
it – Information Technology 2019; aop

Self-Portrayals of GI Junior Fellows

Andreas Vogelsang*

Explainable software systems
https://doi.org/10.1515/itit-2019-0015
Received May 14, 2019; accepted May 14, 2019

Abstract: Software and software-controlled technical sys-
tems play an increasing role in our daily lives. In cyber-
physical systems, which connect the physical and the dig-
ital world, software does not only influence how we per-
ceive and interact with our environment but software also
makes decisions that influence our behavior. Therefore,
the ability of software systems to explain their behavior
and decisions will become an important property that will
be crucial for their acceptance in our society. We call soft-
ware systems with this ability explainable software sys-
tems. In the past, we have worked on methods and tools
to design explainable software systems. In this article, we
highlight some of our work on how to design explain-
able software systems.More specifically,wedescribe anar-
chitectural framework for designing self-explainable soft-
ware systems, which is based on the MAPE-loop for self-
adaptive systems. Afterward, we show that explainabil-
ity is also important for tools that are used by engineers
during the development of software systems. We show ex-
amples from the area of requirements engineering where
we use techniques from natural language processing and
neural networks to help engineers comprehend the com-
plex information structures embedded in system require-
ments.

Keywords: Explainability, quality attributes, cyber-physi-
cal systems

ACM CCS: Software and its engineering → Software cre-
ation and management → Designing software, Software
and its engineering → Software organization and proper-
ties → Extra-functional properties

1 Introduction
Explainability has recently gained attention due to re-
search efforts on Explainable AI. Complex algorithms from
the field of deep learning reveal the demand for additional
information on the output of the algorithm to be able to
comprehend, assess, and finally accept and trust the algo-

*Corresponding author: Andreas Vogelsang, Technische Universität
Berlin, Berlin, Germany, e-mail: andreas.vogelsang@tu-berlin.de

rithms. Whereas projects on Explainable AI focus on ex-
plaining machine learning results, many cyber-physical
systems (CPS) make context-dependent decisions that are
not based onML. Nevertheless, in many cases, it is not ob-
vious for the user of a system why the system behaves in a
certain way.

This shows that explainability is a challengenot solely
for deep learning but for any software system that reaches
a certain level of complexity. In a time, where systems be-
come more and more connected, autonomous, and inter-
active, users and society notice the need to understand
what systems are doing and why they are doing that. Just
as we have the same need when interacting with other hu-
mans, we would like to ask systems questions like: “why
did you do that?”, “why not something else?”, “can I trust
you?” or even better, we would like the systems to pro-
vide us with explanatory information while they are run-
ning.

We call systems that have the ability to answer such
questions explainable software systems.We use the follow-
ing informal definition of this term: An explainable soft-
ware system provides hints or indication on the rationale
why the system made a decision. An extended property
that builds upon explainability is actionability. An action-
able software system provides hints or indication for how
the user can influence system decisions by changing the
system’s environment (e. g., its inputs).

Making software systems explainable needs to be con-
sidered from the beginning of the development—similar
to other quality attributes. In this article, we highlight ex-
plainability from two directions. First, we introduce an
architectural framework that can be used to build self-
explainable software systems by adding components for
monitoring and analyzing the demand for explanations
and then creatinguser-specific explanations. Secondly,we
show the importance of explanations also for tools that are
used by engineers during the development of software sys-
tems.

We are convinced that explainability is a key charac-
teristic that needs to be addressed for the engineering of
future software systems.

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 03.07.19 14:31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/222444422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1515/itit-2019-0015
mailto:andreas.vogelsang@tu-berlin.de


2 | A. Vogelsang, Explainable software systems

2 Designing self-explainable
software systems

The complexity of software systems is constantly increas-
ing because they control more and more complex pro-
cesses in the physical world, possibly with multiple users,
changing contexts, and changing environmental condi-
tions. Hence, their software is distributed, concurrent, and
combines discrete and continuous aspects. Due to this
complexity, it becomes increasingly difficult for engineers,
but also users, auditors, and other stakeholders, to com-
prehend the behavior of a system. Thus, it will be increas-
ingly relevant for future software systems to explain their
behavior to their stakeholders. This is essential to improve
the trust and understanding between the user and the sys-
tem [6], to enhance collaboration, and to increase confi-
dence [5].

Our vision is to enable the development of self-
explainable systems that can – at run-time – answer ques-
tions about their past, current, and future behavior (e. g.,
why a certain actionwas taken,what goals the system tries
to achieve and how).

An example of an ambiguous action that might need
explanation could be that a user in an autonomous car
wishes to know an answer to the following question: “Why
are we leaving the highway?” Here, the observed behavior
is “leaving the highway”. However, there could be several
explanations for the behavior, e. g., “We are leaving the
highway…”
– “…because there is a traffic jam ahead”; or
– “…because we reached our travel destination”; or
– “…because we need to drive to a gas station”.

