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Abstract
This paper points at a connection between certain (classical) fine-grained reductions and the
question: Do quantum algorithms offer an advantage for problems whose (classical) best solution is
via dynamic programming?

A remarkable recent result of Ambainis et al. [SODA 2019] indicates that the answer is
positive for some fundamental problems such as Set-Cover and Travelling Salesman. They design a
quantum O∗(1.728n) time algorithm whereas the dynamic programming O∗(2n) time algorithms
are conjectured to be classically optimal. In this paper, fine-grained reductions are extracted from
their algorithms giving the first lower bounds for problems in P that are based on the intriguing
Set-Cover Conjecture (SeCoCo) of Cygan et al. [CCC 2010].

In particular, the SeCoCo implies:
a super-linear Ω(n1.08) lower bound for 3-SUM on n integers,
an Ω(n

k
ck

−ε) lower bound for k-SUM on n integers and k-Clique on n-node graphs, for any
integer k ≥ 3, where ck ≤ log2 k + 1.4427.

While far from being tight, these lower bounds are significantly stronger than what is known to
follow from the Strong Exponential Time Hypothesis (SETH); the well-known nΩ(k) ETH-based
lower bounds for k-Clique and k-SUM are vacuous when k is constant.

Going in the opposite direction, this paper observes that some “sequential” problems with
previously known fine-grained reductions to a “parallelizable” core also enjoy quantum speedups
over their classical dynamic programming solutions. Examples include RNA Folding and Least-
Weight Subsequence.
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1 Introduction

An increasing amount of effort is being dedicated to the question: When and by how much
can quantum algorithms beat classical ones? Perhaps the most successful approach for
getting quantum speedups is using Grover’s search [22], which offers a quadratic improvement
over classical exhaustive search, which is the bottleneck in the best-known algorithms for a
long list of problems. This list includes nearly all problems studied in fine-grained complexity
such as SAT, Orthogonal Vectors, 3-SUM, All-Pairs Shortest Paths, and so on. In fact, none
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8:2 Reductions and Quantum Speedups

of the popular conjectures in fine-grained complexity (e.g. SETH) remain plausible when
Grover’s quantum search is allowed (with one exception, to be discussed shortly). It gives
magical capabilities such as the following theorem.

I Theorem 1 (Quantum Minimum Finding [17]). Let a1, . . . , an be integers accessed by a
procedure P. There exists a quantum algorithm that finds minn

i=1{ai} with success probability
at least 2/3 using O(

√
n) applications of P.

But what about problems whose best known algorithm is via dynamic programming,
not exhaustive search? Could those problems be resilient to quantum speedups? A famous
open question in this context is whether we can solve sequence alignment problems such
Edit Distance and Longest Common Subsequence in truly-subquadratic quantum time. Such
an algorithm could lead to important progress in bioinformatics in the future. The main
challenge is the sequential nature of dynamic programming, which prevents us from using
a Grover-like approach; one first solves the problem on small instances and then combines
them to solve larger and larger instances. None of the steps involve an expensive exhaustive
search. Another example is the Set-Cover problem, which can be solved in O∗(2n) time1
with classical dynamic programming [19], and is conjectured by Cygan et al. [15] to have an
Ω((2− δ)n) lower bound, for all δ > 0. This is the so-called Set-Cover Conjecture (SeCoCo).
Would this popular conjecture remain plausible in a quantum world?

A recent breakthrough of Ambainis et al. [5] shows otherwise. The authors give quantum
O∗(1.728n) time algorithms for Set-Cover and Traveling Salesman, as well as other exponential
speedups for problems such as Graph Bandwidth and Feedback Arc Set. These are problems
where the best known classical algorithm is via dynamic programming. (It is unclear if their
techniques will lead to solving Edit Distance in truly subquadratic quantum time.)

Ambainis et al. find a way to use the quantum minimum finding theorem above to
solve Set-Cover. This can be viewed as a reduction from Set-Cover to a “parallelizable”
core, and for the final algorithm to be fast the reduction should be efficient, qualifying it
as a fine-grained reduction from Set-Cover to some minimum-finding problem. The main
observation here is that the parallelizable-nature of the latter problem allows for further
reductions to the popular problems in fine-grained complexity such as 3-SUM and k-Clique.
Previously, no interesting reductions from Set-Cover to natural problems in P were known,
and this gives a partial resolution to an open question in fine-grained complexity (see Section
5.1 in [39] and the discussion at the end of this paper). The sequential nature of Set-Cover
had been a barrier for reductions as well, and the ideas of Ambainis et al. overcome it. The
next subsection states the results and elaborates on their importance to the landscape of
fine-grained complexity.

