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Abstract
We study the problem of discrete distribution testing in the two-party setting. For example, in
the standard closeness testing problem, Alice and Bob each have t samples from, respectively,
distributions a and b over [n], and they need to test whether a = b or a, b are ε-far (in the `1

distance). This is in contrast to the well-studied one-party case, where the tester has unrestricted
access to samples of both distributions. Despite being a natural constraint in applications, the
two-party setting has previously evaded attention.

We address two fundamental aspects of the two-party setting: 1) what is the communication
complexity, and 2) can it be accomplished securely, without Alice and Bob learning extra information
about each other’s input. Besides closeness testing, we also study the independence testing problem,
where Alice and Bob have t samples from distributions a and b respectively, which may be correlated;
the question is whether a, b are independent or ε-far from being independent. Our contribution is
three-fold: 1) We show how to gain communication efficiency given more samples, beyond the
information-theoretic bound on t. The gain is polynomially better than what one would obtain via
adapting one-party algorithms. 2) We prove tightness of our trade-off for the closeness testing, as
well as that the independence testing requires tight Ω(

√
m) communication for unbounded number

of samples. These lower bounds are of independent interest as, to the best of our knowledge, these
are the first 2-party communication lower bounds for testing problems, where the inputs are a set
of i.i.d. samples. 3) We define the concept of secure distribution testing, and provide secure
versions of the above protocols with an overhead that is only polynomial in the security parameter.
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1 Introduction

Distribution property testing is a sub-area of statistical hypothesis testing, which has enjoyed
continuously growing interest in the theoretical computer science community, especially
since the 2000 papers [36, 12]. One of the most basic problems is closeness testing, also
known as the homogeneity testing ; see [37, 55, 58]. Here, given two distributions a, b and t
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15:2 Two Party Distribution Testing

samples from each of them, distinguish between the cases where a = b versus a and b are
ε-far, which usually means ‖a− b‖1 > ε.1 For this specific problem, the extensive research
led to algorithms with optimal sample complexity [12, 59, 13, 24, 31, 29], including when
the number of samples from the two distributions is unequal [5, 16, 31]. Further research
directions of interest include obtaining instance-optimal algorithms, which depend on further
properties of the distributions a, b [3, 4, 31], quantum algorithms [20], as well as algorithms
whose output is differentially-private [30, 21, 6, 8]. An even larger body of work studied
numerous other related problems; see, e.g., surveys [35, 22, 53, 52].

Focusing on testing two distributions, such as in the closeness problem, a very natural
aspect has, surprisingly, evaded attention so far: such a task would often be run by two players,
each with access to their own distribution. Specifically, Alice has samples from distribution
a, Bob has samples from distribution b, and they need to jointly solve a distribution testing
problem on (a, b). This setting models many of the envisioned usage scenarios of distribution
testing, where different parties wish to jointly perform a statistical hypothesis testing task
on their distributions. For example, [55] describes the scenario where two distinct sensors
need to test whether they sample from the same distribution (“noise”) or not.

This 2-party setting raises the following standard theoretical challenges, neither of which
has been previously studied in the context of distribution testing:

What is the communication complexity of the testing problem? In particular, can we do
better than the straightforward approach, where Alice sends her samples to Bob who
then runs an offline algorithm? Can we prove matching lower bounds?
This aspect parallels the quest for low memory or communication usage for hypothesis
testing on a single distribution, initiated in the statistics community [25, 41] and [7, 40, 10].
In fact, very recent, independent work has considered this aspect for binary sources [54, 38].
Is it possible to design a distribution testing protocol that is secure, i.e., where Alice and
Bob learn nothing about each other’s samples, besides testing result? This question is
highly relevant in today’s push for doing statistics in a privacy-respecting manner.

1.1 Our Contributions
In this paper, we initiate the study of testing problems in the two-party model, and design
protocols which are both communication-efficient and secure. We do so for two basic problems
on pairs of distributions (i.e., where the two-party setting is natural): 1) closeness testing,
and 2) independence testing.

Our main finding is that, once the number of samples exceeds the information-theoretic
minimum, we can obtain protocols with polynomially smaller communication than the naïve
adaptation of existing algorithms. We complement our protocols with lower bounds on the
communication complexity of such problems that are near-optimal for closeness testing, as
well as for independence for an unbounded number of samples. Our upper and lower bounds
on communication are novel even without any security considerations.

To argue security, we also put forth a definition for secure distribution testing in the
multi-party model. Our definition differs from the standard secure computation setting
due to two unique features of the considered setting. First, this is “testing” (a promise
problem) and not “computing”; second, the function of interest is defined with respect to
distributions, while the parties’ inputs are samples. These features do not come into play if
the distributions satisfy the promise (e.g., they are either identical or ε-far), in which case

1 This is equivalent to saying that the total variation distance is more than ε/2.
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the security guarantee matches the standard cryptographic one (no information is leaked
beyond the output). However, when the promise is not satisfied, we need to allow for some
information on the parties’ samples to be leaked by the protocol. Our definition permits
leakage of at most one bit in this case, and leaks nothing when the promise is satisfied.

I Definition 1 (Security Definition). Let D be the set of input distributions over×d

i=1[ni],
and let g : D → {0, 1} be a partial boolean function, defined on P ⊆ D.