Adding such self-explainability capabilities, however, is
difficult. Self-explainability requires that the system has
some understanding (i. e., a model) of itself, its environ-
ment, the requirements that it shall satisfy, and more: an
understanding of the stakeholder that requires an expla-
nation, and mechanisms that can reflect on the current
behavior and provide hindsight and foresight. To date,
there is no requirements engineering or design method-
ology for building such systems, and there is no refer-
ence framework for building self-explainable systems. We
propose such a reference framework for building self-
explainable systems, which is based on theMAPE-loop for
self-adaptive systems [4].

To achieve this, we proposed the MAB-EX framework
as depicted in Figure 1. Similar to the MAPE-loop, we first
Monitor the control system, its environment, and possibly
also the recipient. To this end,we capture and sample rele-

Figure 1: The MAB-EX framework for (self-)explainable software
systems.

vant sensor data, (a history of) commands from controller
components, and possibly also a history of user-system in-
teractions and former explanations.

Then, we Analyze the monitored data to detect an ex-
planation need. This need can either be triggered because
a recipient requires it (e. g., “Why are we leaving the high-
way?”) or because the system showsbehavior that requires
an explanation (e. g., “We are slowing down soon because
the road ahead is in poor condition.”). The latter can be
detected by identifying deviations from formerly observed
behavior that might indicate an explanation need. Exam-
ples are irregularities in the monitored sensor data or sud-
den changes in the way the user interacts with the sys-
tem. In the former case, we additionally need to analyze
whether the change can be expected, e. g., due to user
interaction. Furthermore, the history of controller com-
mands or user commands can be analyzed to identify aim-
less sequences of interactions (e. g., contradicting com-
mands over time that lead to nowhere). In case of explana-
tion queries from the recipient, the query can be processed
in this phase.

Instead of planning new behavior like in the MAPE-
loop, our third phase is to Build an explanation by evalu-
ating an internal model of the system, which we call ex-
planation model, based on the currently monitored sys-
tem behavior, in order to extract relevant information. An
explanation model is a behavioral model of the system
that captures causal relationships between events and sys-
tem reactions. It allows for identifying possible causes for
the behavior that needs to be explained, e. g., traces of
events that may lead to the behavior. It may also allow for
look-ahead simulation to enable answering questions like
“What happens if…?” or “When will …be possible again?”
Possible implementations for an explanation model could
be fault/decision trees that connect observations to possi-
ble reasons [1], or executable behavior models (e. g., state
machines). Suchmodels may be constructed from require-
ments or from a behavior model, constructedmanually, or

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 03.07.19 14:31



A. Vogelsang, Explainable software systems | 3

learned fromobservations. Synthesized explanations from
thesemodels are not yet in a recipient-understandable for-
mat. With recipient, we refer to the addressee of an expla-
nation, which can be a user or an engineer.

Thus, the fourth and last phase is to EXplain the be-
havior in question to the recipient, meaning to transfer
the result of the building phase to an understandable ex-
planation for the target group. The explanation should be
target-specific, as, e. g., an engineer might need more de-
tailed information than a user, and a user might not un-
derstand technical terms that are useful for the engineer.
To this end, we use a recipient model, e. g., mental model
of a human recipient or an explanation interface between
control software of different systems (e. g., to allow for col-
laborative learning and operation). It describes the pref-
erences of the recipient w. r. t. explanation format (e. g.,
textual, image, voice, or machine-processable) and kind
of information that should be included in an explanation
(e. g., level of abstraction, points of interest). These recipi-
ent models can range from general mental models for tar-
get groups (e. g., engineers vs. users) tomodels for individ-
ual users.

As both, the system that needs to be explained and the
recipient of the explanation may evolve over time or are
subject to uncertainties at design time (about the system
behavior, its operational context, and the recipient and
its preferences), we include a Model Learning component
into our framework that is responsible for updating both
our explanationmodel and our recipientmodel. To update
the recipient model, preferences of the recipient can be in-
ferred from the interaction with the recipient (e. g., based
on follow-up questions that indicate the wish for further
information).

3 Explainable development tools

Many engineering tasks are nowadays supported by tools
that either check the quality of manual work or perform
the tasks completely automatic. Examples from the area
of Requirements Engineering (RE) are requirements cate-
gorization [8], prioritization [7], trace link recovery [3], or
detection of language weaknesses [2]. The increasing abil-
ities of these tools are driven by the availability and ac-
cessibility of complex technologies. RE tools make use of
advanced natural language processing techniques [2], in-
formation retrievalmechanisms [3], andmachine learning
(e. g., by artificial neural nets [8]).

Despite the complex technologies used, such devel-
opment tools are very appealing to practitioners because

most of the technology is hidden from the user. However,
when tools produce results that a user finds strange or
that a user cannot explain, tools often fail to give evidence
or hints why it made this decision and what the conse-
quences are [10]. Moreover, for some of the complex tech-
nologies used itmay evenbe impossible to provide reasons
for some decisions. For example, it is very hard to explain
why a neural net makes a specific decision.