Section 3 suggests that this connection between quantum speedups for sequential problems
and fine-grained reductions could be interesting also in the other direction.

1.1 The Consequences to Fine-Grained Complexity
The goal of fine-grained complexity and algorithms is to achieve upper and lower bounds
that are as tight as possible for the computational problems of interest. The lower bounds
are obtained via reductions and are based on a small set of popular conjectures, such as the
Strong Exponential Time Hypothesis (SETH)2 [23, 24], regarding the hardness of certain

1 The notation O∗(·) hides polynomial factors.
2 ETH states that 3-SAT cannot be solved in 2o(n) time. The stronger version, SETH, states that we

cannot solve k-SAT in O((2− ε)n) time for all k.
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core problems, e.g. CNF-SAT. By now, there is a very long and evergrowing list of lower
bounds that are tight up to no(1) factors. See the recent surveys [40, 37]. One of the main
gaps in knowledge, when it comes to this framework, is regarding the connections between
the conjectures. For example, the k-SUM and k-Clique conjectures were used to prove many
lower bound results that SETH (or any other conjectures) seem incapable of proving. Many
conjectures have their own “hardness-class” and the whole theory would be much better if
these conjectures can be supported by SETH or other (but different) conjectures.

k-SUM and k-Clique

The k-SUM problem asks to find k among n given numbers that sum to zero. It can be solved
in O(ndk/2e) time which is conjectured to be optimal up to no(1) factors [3]. The k = 3 case
is the 3-SUM conjecture which is an old and famous conjecture in computational geometry
[20]. This conjecture, for an even k, is supported by the hypothesis that Subset-Sum cannot
be solved in O(2(1/2−ε)n) for some ε > 0. A reduction of Patrascu and Williams [33] gives
an nΩ(k) lower bound for k-SUM assuming the ETH, when k is super-constant.

The k-Clique problem asks to find k among n nodes that form a clique. It can be solved
in O(nω

3 ·k) time3 [32, 18], where ω is the matrix multiplication exponent [38, 21], and this
is conjectured to be optimal (and that ω = 2 + o(1)) [1]. This conjecture, for k divisible
by 3, is supported by the hypothesis that Max-Cut cannot be solved exponentially faster
than its current runtime, since the current-best algorithm by Williams reduces Max-Cut to
k-Clique [36]. The k-SUM conjecture implies an ndk/2e−o(1) lower bound for k-Clique [4],
and the ETH implies an nΩ(k) lower bound for super-constant k [12, 13].

The aforementioned ETH lower bounds do not imply anything for these two problems
when k is constant. No nontrivial SETH-based lower bounds are known, for any constant k.

SeCoCo vs. SETH

In a seminal paper on fine-grained reductions among NP-complete problems, Cygan et al.
[15] introduced SeCoCo and used it to prove tight lower bounds for problems with dynamic
programming solutions. It states that Set-Cover on n elements cannot be solved in (2− δ)n

time, even when the sets have constant size (more formally defined in Section 2). Since then
SeCoCo has been utilized for lower bounds for other NP-hard problems [6, 9, 26, 28].

Currently, SETH and SeCoCo seem incomparable and each of them has some advantages
over the other as a hardness assumption. However, it is likely that SeCoCo will turn out to
be a strictly safer (weaker, more believable) conjecture; there is no known barrier for (tightly)
reducing SAT to Set-Cover and, at least back in 2010, Cygan et al. conjectured that such a
reduction exists. On the other hand, a (tight) reduction in the other way, from Set-Cover to
SAT, would be much more surprising. Unless the reduction is unusual, it would allow one to
use the trivial 2n algorithm for SAT to solve Set-Cover in 2n time in a way that is simpler
(no dynamic programming) and better in some ways (e.g. parallelizable). Even with today’s
knowledge, the latter point demonstrates an advantage of SeCoCo as a basis for reductions: it
gives barriers for (e.g.) solving the end problem without dynamic programming. Meanwhile,
SETH enjoys other benefits: First, it is much more popular. Second, SAT has been more
extensively studied than Set-Cover in many areas such as complexity theory and verification.
And third, refuting it implies some (weak) circuit lower bounds; this does not make it more
believable, but it does “raise the stakes” in a way that is not known for SeCoCo. The reader
is referred to [15, 31, 2, 27] for other discussions on the matter.