Let π be a d-party protocol, and let k be a security parameter. We say that π is a t-sample
secure distribution testing protocol (for the testing task defined by g), if there exists a boolean
function f : {×d

i=1[ni]}t → {0, 1} such that the following holds:
Correctness: for any p ∈ P , Prζ1...ζt∼i.i.d p[f(ζ) = g(p)] = 1− neg(k)
Security: For any ζ ∈ {×d

i=1[ni]}t, if we give each player i ∈ [d] the input(
1k, ζ1(i), . . . , ζt(i)

)
, then protocol π is a secure computation of the function f(ζ).

We provide a detailed discussion of the above definition in the full version of this paper.

Closeness Testing. In the 2-party closeness testing problem 2pCTn,t,ε, Alice and Bob each
have access to t samples from some distributions respectively a, b over alphabet [n]. Their
goal is to distinguish between a = b and ‖a− b‖1 ≥ ε with probability ≥ 2/3.

We first give a non-secure near-optimal communication protocol, and then show how
to make it secure with only a small overhead (polynomial in the security parameter). Our
secure version is based on the existence of a PRG that stretches from polylog(m) bits to m
bits, and of an OT protocol with polylog communication. Overall, we prove the following.

I Theorem (Closeness, Secure). Fix a security parameter k > 1. Fix n > 1 and ε ∈ (0, 2),
and let t be such that t ≥ C · k ·max

(
n2/3 · ε−4/3,

√
n · ε−2) for some (universal) constant

C > 0. Then, assuming PRG and OT as above, there exists a secure distribution testing
protocol for 2pCTn,t,ε which uses Õk

(
n2

t2ε4 + 1
)
communication.

To contrast the communication bounds of our protocol to the classic 1-party setting,
consider what happens in the extreme settings of the parameters s, t, for a fixed ε. When
t ≈ Θ(n2/3), the communication is Õ(n2/3) as well, i.e., Alice may as well just send all the
samples over to Bob. However the communication decreases as the players have more samples.
This may not be surprising given the testing results with unequal number of samples [16, 31]:
indeed, Alice can send ≈ max{n/

√
t,
√
n} samples to Bob, and Bob can run the tester. In

contrast, our protocol obtains a polynomially smaller complexity, ≈ n2/t2, whenever t� n2/3.
Intuitively, considering the extreme of t� n, we can obtain near-constant communication:
with so many samples, we can learn the distribution, and then use sketching tools [9, 42].

We prove a near-tight lower bound on the above trade-off (even without security consider-
ations) in Section 4. We note that our lower bound differs from the common communication
complexity lower bounds as the players’ inputs are i.i.d. samples and not worst-case.

I Theorem (Closeness lower bound). Any two-way communication protocol for 2pCTn,t,1/2
requires Ω̃

(
n2/t2

)
communication.

Independence Testing. Our second problem is the independence testing problem in the
2-party model, denoted 2pITn,m,t,ε. Let p = (a, b) be some joint distribution over [n]× [m],
where n ≥ m, and for i ∈ [t], let ζi be a sample drawn from p. Now we provide Alice with
the first coordinates of ζi’s and Bob with the second coordinates. Alice and Bob’s goal is to
test whether distributions a and b are independent (p is a product distribution) or p is ε-far
from any product distribution. We prove the following:

ICALP 2019
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I Theorem (Independence, Secure). Fix a security parameter k > 1. Fix ε ∈ (0, 2), 1 ≤
m ≤ n, and let t be such that t ≥ C · k ·

(
n2/3m1/3ε−4/3 +

√
nm/ε2

)
, for some (universal)

constant C, and assuming OT, there is a secure distribution testing protocol for 2pITn,m,t,ε

using Õk
(
n2·m
t2ε4 + n·m

tε4 +
√
m
ε3

)
bits of communication.

We note that the lower bound on t from the above theorem is necessary as it is the
information-theoretic bound, as proven in [31]. An important qualitative aspect of the
communication complexity for 2pIT is that, when the number of samples t → ∞, the
protocol uses Θ̃ε(

√
m) bits of communication. This is in contrast to 2pCT, where the

communication becomes Õ(1) for t→∞. Indeed, we show that Ω(
√
m) is necessary for one-

way protocols for 2pIT. Since our protocol can easily be converted to a one-way (non-secure)
protocol, this lower bound is tight for one-way protocols. We conjecture that the bound
from the above theorem is near-tight in n,m, t for two-way communication protocols, even
without security.

I Theorem (Independence lower bound). For n, t ∈ N, any one-way protocol for 2pITn,n,t,1
requires Ω(

√
n) bits of communication.

1.2 Related work
Our work bridges three separate areas and models: distribution testing, streaming/sketching,
and secure computation. There’s a large body of work in each of these areas. We mention
work most relevant to us.

Testing and learning with memory or space constraints. Two-party communication model
is tightly connected to the streaming and distributed models, which have received lots of focus
in the context of testing and learning questions. As early as in 1960s, [25, 41] considered
the hypothesis testing (of one distribution) in the streaming model, where samples are
streamed over while keeping small extra space. More recently, much attention has been
drawn to streaming (memory) lower bounds for learning problems, such as parity learning
[50, 51, 46, 48, 33]. Another direction was to consider stochastic streaming problems [26],
where the input is generated from a distribution. All these results apply to samples from one
distribution, and show a (tight) trade-off between number of samples and space complexity.

Another recent avenue is to study such problems in the distributed model, where there
are many symmetric players, each with a number of i.i.d. samples from the same distribution.
For learning problems (e.g., parameter or density estimation), see, e.g., [19, 28, 27]. We
note that since learning is a much harder problem, typically proving lower bounds is easier
(e.g., as shown in [28], merely communicating the output requires Ω(n) communication).
In contrast, for testing problems, the output is just one bit. For testing problems (of one
distribution), see also the recent (independent) manuscript [2].

