strong beyond-worse case stability assumptions. We note that our first reduction is a slight
modification of the reduction that appears in [27] and we show how to extend the reduction
to stable instances and to account for outliers. Intuitively, the parameters of the reduction
are carefully chosen so that the clustering instance created either has k or k + 1 distinct
locations, toggled by the disjointness instance being yes or no. The lower bound for outliers
requires starting with a two player, balanced instance of set disjointness, introduced by [45].

I Theorem 11. Given c1 ≥ 1, c2 ≥ 0, the communication complexity for computing a c1-
approximation for k-median, k-means, or k-center clustering is Ω(sk), even when promised
that the instance satisfies c2-separation. Further, for the case of clustering with z outliers,
computing a c1-approximation to k-median, k-means, or k-center cost, given the promise
that the instance satisfies c2-separation requires Ω(sk + z) bits of communication.

We note that thus far we have ruled out a distributed clustering algorithm that has
communication complexity less than Ω(sk + z) to output the exact clustering under strong
stability assumptions. Next, we show an Ω(sk + z) lower bound when the goal is to return a
clustering that is δ < 1

4 -close to optimal in Hamming distance, i.e., outputting a clustering
that differs from the optimal clustering in a δ-fraction of the points, given that the instance
is (1 + α, ε)-stable for any setting of these parameters.

We show that our lower bounds hold even when the algorithm outputs a c-approximate
solution to the clustering cost of a 1

4 -close clustering. Intuitively, the proof is again a
reduction from DISJs,`, similar to the proof of Theorem 11. The main difference is that the
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coordinator now adds roughly n
2 copies of a subset of points in our construction, to make

the optimal clustering stand out from the rest. The main technical challenge is to figure
out how to add these points such that the optimal clustering stands out in both yes and no
instances. Therefore, recovering an approximation to the optimal clustering in Hamming
distance provides enough information to solve set disjointness.

I Theorem 12. Given c1 ≥ 1, c2 ≥ 0, and 0 < δ < 1
4 , the communication complexity for

computing a c1-approximation to the k-median, k-means, or k-center objective with z outliers
and outputting a clustering that is δ-close to the optimal, Ω(sk + z), even when promised
that the instance satisfies c2-separation.

Though the above lower bounds are quite general, it is possible that the hard instances
may have the optimal clusters to be very different in cardinality if sk is large. The smallest
cluster may be size O

(
n
sk

)
, while the largest cluster may be size Ω(n). Often, real-world

instances have roughly balanced clusters. There is a line of work on clustering with balance
constraints on the clusters [5, 3, 30], and some of our algorithmic results assume a lower
bound on the minimum cluster size.

We note that our previous reduction for proving a lower bound against δ-close clustering
algorithms fundamentally relies on testing the cardinality of the clusters. Therefore, we
extend our previous lower bounds to the setting where we are promised that the input clusters
are well balanced, i.e., have roughly the same cardinality. We still consider algorithms that
only get δ-close to the optimal clustering. We begin by defining the following basic notions
from information theory:

I Definition 13 (Entropy and conditional entropy). The entropy of a random variable X drawn
from distribution µ, denoted as X ∼ µ, with support χ, is given by H(X) =

∑
x∈χ Prµ[X =

x] log 1
Prµ[X=x] . Given two random variable X and Y with joint distribution µ, the entropy

of X conditioned on Y is given by H(X | Y ) =
Ey∼µ(Y )

[∑
x∈χ Prµ(X|Y=y)[X = x] log 1

Prµ(X|Y=y)[X=x]

]
.

Note, the binary entropy function H2(X) is the entropy function for the distribution
µ(X) supported on {0, 1} such that µ(X) = 1 with probability p and µ(X) = 0 otherwise.

I Definition 14 (Mutual information and conditional mutual information). Given random
variables X and Y , the mutual information between X and Y is given by I(X;Y ) = H(X)−
H(X | Y ) = H(Y ) − H(Y | X). The conditional mutual information between X and Y ,
conditioned on a random variable Z is given by I(X;Y | Z) = H(X | Z)−H(X | Y,Z) =
H(Y | Z)−H(Y | X,Z).