3 The bound is slightly more complicated bound when k is not divisible by 3.
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8:4 Reductions and Quantum Speedups

New Results

The main result of this paper is an extraction of fine-grained reductions from the quantum
algorithms of Ambainis et al. leading to the first nontrivial lower bounds in P that are
based on the Set-Cover Conjecture. The lower bounds can be based on a weaker form of the
conjecture (discussed in Section 2) where sets are allowed to have size up to no(1). The full
version of the paper shows the same lower bound for the k-Orthogonal Vectors problem, via
a minor modification to the reductions.

I Theorem 2. Let k ≥ 3 and4 ck = k · H(k−1) = log2 (k − 1) + k · log k
k−1 . If for some

ε > 0, either
the k-Sum problem on n integers, or
the k-Clique problem on n node graphs and n2−ε edges,

can be solved in O(n
k

ck
−ε) time, then the (weak) SeCoCo is false.

Recall that the conjectured lower bounds are 1/ck = 1/2 for k-SUM and 1/ck = 2/3 for
k-Clique. Whereas here, as k grows, the function ck approaches log2 k+ 1.4427, which means
that the lower bound is approximately Ω(n

k
log k ). It is non-trivial for k-Clique for all k ≥ 9,

while for k-SUM (where the input size is smaller) it is meaningful already in the most famous
case of k = 3.

I Corollary 3. If 3-SUM on n integers can be solved in O(n1/H(1/3)−ε) = O(n1.089−ε) time,
for some ε > 0, then the (weak) SeCoCo is false.

Perhaps the most exciting aspect of these results is that one can finally have a concrete
lower bound for k-Clique and k-SUM for constant k. For instance, it implies an n10 lower
bound for 211-Clique and 211-Sum. These two problems are canonical in parameterized
complexity as they can be reduced to many other problems while preserving the boundedness
of the natural parameter. Thus, the SeCoCo conjecture implies concrete lower bounds for all
those other problems as well, when the parameter is a fixed constant. It is still an important
open question to prove such lower bounds with a fixed ck > 0 that is independent of k.

Replacing SeCoCo with SETH is a big open question. It is likely to be possible; in
particular, it would follow if a reduction from SAT to Set-Cover is found. Such a reduction
was conjectured to exist by Cygan et al. [15]. Notably, this suggests a barrier for proving
much higher lower bounds for 3-SUM. It is known that the nondeterministic version of SETH
(NSETH) rules out a SETH lower bound for 3-SUM of Ω(n1.5+ε) [11], and by the conjecture
of Cygan et al. this is also a barrier for SeCoCo-based lower bounds.

Further open questions are discussed at the end of the paper. Since the algorithms of
Ambainis et al. [5] for Set-Cover and for TSP are very similar, the exact same lower bounds
above can be based on a corresponding assumption about the hardness of TSP. The modified
proofs are deferred to the full version of the paper.

Less-Fine-Grained Complexity: Linear vs. Super-Linear

Traditional complexity theory classifies problems into polynomial (efficient) vs. super-
polynomial (inefficient). Due, in part, to the increase in the data sizes this classification
is now viewed as often being too coarse. Fine-Grained complexity’s goal is to get a more
exact classification that will be more relevant in many scenarios. It is natural to view the

4 Let H(p) be the binary entropy function on p ∈ [0, 1]. See Section 2.
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first-order goal of such a theory as: classifying problems into near-linear time solvable ones,
those that can be solved “efficiently” even in “Big-Data” settings, vs. the ones that require
super-linear time to solve. The latter set of problems will have to be relaxed before they can
be solved at large scales. The more valuable and pleasing exact classification can be viewed
as the next-step after this less-fine-grained classification is achieved.

This less-fine-grained classification has been conditionally achieved for a long list of
problems, and the results of this paper strengthen the foundations for some of these results.
For example, many problems in computational geometry are 3-SUM-hard in the sense that
there is a linear-time reduction from 3-SUM to them. If these problems can be solved in
near-linear time, then 3-SUM can, which is conjectured to be impossible (by a much weaker
version of the 3-SUM conjecture). But what are other justifications for these “lower bounds”?
Corollary3 gives a new one: such near-linear time algorithms would refute SeCoCo.