None of the lower bounds from the above papers are relevant here as they become vacuous
for a 2-party setting. Indeed, when two players have two sets of samples from the same
distribution, then purely doubling the sample set of a player trivializes the question (she can
solve it without communication).

Finally, a very recent, independent works of [54, 38] consider a problem very similar to
2pIT: estimating the correlation of two binary sources (n = m = 2) in the two-party model.

Secure approximations. Our results on secure distribution testing can also be seen in the
context of the area of secure computation of approximations. This is a framework introduced
by [32], allowing to combine the benefits of approximation algorithms and secure computation.
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This was considered in different settings [32, 39, 14, 43, 15, 44, 45], but the most relevant to us
is private approximation of distance between two input vectors. In particular, for `2 distance,
Alice and Bob each have a vector a, b ∈ Rn and want to estimate ‖a− b‖2, without revealing
any information that does not follow from the `2 distance itself. For this problem, [43] show
that secure protocols are possible with only poly-logarithmic communication complexity.We
use some of their techniques in our secure protocols.

Approximation and testing have a similar flavor in that they both trade accuracy for
efficiency, in different ways. The security goals are also similar (prevent leakage beyond the
intended output). One important difference is that the intended output in secure testing is
just the single bit of whether or not the test passed. Thus, for example, when approximating
a distance function, even a secure protocol can leak any information that follows from the
distance. In contrast, when testing for closeness, if the inputs are either identical or far, the
protocol may only reveal this fact, but no other information about what the distance is.

Security and privacy of testing. While we are not aware of any work on secure testing,
several recent papers address differentially-private distribution testing [30, 21, 6, 8]. Here
the privacy guarantee relates to the value of the output after the computation is concluded,
requiring it to be differentially-private with respect to the inputs. Our notion of security for
distribution testing is different, in the same way that secure computation is different from
differentially private computation. While differential privacy (DP) is concerned with what
the intended output may leak about the inputs (even if the input came from a single party
or the computation is done by a trusted curator), secure 2-party computation is concerned
with how to compute an intended output without leaking any information beyond the output
itself. The difference in goals is also reflected in the privacy guarantees, which are typically
statistical in nature (for DP testing) and provide a non-negligible adversarial advantage.
Secure testing protocols rely on cryptographic assumptions and provide negligible advantage.

Even more recently, a stringent model of Locally Differentially Private Testing was
proposed [56, 1]. This model provides a stronger notion of differential privacy, where users
send noisy samples to an untrusted curator, and the goal is to allow the curator to test
the distribution of user inputs (for some property) without learning “too much” about the
individual samples. For LDP, the main goal is to optimize the sample complexity as a
function of the privacy guarantees. While this notion of privacy also incorporates some
privacy of the individual inputs, it is much closer to DP than to our security notion. In
addition, both DP and LDP do not provide sub-linear communication (in the sample size,
as we achieve here). In fact, their goal is to allow O(1) communication per sample, with
minimal sample overhead. In contrast, our protocols provide security “nearly for free” while
allowing for faster communication with more samples. Finally, in the case of independence
testing, our work assumes samples are distributed between the parties who need to test the
joint distribution, while in the above work, each data point contains full sample information.

1.3 Our Techniques
We now outline the techniques used to establish our main results. Since our overall contri-
bution is painting a big picture of the 2-party complexity of distribution testing problems,
we appeal to a number of diverse tools. First, we design communication-efficient protocols.
Second, we argue optimality of our protocols by proving communication complexity lower
bounds on the considered problems, which are near-tight in some of the parameter regimes.
Third, we show how to transform our protocols into secure protocols, under standard crypto-
graphic assumptions, without further loss in efficiency. All three of these contributions are
independently first-of-a-kind, to the best of our knowledge.
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15:6 Two Party Distribution Testing

Communication-efficient protocols. We start by reducing the testing problem under the `1
distance to the same problem under the `2 distance, using now-standard methods of [31, 24].
Here, our main challenge is actually testing under the `2 distance.

Closeness testing (2pCT) is technically the simpler problem, but it already illustrates
some phenomena, how to leverage a larger number of samples to improve communication. To
estimate the `2 distance between the 2 unknown distributions, we compute the `2 distance
approximation between the given samples of these distributions. In order to approximate
the latter in the 2-party setting, we use the `2 sketching tools [9]. The crux is to show that
we can tolerate a cruder `2 approximation if we are given a larger sample size. Since the
complexity of (1 + α)-approximating the `2 distance is Θ(1/α2), we obtain an improvement
in communication that is quadratic in the number of samples.

Independence Testing (2pIT) is more challenging since any distance approximation would
need to be established based on the distribution(s) implicitly defined via the joint samples,
split between Alice and Bob, and hence our approximation techniques above are not sufficient.
Instead, we develop a reduction from a large, [n] × [m], alphabet problem, to a smaller
alphabet problem, which can be efficiently solved by communicating fewer samples. This
is accomplished by sampling a rectangle of the joint alphabet, and showing that such a
process, when combined with the split-set technique from [31], generates sub-distributions
(defined later) which satisfy some nice properties. We then show one can test the original
distribution p = (a, b) over a “large” domain of size [n]×[m] for independence by distinguishing
closeness of 2 simulated distributions p̂, q̂, defined on a smaller domain of size [l]× [m], where
l = Θ̃ε(n3m/t3 + n2m/t2 + 1). We show it is possible for Alice and Bob to simulate joint
samples from p̂ and q̂ using O(1) communication per sample, after they have down-sampled
letters from one of the marginals.