Recall, the δ-error randomized communication complexity of A, Rδ(A), in the message
passing model is communication complexity of any randomized protocol Π that solves A
with error at most δ. Let µ be a distribution over X1, X2, . . . Xs. We call a deterministic
protocol (δ, µ)-error if it gives the correct answer for A on at least a 1−δ fraction of the input,
weighted by the distribution µ. Let Dµ,δ(A) denote the cost of the minimum communication
(δ, µ)-error protocol. By Yao’s minimax lemma, Rδ(A) ≥ maxµDµ,δ(A). Therefore, in order
to lower bound the randomized communication complexity of A, it suffices to construct a
distribution µ over the input such that any deterministic protocol that is correct on 1− δ
fraction of any input can be analyzed easily. The communication complexity of a protocol Π
is also lower bounded by its information complexity.

I Definition 15 (Information complexity of A). For i ∈ [s], let Πi be a random variable that
denotes the transcript of the messages sent by player Pi to the coordinator. We overload
notation by letting Π denote the concatenation of Π1 to Πs. Then, the information complexity
of A is given by ICµ,δ(A) = min(δ,µ)-error Π I(X1, X2, . . . Xs; Π).
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Since information lower bounds communication (see, e.g., [35]), Rδ(A) ≥ ICµ,δ(A) in
the message passing model. So our proof strategy is to construct a distributed protocol for
solving the above problem using an algorithm that obtains a δ-close clustering for balanced
clusters. We then design a distribution µ over the input and lower bound the information
complexity of the resulting problem by Ω(k). We then amplify the bound by introducing s/2
copies of Alice and Bob (as before). Next, we describe this proof strategy in detail.

We begin with a two-player communication problem, where Alice and Bob receive length
` bit vectors, and the objective is to compute the AND function on each index in [`]. We
then construct a gadget that reduces computing AND on any particular index to solving a
2-clustering problem, where each cluster has 2 points (and thus the instance is balanced). The
gadget is such that Alice and Bob insert 2 points each, at a fixed set of locations determined
by their input, and the optimal 2-clustering places Alice’s points in different clusters iff the
AND evaluates to true. The same holds for Bob. Therefore, Alice and Bob learn each other’s
bit simply looking at the output of the clustering algorithm. The players then create this
gadget for each index in their input, and place the gadgets sufficiently far from each other.

Observe, a δ-close clustering algorithm must output a (1− 2δ)-fraction of the clusters
correctly. Using such an algorithm as a distributed protocol enables the players to learn the
AND function on a (1− 2δ)-fraction of the coordinates. Note the underlying communication
problem here does not correspond to well-studied problems such as set disjointness. However,
some proofs of the lower bound for multi-party set disjointness do reduce to computing the
AND function on every index [19]. Therefore, we relate the communication complexity of the
above problem to the amount of information revealed by any protocol that is correct on a
large fraction of the input.

We define a distribution µ over the input such that each bit for Alice and Bob is set to
be 1 with probability 1/2 independently and 0 otherwise. Here, we observe that the δ-close
clustering algorithm implies a (2δ, µ)-protocol for computing AND on each index. Therefore,
we prove that the information complexity of a (2δ, µ)-protocol is Ω(`). Intuitively, this says
any correct deterministic protocol that is correct on a 1− 2δ fraction of the input, for the
given input distribution µ, must reveal Ω(1) information on every index that has at least one
1, which amounts to communicating the bit. Since our gadget has 2 clusters for each index,
setting ` = Θ(k) obtains an Ω(k) communication lower bound. Using our previous strategy
of duplicating the Alice and Bob players s/2 times, we obtain the following theorem:

I Theorem 16. Given δ < 1
4 and the promise that the optimal clusters are balanced, i.e.,

the cardinality of each cluster is n
k , the communication complexity for computing a clustering

that is δ-close to the optimal k-means or k-median clustering is Ω(sk).

Finally, we extend the above lower bound to clustering instances that are balanced and
also satisfy (1 + α, ε)-approximation stability, again obtaining an Ω(sk + z) lower bound.
Perhaps surprisingly, we show that there is no trade-off between the stability parameters
and the communication lower bound even if the clusters are balanced and the algorithm
outputs a clustering that is δ < ε/4 close to the optimal clustering. In contrast, our previous
result can handle all δ < 1/4. Intuitively, to obtain a clustering instance that is (1 + α, ε)-
approximation stable, we restrict the number of indices on which AND evaluates to 1 to be
O(εn). Therefore we start with a promise version of the multi-party set disjointness problem,
where the promise states if the sets intersect, they intersect on exactly one element. Formally,

I Definition 17 (Promise multi-party set disjointness (PDISJs,`)). Given s players denoted
by P1,. . . , Ps, each player receives a bit vector Xj of length `. Let X denote a binary
matrix such that each Xj is a column of X. Let Xi denote the i-th row of X and Xj

i denote
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the (i, j)-th entry of X. We are promised that at most one row of X has all ones. Then,
PDISJs,` =

∨
i∈[`]

∧
j∈[s]X

j
i , i.e., PDISJs,` = 0 if any row of X corresponds to the all ones

vector and 1 otherwise.