A special property of development tools is that they
are almost never used in a fully automated context. Most
of the times, development tools are part of processes,
where they support a human analyst in performing tasks
or reviewing work products. Therefore, we argue that
more research is needed towards explainable develop-
ment tools.

In thepast,wemade someefforts tomakeourdevelop-
ment tools explainable and actionable. Here, we provide
an example. We have developed an automated approach
to differentiate requirements from non-requirements (in-
formation) in requirements documents [9]. At one of our
industry partners, it is the document author’s task to label
all elements of a requirements document manually as ei-
ther requirement or information. Our approachuses anarti-
ficial neural net that is trainedona large set ofwell-labeled
requirements documents. After the training, theneural net
is able to classify text fragments as one of the two classes.
We use this approach to check the quality of this classi-
fication in existing documents. To make the decisions of
the tool explainable, we have developed amechanism that
traces back the decision through the neural net and high-
lights fragments in the initial text that influenced the tool
to make its decision [9]. As shown in Figure 2, it appears
that the word “must” is a strong indicator for a require-
ment, whereas the word “required” is a strong indicator
for an information. While the first is not very surprising,
the latter could indicate that information elements often
carry rationales (why something is required).

Figure 2: Automatic classification of textual specification objects
into classes requirement and information.

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 03.07.19 14:31



4 | A. Vogelsang, Explainable software systems

4 Discussion and outlook
In this article, we have highlighted the importance of ex-
plainability for future software systems. An explainable
software system provides hints or indication on the ratio-
nalewhy the systemmadeadecision.Making software sys-
tems explainable needs to be considered from the begin-
ning of the development similar to other quality attributes.
Future challenges include the definition of flexible expla-
nation models that allow controlling the level of explana-
tions (e. g., coarse-grained explanations for users vs. fine-
grained explanations for developers) and approaches to
efficiently derive explanationmodels from other engineer-
ing artifacts such as requirements, user documentation, or
code comments.

References
1. F. Chiyah Garcia, D. Robb, X. Liu, A. Laskov, P. Patron, and

H. Hastie. Explain Yourself: A natural language interface for
scrutable autonomous robots. Proceedings of the Explainable
Robotic SystemsWorkshop (HRI), 2018.

2. H. Femmer, D. Méndez Fernández, S. Wagner, and S. Eder.
Rapid quality assurance with requirements smells. Journal of
Software and Systems (JSS), 123:190–213, 2016.

3. J. Hayes, A. Dekhtyar, and J. Osborne. Improving requirements
tracing via information retrieval. Proceedings of the 11th IEEE
International Requirements Engineering Conference (RE),
pp. 138–147, 2003.

4. IBM. An Architectural Blueprint for Autonomic Computing. White
Paper, 2005.

5. P. Le Bras, D. Robb, T. Methven, S. Padilla, and M. Chantler.
Improving user confidence in concept maps: Exploring data
driven explanations. Proceedings of the Conference on Human
Factors in Computing Systems (CHI), pp. 1–13, 2018.

6. B. Lim, A. Dey, and D. Avrahami.Why and why not explanations
improve the intelligibility of context-aware intelligent systems.
Proceedings of the Conference on Human Factors in Computing
Systems (CHI), pp. 2119–2129, 2009.

7. A. Perini, A. Susi, and P. Avesani. A machine learning approach
to software requirements prioritization. IEEE Transactions on
Software Engineering (TSE), 39(4):445–461, 2013.

8. J. Winkler and A. Vogelsang. Automatic classification of
requirements based on convolutional neural networks.
Proceedings of the IEEE 24th International Requirements
Engineering Conference Workshops (REW), pp. 39–45, 2016.

9. J. Winkler and A. Vogelsang. “What does my classifier learn?”
A visual approach to understanding natural language
text classifiers. Proceedings of the 22nd International
Conference on Natural Language & Information Systems (NLDB),
pp. 468–479, 2017.

10. J. Winkler and A. Vogelsang. Using Tools to Assist Identification
of Non-requirements in Requirements Specifications–A
Controlled Experiment. Proceedings of the 24th International
Working Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ), pp. 57–71, 2018.

Bionotes
Prof. Dr. Andreas Vogelsang
Technische Universität Berlin, Berlin,
Germany
andreas.vogelsang@tu-berlin.de

Prof. Dr. Andreas Vogelsang is an assistant professor (junior profes-
sor) for software engineering at the Berlin Institute of Technology
(TU Berlin). He is leading the software engineering group at the
Daimler Center for Automotive IT Innovations (DCAITI). He received a
Ph. D. from the Technical University of Munich in 2015. His research
interests comprise requirements engineering, model-based systems
engineering, and software architectures for embedded systems.
He has published his research in international journals and confer-
ences such as IEEE Software, SoSyM, ICSE, and RE. In 2018, he was
appointed as Junior-Fellow of the German Society for Informatics
(GI).

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 03.07.19 14:31


	Explainable software systems
	1 Introduction
	2 Designing self-explainable software systems
	3 Explainable development tools
	4 Discussion and outlook
	References