The trade-off on communication–vs–samples emerges from two compounding effects: 1)
balancing the size of the target rectangle with the expected number of available samples over
such rectangle; and 2) the additional advantage from a tighter bound on the `2 norm of q̂.
Each of the above independently generates linear improvement in communication with more
samples. The latter advantage, however, is helpful only while t = O(n), and therefore we
benefit from quadratic improvement in that regime, and linear improvement thereafter.

Lower bounds on communication. We note that the lower bounds on communication of
testing problems present a particular technical challenge: for testing problems, the inputs
are i.i.d. samples from some distributions. This is more akin to the average-case complexity
setup, as opposed to “worst case” complexity as is standard for communication lower bounds.

We manage to prove such testing lower bounds for the Closeness Testing problem (2pCT).
While our lower bound is, at its core, a reduction from some “hard 2-party communication
problem”, our main contribution is dealing with the above challenge. One may observe that
a “hard 2-party communication problem” is hard under a certain input distribution (by Yao’s
minimax theorem), and hence a reduction algorithm would also produce a hard distribution
on the inputs to our problem. However, a priori, it is hard to ensure that the resulting input
distribution resembles anything like a set of samples from distributions a, b. For example,
the inputs may have statistical quirks that actually depend on whether it is a “close” or
“ε-far” instance, which a reduction is not able to generate without knowing the output.

At a high level, the role of the “hard problem” is played by a variant of the well-known
two-way Gap Hamming Distance (GHD) problem [23, 57]. The known GHD lower-bound
variants are insufficient for us precisely because of the above challenge – we need a better
control over the actual hard distribution.Therefore, we study the following Exact GHD
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variant: given x, y ∈ {0, 1}n, with ‖x‖1 = ‖y‖1 = n/2, distinguish between ‖x− y‖1 = n/2
versus ‖x− y‖1 ∈ [n/2 + β, n/2 + 2β]. We show there exists some β ∈ [Ω(

√
n), O(

√
n logn)]

for which communication complexity must be Ω̃(n), by adapting the proof of [57].
Using one instance of Exact GHD, our reduction performs a careful embedding of this

hard instance into the samples from distributions a, b, while patching the set of samples to
look like i.i.d. samples from the two distributions. While we don’t manage to get the output
of the reduction to look precisely like i.i.d. samples from a, b, our reduction produces two sets
of size Poi(t) whose distribution is within a small statistical distance from the distribution
of two set of samples that would be drawn from two distributions a and b which are either
“equal” (when ‖x− y‖1 = n/2) or “far” (when ‖x− y‖1 ∈ [n/2 + β, n/2 + 2β]).

Note that our proof recovers the standard lower bound of Ω̃(n2/3) on samples necessary
to solve closeness testing (in the vanilla setting), albeit not a tight bound [24, 31].

For Independence testing (2pIT), we focus on the lower bound for unbounded number of
samples. We argue such a hardness result under one-way communication only. Our Ω(

√
m)

lower bound uses the Boolean Hidden Hypermatching (BHH) problem [60]. We conjecture
our entire trade-off for the Independence problem is tight. The proof of this conjecture would
have to overcome the challenge of lower bounds for statistical inputs.

Securing the communication protocols. Once low-communication insecure protocols have
been designed, one may try to convert the protocols to secure ones using generic cryptographic
techniques. The latter includes various techniques for secure computation ([61] and followup
work), fully homomorphic encryption ([34] and followup work), or homomorphic secret sharing
([17, 18]). However, a naïve application of such techniques will blow up the communication to
be at least linear in the input size, possibly requiring strong assumptions, a high computation
complexity, or not being applicable to arbitrary computations. The constraint of low-overhead,
among other considerations, requires design of custom protocols.

Our starting point is a technique that falls into the latter category: secure circuits with
ROM [49], a technique that can transform an insecure 2-party protocol to a secure one with
a minimal blow-up in communication, and uses a weak assumption only (OT). In order to
obtain an efficient protocol, however, it only applies to computations expressible via a very
small circuit, whose size is proportional to the target communication, with access to a larger
read-only-memory (ROM) table. Thus, the main challenge becomes to design two-party
testing protocols that fit this required format.

For Closeness Testing (2pCT), we begin with our low-communication non-secure protocol,
and adapt it to be secure by designing a small circuit. One of the main difficulties in designing
such a circuit is that, in the `1- to `2-testing reduction, Alice and Bob need to agree on
an alphabet, which depends on their inputs, without compromising the inputs themselves.
To bypass this, and other issues, we allow Alice and Bob to perform some off-line work
and prepare some polynomial-size inputs (in ROM). First, we devise a method for Alice
and Bob to generate a combined split set S (discussed later) by having each of Alice and
Bob contribute sampled letters to S. Second, we securely estimate the `2 distance of Alice
and Bob’s original, un-splitted samples using techniques from [43]. Finally, we adjust our
approximation by accounting for a few letters which differ from the original alphabet or
which cannot be estimated efficiently. The main focus of our analysis goes into proving our
construction adds only poly-logarithmic communication over the insecure protocol.

We describe the details of our secure protocols, as well as our results on independence
testing, in the full version of this paper.
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2 Preliminaries

Notation. Throughout this paper we denote distributions in small letters, and distribution
samples in capital letters. Unless stated otherwise, any distribution is on alphabet [n], and
domain elements of [n] are addressed as letters.