1.2 Other Related Work
Another connection between fine-grained complexity and quantum computing was recently
demonstrated by Chen and Wang [14]. The authors show that a fast and communication-
efficient quantum protocol for a function f implies a fast classical approximate counting
algorithm for a related pair counting problem. They instantiate this connection in order to
show a new approximate counting algorithm for the #-Orthogonal-Vectors problem.

A very recent paper by Khadiev [25] suggests a new quantum dynamic programming
approach for problems on DAGs. It will be interesting to see if fine-grained reductions can
be extracted.

2 Fine-Grained Reductions

Preliminaries

The standard notation [n] = {1, . . . , n} will be used throughout the paper. The starting
point of the reductions in this paper is Set-Cover.

I Definition 4 (The Set-Cover Problem). Given m sets over the universe U = [n], return the
minimum number of sets required to cover U .

The Set-Cover Conjecture (SeCoCo) of Cygan et al. states that the problem requires
2n−o(n) time, even when all sets have constant size. Krauthgamer and Trabelsi [27] demon-
strate that the Log-Set-Cover Conjecture, where the sets can have size up to O(logn), is
equally useful but potentially more believable. They show that refuting it implies a break-
through algorithm for Directed Hamiltonicity and Directed n-Tree. For the lower bounds in
this paper, an even more relaxed conjecture is sufficient5, where the sets are allowed to be of
any size no(1). Note that this automatically bounds the number of sets by m = 2o(n) which
will be negligible.

The Weak Set-Cover Conjecture. No algorithm can solve Set-Cover over the universe [n]
with sets of size no(1) in time O((2− δ)n) where δ > 0.

The main idea in the reductions, which is the crux of the quantum algorithms in [5],
is an unusual split-and-list where all subsets of [n] of size up to d = n/k are enumerated.
The analysis will rely on the following approximation of binomial coefficients, bounding the
number of such sets:

5 Although the stronger assumption would allow to extend the lower bound for larger values of k beyond
n1−Ω(1).

ICALP 2019



8:6 Reductions and Quantum Speedups

I Lemma 5 (Entropy Approximation). For all 1 ≤ d ≤ n/2,(
n

≤ d

)
=

d∑
i=1

(
n

d

)
≤ 2H(d/n)·n,

where H(ε) = −(ε log2 ε+ (1− ε) log2(1− ε)) is the binary entropy of 0 ≤ ε ≤ 1.

Observe that H(1/k) = log2 k+O(1)
k . In the proofs, the following bounds will be used

for any 1 ≤ k ≤ nε where ε < 1:
(

n
≤n/k

)
≤ 2H(1/k)·n and when t = no(1) then

(
n

≤n/k+t

)
≤

2(H(1/k)+o(1))·n. The last inequality follows because
(

n
≤n/k+t

)
≤ no(1) ·

(
n

n/k+t

)
≤ no(1) ·(

n
(1+o(1))·n/k

)
≤ 2H((1+o(1))/k)·n+o(n) ≤ 2(1+o(1))·H(1/k)·n+o(n) ≤ 2(H(1/k)+o(1))·n.

Key Observation

Following the notation in Ambainis et al., for a set system S over a universe U we denote
the size of the minimum set-cover by f(U,S). By definition, it follows that for any k sets
U1, . . . , Uk with union equal to U and any S:∑

i=1
f(Ui,S) ≥ f(U,S)

The central claim for all the reductions in this paper (and the quantum algorithm of Ambainis
et al.) states that the above will be an equality in some cases.

B Claim 6. If all sets in a set system S over a universe U have size at most t then for all
integers k ≥ 2 such that t < n/k there exist k disjoint subsets U1, . . . , Uk ⊆ U each of size
between n/k − t and n/k + t such that their union is equal to U and:

k∑
i=1

f(Ui,S) ≤ f(U,S).

Proof. Let C ⊆ S be a minimum set-cover of U of size ` = f(U,S). To define a partition of
U we consider this process: Start from an empty set X and add to it elements from U in
the following way. Pick an arbitrary ordering of the sets in C = {S1, . . . , S`} and go through
them in order, at the ith step we add all elements of Si to X, unless they were already
present.

Two observations about this process: (i) Since C is a Set-Cover we will end up with
X = U . And (ii) all sets in S have size at most t and therefore each step can add up to t
elements to X.