We use a result of [19] to lower bound the communication complexity of set-disjointness
in the multi-party communication model.

I Theorem 18 (Communication complexity of PDISJs,` [19]). For any δ > 0, s, ` ∈ N, the
randomized communication complexity of promise multi-party set disjointness, Rδ(PDISJs,`),
is Ω(`/s2).

We show any algorithm obtaining a δ-close clustering, given the clusters are balanced and
the clustering instance is (1 +α, ε)-stable can be converted into a randomized communication
protocol that solves PDISJs,`. At a high level, Alice and Bob receive length ` bit vectors
and create a gadget for each index in [`]. If the number of indices on which the bit vectors
intersect is at most εk, the instance is (1 + α, ε)-stable. We ensure this by constructing
gadgets that incur an arbitrarily high cost in all other cases (see the Appendix for details).

We note that if our clustering instance has exactly one index on which AND evaluates
to 1, it is easy for a randomized protocol to be incorrect with good probability. In order to
circumvent this issue and maintain (1 + α, ε)-stability, Alice and Bob create εn− 1 = 2εk− 1
dummy indices that are set to 1 for both players. Further, Alice and Bob use public
randomness to agree on a uniform permutation of the padded input and apply this permutation
before constructing the gadgets and running the clustering algorithm. Intuitively, permuting
the indices ensures that the δ-close clustering gets a typical cluster right with reasonable
probability, by being oblivious to the dummy clusters that were used as padding.

Since we uniformly permute the indices of the input before running the protocol, for any
given index, the corresponding cluster has Hamming distance 0 from the optimal clustering
with probability at least 1− ε. This implies at most an ε-fraction of the clusters are incorrect.
The protocol outputs a clustering that is known to both Alice and Bob. For each index
of their input, they know whether their pair of points lie in the same cluster or different
clusters. Let I be the set of indices for which Alice and Bob’s points lie in different clusters.
If I > 4εk, the protocol outputs fail. Otherwise, Alice communicates her input on the set I
to Bob. Bob applies an inverse random permutation to indices in set I, and verifies if the
indices correspond to the dummy indices that were added or indeed the sets are not disjoint.
Note the verification step requires additional communication. Since I ≤ 4εk, and ε is at most
a small constant, the total additional communication is O(k/c) for some large constant c.

Consider the case where the sets are not disjoint. Then there is an index i∗ such that
AND on this index evaluates to 1, and with probability at least 1− ε, the clustering algorithm
correctly clusters the corresponding 2-means gadget. This implies that Alice and Bob know
that their pair of points lie in different clusters, thus i∗ is in the set I and Alice communicates
her input on index i∗ to Bob. Bob can then verify that i∗ is not a dummy index and indeed
the sets are not disjoint.

The case where the sets are disjoint is more subtle. Now the clustering algorithm may
return 4εk indices such that Alice’s points belong to separate clusters, i.e., they correspond to
a (1, 1) input, therefore leading to false positives. However, we observe that we can verify if
the sets are disjoint by Alice sending over her input bits on the set I to Bob. Bob can verify
if they correspond to the dummy indices and the sets are indeed disjoint. This increases the
over all communication by O(k/c). We recall that the promise problem requires Ω(`) = Ω(k)
communication and thus the communication of the above protocol is Ω(k − εk) = Ω(k). We
use the technique of cloning Alice and Bob s/2 times, so communicating the solution to each
player requires Ω(sk) bits of communication. Finally, we show how to extend this lower
bound to the case of outliers to get an overall Ω(sk + z) lower bound:
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I Theorem 19. Given a (1 + α, ε)-approximation stable instance with z outliers such that
ε = o(1) and δ < ε

4 , and the promise that the optimal clusters are balanced, i.e., the cardinality
of each cluster is n−z

k , the communication complexity for computing a clustering that is
δ-close to the optimal k-means or k-median clustering is Ω(sk + z).
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