We also denote any multiplicative error arising from approximation as 1 + α, and any
error or distance of/between distributions as ε. Unless stated otherwise, distance and norms
are referring to the Euclidean distance and `2 norms.

We denote Poisson Random variables with parameter λ > 0 as Poi(λ).

Split Distributions. We use the concept of split distributions from [31] to essentially reduce
testing under `1 distance to testing under `2 distance.

I Definition 2. Given a probability distribution p on [n] and a multiset S of items from [n],
define the split distribution pS on [n+ |S|] as follows. For i ∈ [n], let ai be equal to 1 plus
the number of occurrences of i in S; note that

∑n
i=1 ai = n+ |S|. We associate the elements

of [n+ |S|] to elements of the set E = {(i, j) : i ∈ [n], 1 ≤ j ≤ ai}. Now the distribution pS
has support E and a random draw (i, j) from pS is sampled by picking i randomly from p

and j uniformly at random from [ai].

Recall from [31] that split distributions are used to upper bound the `2 norm of an underlying
distribution while maintaining its `1 distance to other distributions:

I Fact 3 ([31]). Let p and q be probability distributions on [n], and S a given multiset of [n].
Then, (1) We can simulate a sample from pS or qS by taking a single sample from p or q,
respectively; and (2) ‖pS − qS‖1 = ‖p− q‖1.

I Lemma 4 ([31]). Let p be a distribution on [n]. Then: (i) For any multisets S ⊆ S′

of [n], ‖pS′‖2 ≤ ‖pS‖2, and (ii) If S is obtained by taking Poi(m) samples from p, then
E[‖pS‖22] ≤ 1/m.

3 Closeness Testing: Communication-Efficient Protocol

In this section we consider the closeness testing problem 2pCT, focusing on the 2-party
communication complexity only. In the full version of this paper, we show how to modify
the protocol to make it secure.

As mentioned in the introduction, one way to obtain a protocol is to use unequal-size
closeness testing, where Alice has s samples and Bob has t samples: Alice just sends her
s samples to Bob, and Bob invokes a standard algorithm for closeness testing. Using the
optimal bounds from, say, [31], we get the following trade-off for fixed ε: s = Õ(n/

√
t),

with the condition that s, t ≥
√
n. Here we obtain a polynomially smaller communication

complexity, s = Õε(n2/t2), whenever t is above the information-theoretic minimum on the
number of samples. In Section 4, we show a nearly-matching lower bound.

3.1 Tool: approximation via occurrence vectors
Our protocol uses the framework introduced in [31], allowing us to focus on the `2 testing
problem. For `2 testing, we show that we can approximate the `2 distance of two discrete
distributions p, q by approximating the `2 distance of their respective sample occurrence
vectors, defined as follows.
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I Definition 5. Given t samples of distribution p over [n], we define the occurrence vector
X ∈ [t]n such that Xi represent the count of occurrences of element i ∈ [n] in the sample set.

The following lemma bounds how well we need to estimate the `2 distance between
occurrence vectors to distinguish between p = q vs. ‖p − q‖1 ≥ ε. It shows that the more
samples we have, the less accurate the `2 estimation needs to be. Using the framework from
[31], for now it is enough to assume that the `2 norm of both p and q is bounded by U < 1.

I Lemma 6. Let p, q be distributions over [n] with ‖p‖2 , ‖q‖2 ≤ U for some U < 1.
There exists t = O(U · n · ε−2), and α = Ω(U), such that given ∆ which is (1 ± α)-factor
approximation of ‖X − Y ‖22 where X,Y represent the occurrence vectors of t samples drawn
from p, q respectively, then, using ∆, it is possible to distinguish whether p = q versus
‖p− q‖1 > ε with 0.8 probability.

The actual distinguishing algorithm is simple: for fixed α = Ω(U), we merely compare ∆
to some fixed threshold τ (fixed in the proof below). The intuition is that for a given number
of samples, we have some gap between the range of possible distances ‖X − Y ‖22 for each of
the cases. If the number of samples is close to the information-theoretic minimum [24], then
the gap is minimal and we need to calculate almost exactly the distance, hence estimating
the distance between occurrence vectors doesn’t help. However, as the number of samples t
increases, so does the gap between the ranges, allowing for a looser distance approximation.

Proof of Lemma 6. Given t = O(U/ε′2) samples from each p, q, according to [24, Proposi-
tion 3.1], the estimator Z =

√∑
i(Xi − Yi)2 −Xi − Yi/t is a max{ε′, ‖p− q‖2 /8} additive

approximation of ‖p− q‖2 with 0.9 probability. Setting ε′ = ε/(8
√
n), we obtain: (1)

‖p− q‖2 = 0⇒ ‖X − Y ‖22 ≤
ε2t2

4n + 2t; and (2) ‖p− q‖2 > ε/
√
n⇒ ‖X − Y ‖22 ≥

3ε2t2

4n + 2t
Now, suppose ∆ is such that ∆

‖X−Y ‖2
2
∈ (1− α, 1 + α). If ‖p− q‖1 = 0, then ‖p− q‖2 = 0

and hence ∆ ≤ (1 +α)( ε
2t2

4n + 2t) ≤ t( ε
2t

4n + 2 + 2α+ αε2t
4n ). On the other hand, if ‖p− q‖1 > ε,

then ‖p− q‖2 > ε/
√
n and hence ∆ ≥ (1− α)( 3ε2t2

4n + 2t) ≥ t( 3ε2t
4n + 2− 2α− 3αε2t

4n ).
We distinguish the two cases, by comparing ∆ to τ = ε2t2

2n + 2t: namely p = q iff ∆ ≤ τ .
Indeed we argue that t( 3ε2t

4n + 2− 2α− 3αε2t
4n )− τ ≥ τ − t( ε

2t
4n + 2 + 2α+ αε2t

4n ). We have that
ε2t
4n − 2α− 3αε2t

4n ≥ 0, or α ≤ ε2t
4n·(2+3ε2t/4n) . Since t = O(Unε−2), the conclusion follows. J

3.2 Communication vs number of samples
We now provide a (non-secure) protocol for 2pCT with a trade-off between communication
and number of samples.