Define the sets U1, . . . , Uk as follows. U1 contains all elements added to X up until the
earliest step in which |X| became n/k or greater. Due to observation (ii) this guarantees
that U1 contains at most n/k + t− 1 elements. U2 contains “the next” about n/k elements,
and so on. More formally, Ui contains all elements added to X after the step in which its
size became ≥ i · n/k and up until the step in which its size became ≥ (i+ 1) · n/k. Again,
due to observation (ii) the size of each Ui is upper bounded by n/k + t and lower bounded
by n/k − t. The sets are disjoint by definition and their union is equal to U .

Finally, we prove the inequality by arguing that each Ui can be covered separately using
only the sets from C. This is because one can choose exactly the sets that are responsible for
adding the elements to Ui in the process in order to cover Ui. This is a cover by construction
and thus f(Ui,S) is upper bounded by this number of sets. And since the sets responsible
for each Ui are different, the total number we choose for all the Ui’s is exactly |C|. Thus,∑k

i=1 f(Ui,S) ≤ |C| = f(U,S). C
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Intermediate Problems

This now allows for two preliminary reductions from Set-Cover to a parameterizd version of
Exact Cover and to a simpler version of the k-Orthogonal-Vectors problem.

I Definition 7 (The k-Exact-Cover Problem). Given k lists of sets, each containing N subsets
of the same universe U , decide if there are k subsets, one from each list, that are an exact
cover of U , that is, they are disjoint and their union is equal to U .

The following reduction from Set-Cover to this problem is a combination of existing
tricks with the core idea of the algorithm by Ambainis et al. which is the enumeration of all
subsets of [n] of size equal to n/k up to plus-or-minus the size of a set in the instance, and
the preprocessing of their solutions. The correctness will follow from the above key claim.

I Lemma 8. For all 2 ≤ k ≤ nε where ε < 1, the Set-Cover problem on n elements and
m sets of size no(1) can be reduced to 2o(n) instances of the k-Exact-Cover problem on k

lists of N ≤ 2H(1/k)·n+o(n) subsets over a universe U of size n. The reduction runs in time
2H(1/k)·n+o(n).

Proof. First, reduce Set-Cover to the decision version: is there a set-cover of size exactly
`? This can be done simply with an overhead of n in the number of instances by trying all
possible values for 1 ≤ ` ≤ n, and returning the smallest one with a positive answer. Thus,
it is enough to only consider the decision version.

The goal is to look for a partition of U into k sets that can be covered separately
at no extra cost, as promised by Claim 6. Let U1, . . . , Uk be such sets, and let α′ =
(f(U1,S), . . . , f(Uk,S)) be the k-tuple of the sizes of their minimum covers. Note that for
all i: f(Ui,S) ≤ |Ui| ≤ n/k + t where t = no(1) is an upper bound on the size of the given
sets. As a second preliminary step, we enumerate all tuples α of k numbers in [n/k + t]
that sum to `, in an attempt to guess α′, and for each tuple there will be an instance of
k-Exact-Cover. The total number of tuples is at most (n/k + t)k = 2o(n). From now on fix a
tuple α = (α1, . . . , αk).

Enumerate all subsets of U that are of size up to n/k + t, call this collection P. In a
preprocessing step, compute the minimum set-cover f(P,S) for all sets P ∈ P. This can
be done in O(|P| ·m) time: In the classical dynamic programming algorithm we compute
f(X,S) for increasingly larger sets via the formula f(X,S) = minS∈S{f(X \ S,S) + 1}. Do
the same, but do not process sets such that |X| > n/k + t. Thus, the total running time for
this step, which is the most expensive in the reduction, is O(

(
n

≤n/k+t

)
·m) ≤ 2H(1/k)·n+o(n).

For all i ∈ [k], the ith list Li in the k-Exact-Cover instance contains all sets P ∈ P whose
minimum set-cover size matches the guess in α, that is,

Li = {P ∈ P | f(P,S) = αi}.

This completes the reduction: at least one of the k-Exact-Cover instances (for some tuple α)
is a yes-instance, if and only if there is a set-cover of size `.

For the correctness, observe that for any α and any k sets X1 ∈ L1, . . . , Xk ∈ Lk whose
union is equal to U we have that f(U,S) ≤

∑k
i=1 f(Xi,S) = `. Thus, if one of the k-Exact-

Cover instances is a yes, then f(U,S) ≤ `. For the other direction, assume that there is a
set-cover of size ` and consider the partition U1, . . . , Uk promised by Claim 6 and let α = α′

above be the tuple of minimum set-cover sizes for the k sets in that partition. The instance
corresponding to this α is a yes-instance because each Ui will exist in Li and their union is
equal to U and, moreover, they are disjoint. J

ICALP 2019



8:8 Reductions and Quantum Speedups

The second intermediate problem superficially looks like the k-Orthogonal-Vectors problem
(which is the canonical problem for SETH-based lower bounds) but it is in fact easier and is
more closely related to k-Clique.

IDefinition 9 (The k-Pairwise-Disjoint-Sets Problem, or k-Pairwise-Orthogonal-Vectors). Given
k lists of sets, each containing N subsets of the same universe U , decide if there are k subsets,
one from each list, that are pairwise disjoint.

The reduction is also by a combination of existing tricks with the key claim.

I Lemma 10. For all 2 ≤ k ≤ nε where ε < 1, the Set-Cover problem on n elements and m
sets of size no(1) can be reduced to 2o(n) instances of the k-Pairwise-Disjoint-Sets problem
on k lists of N ≤ 2H(1/k)·n+o(n) subsets over a universe U of size n. The reduction runs in
time 2(1/k+H(1/k))·n+o(n).

Moreover, in all instances, each subset can be disjoint to at most 2(1−1/k)·H( 1
k−1 )·n+o(n)

others.

The last sentence of the lemma will be helpful in reducing the sparsity of the k-Clique
instances later on.

Proof. The proof is similar to the one of Lemma 8 with a bit more. The additional challenge
here is that the end problem does not check that the union of the sets is equal to U , only
that they are disjoint. The trick to handle this is yet another guessing step making sure that
the sizes of the sets we are choosing sums up to n (before, we only checked that the sum of
their min covers is equal to `).

First, as before, we reduce to the decision version, and also enumerate k-tuples α ∈
[n/k + t]k with sum `, that try to guess the values f(Ui,S) in the partition U1, . . . , Uk

promised by Claim 6. The additional step here is to also enumerate all k-tuples β ∈ [n/k+ t]k
with sum equal to |U | = n, that try to guess the values |Ui|. The number of β’s is also upper
bounded by 2o(n). From now on fix both an α = (α1, . . . , αk) and a β = (β1, . . . , βk).

Then, as before, we enumerate the collection P of all subsets of U of size up to n/k + t,
and compute f(P,S) for each P ∈ P. These computations can be done with dynamic
programming in a total of 2H(1/k)·n+o(n) time.

For all i ∈ [k], the ith list Li in the k-Pairwise-Disjoint-Sets instance contains all sets
P ∈ P whose minimum set-cover size matches the guess in α and their size matches the
guess in β, that is,

Li = {P ∈ P | f(P,S) = αi and |Ui| = βi}.

This completes the reduction: at least one of the k-Pairwise-Disjoint-Sets instances (for some
tuples α, β) is a yes-instance, if and only if there is a Set-Cover of size `.

For the correctness, observe that for any α, β and any k sets X1 ∈ L1, . . . , Xk ∈ Lk that
are disjoint, we have that f(U,S) ≤

∑k
i=1 f(Xi,S) = ` and |X1 ∪ · · · ∪Xk| =

∑k
i=1 |Xi| =∑

i βi = n. The latter implies that the sets cover the entire U . Thus, if one of the k-Exact-
Cover instances is a yes, then f(U,S) ≤ `. For the other direction, assume that there is a
set-cover of size ` and consider the partition U1, . . . , Uk promised by Claim 6 and let α be
the tuple of minimum set-cover sizes for the k sets in that partition, and β be the tuple of
their sizes. The instance corresponding to this α, β pair is a yes-instance because each Ui

will exist in Li and they are disjoint.
Finally, observe that each subset in our instances has size at least n/k, and therefore it

can be disjoint to at most(
n− n/k
n/k + t

)
= 2(1−1/k)·H( 1

k−1 )·n+o(n)

other sets in every instance. J
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2.1 The Reduction to k-SUM
The following version of k-SUM is convenient for reductions.

I Definition 11 (The k-SUM Problem). Given k lists of N numbers in [M ] and a target
number t ∈ [M ], decide if there are k numbers, one from each list, that sum to t.

This “list” or “colored” version is equivalent to the more natural version (where we only
have one list and/or where the target is fixed to t = 0) up to a k factor in the number of
numbers and a k factor in their size.