I Theorem 7 (Closeness, insecure). Fix n > 1 and ε ≤ 2. There exists some constant C > 0
such that for all t ≥ C · max

(
n2/3 · ε−4/3,

√
n · ε−2), the problem 2pCTn,t,ε can be solved

using Õ
(
n2

t2ε4 + 1
)
bits of communication.

The protocol uses Lemma 6 as the main algorithmic tool and proceeds as follows. Bob
generates multi-set S using samples from b and sends S to Alice. Then, Alice and Bob each
simulate samples from aS and bS respectively, and together approximate the `2 difference of
the resulting occurrence vectors using sketching methods [9].

Proof of Theorem 7. We note that, according to Lemma 4, E[‖bS‖22] ≤ t2ε4/n2 and hence
‖bS‖22 = O(t2ε4/n2) with at least 90% probability. Furthermore, since t = Ω(

√
n/ε2), we

have that |S| = O(n) with high probability. From now on, we condition on these two events.

ICALP 2019



15:10 Two Party Distribution Testing

Non-Secure 2pCT(a, b, t)
Alice’s input: t samples from a

Bob’s input: t samples from b

1. Fix α = Ω(t · ε2/n).
2. Bob generates multi-set S using Poi( n2

t2ε4 ) samples from b.
3. Bob sends S to Alice.
4. Alice and Bob recast their samples as being from distributions aS , bS (see Def. 2), and

set AS , BS to be the respective occurrence vectors.
5. Alice and Bob each estimate ‖aS‖2 and ‖bS‖2 up to factor 2; if the two estimates are

not within factor 4, output “ε-FAR”;
6. Alice and Bob approximate ∆ = ‖AS −BS‖22 up to (1 + α) factor, using, say, [9].
7. If ∆ is less than τ = ε2t2

2n + 2t output “SAME”, and, otherwise, output “ε-FAR”.

If ‖aS‖2 6= Θ(‖bS‖2) then distributions are different and we output “ε-far” is step 5.
Otherwise, we have that ‖aS‖22 = O(‖bS‖22) = O(t2ε4/n2). Hence we can use Lemma 6,
where U = O(tε2/n) and α = Ω(U), to claim the correctness of the protocol.

In terms of communication complexity, first, communicating S takes |S| logn = Õ(n2/t2ε4)
bits with high probability. Second, estimating ∆ up to approximation 1 +α takes Õ(1/α2) =
Õ(n2/t2ε4) bits, using standard `2 estimation algorithms [9, 47]. J

I Remark 8. Another application of this protocol is that it can be simulated by a single
party to obtain a space bounded streaming algorithm with the same space/sample trade-offs.
While we are not formalizing this argument in this paper, this can essentially be done by
storing S and sketching ‖AS −BS‖22.

4 Closeness Testing: Communication Lower Bounds

We now prove that the protocol for 2pCT from Section 3 is near-tight, showing the following:

I Theorem 9. Let a, b be some distributions over alphabet [n], where Alice and Bob each
receive Poi(t) samples from a, b respectively, for t ≤ n/ logc n for some large enough c >
1. Then any (two-way) communication protocol Π that distinguishes between a = b and
‖a− b‖1 ≥ 1/2 requires s = Ω̃(n2/t2) communication.

Intuitively, our proof formalizes the concept that in testing distributions for closeness,
“collisions is all that matters”, even in the communication model. This is similar to the
intuition from the “canonical tester” from [59], which shows a similar principle when all the
samples are accessible. Our result can be seen to extending it to saying that the canonical
tester is still the best even if we have more-than-strictly-necessary number of samples that
we could potentially compress in a communication protocol.

To prove the theorem, we rely on the following communication complexity lower bound,
which is a variant of the Gap-Hamming-Distance (GHD) lower bound [23, 57]. Somewhat
surprisingly, there does not seem to be a proof in the one-way communication model, which
would be simpler than the two-way proof from the lemma below.

I Lemma 10. Let n ≥ 1 be even. There exists some β = β(n) ∈ [Θ(
√
n),Θ(

√
n logn)],

satisfying the following. Consider a two-way communication protocol A that, with probability
at least 0.9, for x, y ∈ {0, 1}n with ‖x‖1 = ‖y‖1 = n/2, can distinguish between the case
when ‖x − y‖1 = n/2 versus ‖x − y‖1 − n/2 ∈ [β, 2β]. Then A must exchange at least
Ω( n

logn·log logn·log log logn ) bits of communication.



A. Andoni, T. Malkin, and N. Shekel Nosatzki 15:11

The proof of this lemma is presented in the full version of this paper.

Proof of Theorem 9. The idea is to reduce an instance of the GHD problem from Lemma 10
to an instance of closeness testing by carefully molding the input (x, y) into a couple of
related occurrence vectors (A,B) ∈ Nn ×Nn (recall that an occurrence vector precisely
describes a set of samples).

Fix input vectors x, y, of lengthm = n2

t2 log3 n
, to the above GHD problem. Let ∆ = β(m) =

Ω(
√
m), and δ = 1

2 (‖x− y‖1 −m/2) ∈ {0} ∪ [∆/2,∆]. The case of δ = 0 will correspond to
“same” case (i.e. a = b), and δ ∈ [∆/2,∆] – to “far” case (i.e. ‖a− b‖1 ∈ [1/2, 1]).

Fix d = n/10 and l = C · t · logn (where C is some constant that we shall fix later), which
have the following meaning: each distribution a, b has half mass over [d] items uniformly
(called dense items), and the other half on [l] items uniformly (called large items). When
a = b, these are the same items, and when a 6= b, the large items are the same while the dense
items have supports with a large difference. In particular, the dense items are supported on
sets SA, SB respectively, with |SA| = |SB | = d, and SA ∩ SB = d · ∆−δ

∆ ; we hence also have
that |SA \ SB | = d · δ∆ .

Now for i ≥ 0, let D(i) = Pr[Poi(t/2d) = i], i.e., probability a dense number is sampled i
times (when sampling Poi(t) items from one of the distributions). For simplicity, we write
D(i, j) = D(i) ·D(j). Similarly we define L(i) = Pr[Poi(t/2l) = i] and L(i, j) = L(i) · L(j).
We also set k = Θ(logn), which should be thought of as an upper bound on the count of
any fixed item (whp). The algorithm constructs the occurrence vectors A,B iteratively
coordinate by coordinate. Let mc = m/4−∆.

2pCT Lower Bound Reduction
Input: (x, y) size m input bits for the Exact GHD problem
Output: (A,B) occurrence vectors for Poi(t) samples for the 2pCT Problem.
1. For each i, j ∈ {1, . . . k}, and for each c ∈ [m] (corresponding to a coordinate of x,

y), we take zc = Poi( d∆ ·D(i, j)), and generate zc pairs (i · xc, j · yc) (i.e., we set the
corresponding coordinate of A or B to i or j iff xc = 1 or yc = 1 respectively);

2. For each i ∈ {1, . . . k}, generate Poi(d ·D(i, 0)) pairs (i, 0), and similarly-distributed
number of pairs (0, i);

3. For each i, j ∈ {1, . . . k}, generate Poi(l · L(i, j)−mc · d∆D(i, j)) pairs (i, j);
4. For each i ∈ {1, . . . k}, generate Poi(l · L(i, 0) − m

4 ·
d
∆
∑k
j=1D(i, j)) pairs (i, 0), and

similarly-distributed number of pairs (0, i).
5. Generate the required number of (0, 0) pairs so that A,B have length precisely n;
6. Permute the coordinates of A,B using a common randomly picked permutation over [n].

In each of steps (1)-(5) above, we say we “generate a pair (i, j)” which corresponds to
setting the next coordinate of A and B to i and j respectively. We only use the input vectors
(x, y) in step (1). We note that all random variables are chosen using shared randomness.

We first claim that the above reduction is well-defined, and in particular all arguments of
the Poisson variables are positive.

B Claim 11. All the Poisson random variables from above have positive argument.

Proof. We only need to prove this for steps 3 and 4 as the other ones are obvious. Indeed,
for i, j ≥ 1, we get that l · L(i, j) = t logn · (Ω(1/ logn))i+j = t/ logn · (Ω(1/ logn))i+j−2,
whereas, mc · d∆D(i, j) = O(

√
m · n · (t/2d)i+j) ≤ n2

t log1.5 n
· O(t2/n2) · (O(t/n))i+j−2 ≤

t
log1.5 n

(O(t/n))i+j−2. Thus l · L(i, j)−mc · d∆D(i, j) ≥ 0 for all i, j ≥ 1.
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Similarly, for step 5, for i ≥ 1, we have, l · L(i, 0) = Ω(t · (O(1/ logn))i−1), whereas,
m/4· d∆

∑
j≥1D(i, j) ≤ O(

√
m·n·

∑
j≥1(O(t/n))i+j) ≤ O( n2

t log1.5 n
·(O(t/n))i+1) ≤ O( t

log1.5 n
·

(O(t/n))i−1). We again have l · L(i, 0)−m/4 · d∆
∑
j≥1D(i, j) ≥ 0 as required. C

We now prove the core of the reduction: that the distribution of (A,B) (denoted D̂) is
close to the distribution D of occurrence vectors of Poi(t) i.i.d. samples from (a, b), such
that a = b if ‖x− y‖1 = m/2, and similarly, ‖a− b‖1 ≥ 1/2 when ‖x− y‖1 ≥ m/2 + β. We
will prove that, for distribution of (co-)occurrences of large items is nearly same in the two
instances; and similarly for the dense items. We partition the coordinates of (x, y) in the
following four groups, each corresponding to either occurrences of dense or large items:

large: mc = m/4 − ∆ coordinates for each of (1, 1) and (0, 0) coordinate pairs (i.e.,
coordinates i ∈ [m] where (xi, yi) = (1, 1) or (xi, yi) = (0, 0));
large: m/4 coordinates for each of (1, 0) and (0, 1) pairs;
dense: ∆− δ coordinates for each of (1, 1) and (0, 0) pairs;
dense: δ coordinates for each of (1, 0) and (0, 1) pairs.

Note that this accounts for all coordinates for a pair x, y such that ‖x− y‖1 = m/2 + 2δ.
Next, we compare the distributions of occurrences for large and dense items in the

generated vectors (A,B) as opposed to occurrences of items coming from distributions a, b
defined above. In particular, we consider the distribution of counts ci,j , where i + j > 0,
where ci,j is the number of large items which where sampled i times on Alice’s side and j
times on the Bob’s side; we will refer to them as (i, j) occurrence pairs.