The reduction to k-SUM is by a simple encoding of the k-Exact-Cover problem.

I Theorem 12. For all 2 ≤ k ≤ nε where ε < 1, the Set-Cover problem on n elements and
m sets of size no(1) can be reduced to 2o(n) instances of the k-SUM problem on k lists of
N = 2H(1/k)·n+o(n) integers and a target, where the numbers are n · dlog2 ke = O(k logN)
bits long. The reduction runs in time 2H(1/k)·n+o(n).

Proof. First, reduce Set-Cover instance to 2o(n) instance of k-Exact-Cover, as in Lemma 8,
and then reduce each instance to an equivalent k-SUM instance. The k-Exact-Cover instances
have k lists of N ≤ 2H(1/k)·n+o(n) subsets over the universe U = [n].

The following is a natural mapping g from sets X ⊆ [n] to (n · log2 k) bit integers: for all
i ∈ [n], the bit number (i− 1) · dlog2 ke+ 1 in g(X) is set to 1 if i ∈ X and to 0 otherwise.
All other bits are set to 0, and these are just “buffers” of length log2 k that prevent the
sum of k numbers to carry over from one “interesting” location to another. Another way to
think of the mapping is as writing a number in base k where the ith digit is 1 if i ∈ X and 0
otherwise.

Let Li be the i-th list in the k-Exact-Cover, and we will map it into a list of integers
Li by encoding each set X ∈ Li with the integer g(X). The target sum t for the k-SUM
instance is the number g(U), or in other words, the number that is all 1 in base k. This
completes the reduction.

For the correctness, one can check that for any k sets X1, . . . , Xk:
∑k

i=1 g(Xi) = g(U) if
and only if the Xi’s are disjoint and X1 ∪ · · · ∪Xk = U . J

This proves the k-SUM part of the main theorem, and the lower bound for 3-SUM.

2.2 The Reduction to k-Clique
A reduction from k-SUM on n numbers to no(1) instances of k-Clique on n nodes is known
[4], and it can be used directly to get the desired result. However, the instances generated by
that reduction could be dense (m = n2 edges), whereas the following direct reduction from
Set-Cover gives the same result but on sparser graphs.

The following version of k-Clique is most convenient for reductions and is equivalent up
to a factor k.

I Definition 13 (The k-Clique Problem). Given a k-partite graph with N nodes in each part
and M edges, decide if there is a k-clique (with one node in each part).

The reduction to k-Clique is almost immediate after one goes though the k-Pairwise-
Disjoint-Sets problem.

I Theorem 14. For all 2 ≤ k ≤ nε where ε < 1, the Set-Cover problem on n elements and m
sets of size no(1) can be reduced to 2o(n) instances of the k-Clique problem on k partite graphs
of N = 2H(1/k)·n+o(n) nodes and M = 2(H(1/k)+(1−1/k)·H( 1

k−1 ))·n+o(n) edges. The reduction
runs in time 2H(1/k)·n+o(n).
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Proof. First, reduce Set-Cover instance to 2o(n) instance of k-Pairwise-Disjoint-Sets, as in
Lemma 10, and then reduce each instance to an equivalent k-Clique instance. The nodes
correspond to the sets and two nodes are connected by an edge iff the corresponding sets are
disjoint. A k-clique corresponds directly to k pairwise-disjoint sets, and the correctness of
the reduction is immediate. The parameters in the statement follow from the parameters in
Lemma 10, including the bound on the number of edges which is:

M = N · 2(1−1/k)·H( 1
k−1 )·n+o(n). J

This proves the k-Clique part of the main theorem. A corollary of this reduction is an
Ω(M1.01−ε) lower bound for 9-Clique on M edge graphs under the Set-Cover Conjecture.

3 Quantum Algorithms

This section goes in the other direction and discusses a few examples where previously known
fine-grained reductions from a “sequential problem” to a “parallelizable core” can be used to
obtain quantum speedups. While these arguments are not the simplest way to obtain such
quantum speedup, they may still be interesting conceptually.

The first example is from the work of Künnemann et al. [29] who investigated the
fine-grained complexity of one-dimensional dynamic programming. Their results center
around instantiations of a generic Least-Weight Subsequence (LWS) problem where: Given
an ordered sequence of n data items, with a succinctly represented function that assigns a
weight to each pair, find a (non-contiguous) subsequence of the data points that minimizes the
total weight of pairs adjacent in the subsequence. The problem can be instantiated by fixing a
weight function, and it can model basic questions such as the coin change problem and finding
the longest chain of nested boxes. The authors prove subquadratic-equivalences between
these problems and a parallelizable core such as the (min,+)-Convolution problem or vector
domination. Thus, classically these problems are unlikely to be solvable in subquadratic time.
However, since the parallelizable core problems are easy to solve in O(n2−ε) time for some
ε > 0 (and even linear time) for Grover’s search, their reductions lead to O(n2−ε) quantum
time algorithms for coin change, finding the longest chain of nested boxes, and many other
problems as well.

Another example is the RNA Folding problem from bioinformatics and the related
problems of Language Edit Distance and Stochastic Context-Free Grammar Parsing. These
problems can be solved in cubic time with dynamic programming, and a reduction a la
Valiant’s Parser [35] shows that each of these problems can be solved in the same time as
the (min,+)-matrix multiplication problem, or distance product, which is equivalent to All
Pairs Shortest Paths and many other problems [41]. In fact, this reduction was recently used
by Bringmann et al. [10] to improve the upper bound to O(n2.8244) by utilizing a special
structure in the (min,+)-matrix multiplication instances produced by the reduction. This
is the fastest classical algorithm to date for each of these problems. Can it be improved
with a quantum algorithm? Yes, even without any special structure, the (min,+)-matrix
multiplication problem is parallelizable and can be solved in O(n2.5) time, and via Valiant’s
reduction, so can these problems. A detailed exposition of these reductions can be found
in [10], and related examples on how to incorporate such quantum matrix multiplication
algorithm to solve combinatorial problems can be found in [30].
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4 Open Questions

The results in this paper lead to the following thoughts.

From a technical perspective, the reductions in this paper and the quantum algorithms of
Ambainis et al. are via an unusual split-and-list approach: it is less efficient, increasing
the search space size from 2n to 2

k
H(1/k) ·n, but it can simplify the structure of the space. Is

this approach fruitful in other settings, not only when the problems are hard to parallelize?
Can it be applied to SAT to get SETH-based lower bounds, that may not be tight, but
could have a whole new flavor?
The efficiency of the reductions does not exactly match that of the quantum algorithm for
Set-Cover, since the algorithm benefits from more asymmetry in the splitting6. However,
it is plausible that better quantum algorithms will lead to better reductions (and lower
bounds), and vice versa. Intuitively, the best result one can hope for, without refuting
conjectures, is to solve Set-Cover in

√
2n quantum time and extract an nk/2 (classical)

lower bound for k-SUM (which would be tight, for an even k) and for k-Clique (which
would be tight if proven for sparse enough graphs). Perhaps this can be achieved by
incorporating some of the ideas from the more technically involved works on Set-Cover,
e.g. [8, 31, 7, 34], into the currently simple reduction/algorithm. This would be an
exciting finding.
Proving an Ω(nεk) lower bound for k-Clique for a fixed ε > 0 (ideally ε = 2/3) under
SETH (or even under SeCoCo) is still an important open question. The results here give
a qualitatively similar results for k that is a small constant, but one would hope for more.
This issue is often considered related to the frequently raised question: Does SETH (or
SeCoCo) imply an (1 + ε)n lower bound for 3-SAT or 100-SAT for any fixed ε > 0?
The open question of whether SeCoCo implies lower bounds for problems in P was
only answered in a limited sense here. Yes, interesting lower bounds for k-Clique and
k-SUM can be derived, but the real intent behind the question is: Can SeCoCo give
interesting lower bounds in P that other “established” or popular conjectures are incapable
of proving? The results here do not qualify, but perhaps they will lead to such results.
Can the structure of Set-Cover be utilized further in order to prove similar lower bounds
for easier problems? A natural candidate is the (min,+)-Convolution problem which is
considered to be the easiest problem without a truly subquadratic time algorithm [16].
In [5], the quantum speedup over classical dynamic programming for the Graph Bandwidth
problem is more substantial than it is for Set-Cover and TSP. The best classical algorithm
has O∗(5n) complexity while the quantum one runs in time O∗(2.945n), which is quite
close to

√
5n. This suggests that if one reduces the Graph Bandwidth problem to problems

in P, e.g. 3-SUM, a tighter relationship could be established, leading to higher “conditional
lower bounds”. This is more challenging than reducing from Set-Cover due to the more
complicated nature of their quantum algorithm.
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