We denote by D̂L, D̂D the distribution of, respectively, large and dense {ci,j}i+j>0
occurrence pairs in (A,B). Similarly, we denote DL,DD the distribution of, respectively,
large and dense {ci,j}i+j>0 occurrence pairs randomly drawn from (a, b). Note that DL,DD
are multinomial distributions, formally defined as follows:

I Definition 12. Fix n, k ≥ 1, vector ~p ∈ Rk+, where
∑k
i=1 pi ≤ 1. The k-dimensional

random variable (M1, . . .Mk) = Mult-0(n; ~p) is obtained by drawing a Multinomial r.v. with
parameters n and probability vector (1−

∑k
i=1 pi, ~p), and dropping the first coordinate.

In particular, DL = Mult-0(l; ~pL) where ~pL = (L(i, j))i,j≥0;i+j>0; DD will be clarified
later. We now deduce D̂L and D̂D. Below we use the fact that the sum of Poisson random
variables is also Poisson.

B Claim 13. D̂L is distributed as Poi(l·~pL). Also D̂D is distributed as Poi(∆−δ
∆ ·d·~pD)+Poi( δ∆ ·

d·~pD0) where ~pD = (D(i, j))i,j≥0;i+j>0 and ~pD0 = (D(i)·1[j = 0]+D(j)·1[i = 0])i,j≥0;i+j>0.

Proof. For i, j ∈ {1, . . . k}, D̂Li,j is distributed as Poi(l · L(i, j)), which is composed of
Poi(mc · d∆D(i, j)) (from the first step: there are mc coordinate pairs (1, 1)), plus Poi(l ·
L(i, j)−mc · d∆ ·D(i, j)) (from the third step).

Similarly, D̂Li,0 (and by symmetric argument also D̂L0,i) is distributed as Poi(l · L(i, 0)),
composed of Poi(m/4 · d∆

∑k
j=1D(i, j)) (from the first step: there are m/4 coordinate pairs

(1, 0)), plus Poi(l · L(i, 0)−m/4 · d∆
∑k
j=1D(i, j)) (from step 4).

For i, j ≥ 1, D̂Di,j are distributed as Poi((∆−δ) · d∆D(i, j)) since there are ∆−δ coordinate
pairs (1, 1). For D̂Di,0 (and similarly D̂L0,i), the distribution is Poi(δ · d∆

∑k
j=1D(i, j)) (from

the first step: there are δ coordinate pairs (1, 0)), plus Poi(d ·D(i, 0)) (from the second step).
This amounts to Poi(d · δ∆

∑k
j=1D(i, j) + d ·D(i, 0)) = Poi(d∆−δ

∆ ·D(i, 0) + d δ∆ · (D(i, 0) +∑k
j=1D(i, j))) = Poi(d · ∆−δ

∆ ·D(i, 0) + d · δ∆ ·D(i)). C
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We prove
∥∥∥D̂ − D∥∥∥

TV
≤ 0.01 + o(1) by showing (i)

∥∥∥D̂L −DL∥∥∥
TV
≤ 0.01 + o(1) and (ii)∥∥∥D̂D −DD∥∥∥

TV
= o(1). We compare D̂L and D̂D versus DL and DD using the following

estimate on the TV distance between Multinomial and Poisson random variables. Note that
the identity of items is not important, as the items are randomly permuted inside the domain,
for both A,B as well as in distributions a, b.

I Theorem 14 ([11]). Let n, k ≥ 1, as well as a vector ~p ∈ Rk+, where p =
∑k
i=1 pi ≤ 1.

Consider the random variable (M1, . . .Mk) drawn from the Multinomial Mult-0(n; ~p). Also
consider the Poisson random variable P = (P1, . . . , Pk) where Pi ∼ Poi(npi). Then the
variables M = (M1, . . .Mk) and (P1, . . . Pk) are at a statistical distance of O(p logn).

By Theorem 14, the TV-distance between DL = Mult-0(l; ~pL) and D̂L = Poi(l · ~pL) is
bounded by: O(logn) ·

∑
i,j≥0;i+j>0 L(i, j) ≤ O(logn) ·

∑
i,j≥0;i+j>0(t/2l)i+j ≤ O(1)/C ≤

0.01 (for sufficiently large constant C).
For (ii), we note DD can be thought of as two distributions, corresponding to: (1) items in

SA∩SB , (2) items in SA4SB . The occurrence counts for (1) are distributed as a Multinomial
MD with parameters |SA ∩ SB | = d · ∆−δ

∆ and probability vector ~pD = (D(i, j))i,j≥0;i+j>0.
By Theorem 14, the TV-distance between MD and the distribution Poi(d · ∆−δ

∆ · ~pD) is
bounded by: O(logn) ·

∑
i,j≥0;i+j>0D(i, j) ≤ O(logn) ·

∑
i,j≥0;i+j>0(t/2d)i+j ≤ O(1/ logn).

For (2), we can only have (i, 0) and (0, j) pairs, and the occurrence counts are distributed
as a MultinomialMD0 = Mult-0(|SA4SB |/2; ~pD0). By Theorem 14, the TV-distance between
MD0 and Poi( δ∆ · d · ~pD0) is at most O(logn) ·

∑
i≥1D(i) ≤ O(1/ logn).

Thus we conclude that the distributions D̂ and D are at a small TV distance. J
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