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A B S T R A C T

Information on the timing of melt onset over sea ice is important for understanding the Arctic's changing climate.
The daily temporal resolution of passive microwave brightness temperatures provides the most widely utilized
observations to detect melt onset but are limited to a spatial resolution of 25 km. Wide-swath synthetic aperture
radar (SAR) imagery provides a much higher spatial resolution (20–100m) but melt onset detection remains
challenging because of i) insufficient temporal resolution to facilitate accurate melt onset detection, ii) incon-
sistent viewing geometries and iii) limited image availability across the Arctic. Here, we construct high temporal
resolution composite gamma nought backscatter products (1 day, 1–2 day and 2–4 day) using Sentinel-1 and
RADARSAT-2 over a close-to-seamless revisit region located in northern Canadian Arctic and Greenland for
estimating melt onset over Arctic sea ice in 2016 and 2017. We employ the necessary radiometric terrain flat-
tening and local resolution weighting techniques to generate normalised backscatter over the entire study re-
gion, removing restrictions limiting analysis to a single sensor or track's swath width by integrating both as-
cending and descending passes into the composite products. Results indicate that higher temporal resolution
multi-sensor composite gamma nought products (1 day) that make use of the most imagery provide a robust
temporal evolution of the backscatter. This allows for more representative estimates of melt onset as it is easier
to separate the melt onset threshold from winter variability that is otherwise a considerable challenge for SAR
based melt onset algorithms because of inconsistent temporal resolution. Multi-sensor composite gamma naught
melt onset detection is in good agreement with melt onset estimates derived from the Advance Scatterometer
(ASCAT) backscatter values and passive microwave brightness temperatures over homogenous sea ice regions
but very noticeable improvement was found within narrow channels and regions with more heterogeneous sea
ice. In anticipation of the availability of data from even more SAR satellites with the launch of the RADARSAT
Constellation Mission, the multi-sensor composite gamma nought approach presented here may offer the most
robust approach to estimate the timing of melt onset over sea ice across the Arctic using high spatiotemporal
resolution SAR.

1. Introduction

Recent surface air temperature (SAT) increases in the Arctic have
been attributed to anthropogenic influence (Fyfe et al., 2013). Advec-
tion of warm and humid air over the Arctic sea ice resulting in down-
welling longwave radiation increases is the dominant process that in-
itializes melt onset (Mortin et al., 2016). Information on the timing of
melt onset over sea ice is therefore important for understanding the
response of the Arctic climate system to anthropogenic influence. An
earlier melt onset facilitates the absorption of more solar radiation into

the sea ice, leading to larger decreases in sea ice extent during the melt
season (Perovich et al., 2007). Melt onset over Arctic sea ice has shifted
to an earlier timing at a rate of −5.69 days per decade over the entire
period from 1979 to 2017 (Bliss and Anderson, 2018) which is asso-
ciated with decreasing trends in the Arctic's sea ice extent (Comiso,
2012; Stroeve et al., 2012).

Time series microwave remote sensing can be utilized for estimating
the timing of melt onset over the Arctic sea ice because changes in
microwave emission and scattering are reflective of the physical melt
onset process. The most widely utilized techniques are those based on
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high temporal resolution (1 day) passive microwave brightness tem-
peratures time series values that use change thresholds to identify the
transition from dry winter sea ice conditions to melt onset (e.g. Drobot
and Anderson, 2001; Belchansky et al., 2004; Markus et al., 2009; Bliss
and Anderson, 2014). Passive microwave brightness temperatures also
allow for long term estimates of melt onset (1979 to present) but only at
a spatial resolution of 25 km. There are also several techniques that use
high temporal resolution (1–2 day) scatterometer backscatter observa-
tions which provide a higher spatial resolution (~2–5 km) but they are
only available over a shorter time period (2000 to present) (e.g. Howell
et al., 2006; Wang et al., 2011; Mortin et al., 2012; Mortin et al., 2014).
C-band synthetic aperture radar (SAR) imagery provides the highest
wide swath spatial resolution (20–100m) and techniques have been
developed to detect melt onset of Arctic sea ice (e.g. Livingstone et al.,
1987; Onstott et al., 1987; Winebrenner et al., 1994; Kwok et al., 2003;
Yackel et al., 2007; Mahmud et al., 2016) but it still remains challen-
ging because of i) insufficient temporal resolution to facilitate accurate
melt onset detection, ii) inconsistent viewing geometries and iii) limited
image availability across the Arctic domain. Mahmud et al. (2016)
successfully utilized RADARSAT-1 and RADARSAT-2 for melt onset
detection in the northern Canadian Arctic Archipelago but noted that
the temporal resolution of the imagery was a limitation with respect to
representative spatiotemporal melt onset estimates.

With the recent launch of the European Space Agency's (ESA)
Sentinel-1A (2014; S1A) and Sentinel-1B (2016; S1B) the potential for
high resolution pan-Arctic melt onset detection from C-band SAR has
increased. However, despite the considerable spatial coverage provided
by S1A and S1B, there are still gaps across the Arctic and construction
of high temporal resolution time series SAR datasets (i.e. 1–2 day) is
still problematic. The upcoming launch of the RADARSAT Constellation
Mission adds yet more C-band SAR sensors to the existing satellite
image pool. Combining the RADARSAT Constellation Mission with S1A
and S1B provides a unique opportunity to construct high temporal re-
solution datasets across the Arctic, analogous to what is possible from
passive microwave brightness temperatures but at very high spatial
resolution. In anticipation of the multiple C-band SAR satellites from
S1A, S1B and the RADARSAT Constellation Mission, we suggest that a
multi-sensor backscatter approach may offer the most robust approach
to estimate the timing melt onset over Arctic sea ice from C-band SAR.
In this analysis, we construct composite normalised gamma naught (γCo;
Small, 2011; Small, 2012) backscatter products at high temporal re-
solution from S1A, S1B and RADARSAT-2 SAR imagery and evaluate
their utility for melt onset detection over Arctic sea ice.

2. Study area

The study area for this analysis is located in the northern Canadian
Arctic and Greenland during the years of 2016 and 2017 (Fig. 1). This is
a close-to-seamless revisit region imaged by S1A, S1B and RADARSAT-2
that contained a considerable number of overlapping images in 2016
and even more in 2017 (Fig. 2). Sea ice within the study region for 2016
and 2017 contains both landfast seasonal first-year ice (FYI) and multi-
year ice (MYI) as well as the mobile MYI found in Arctic Ocean. The
narrow channels and mix of ice types make it an ideal region to illus-
trate the benefits of high spatial resolution SAR for melt onset detec-
tion. Time series sample locations for FYI and MYI types were identified
in both years to represent the aforementioned conditions and are in-
dicated in Fig. 1.

3. Data

The primary datasets used in this analysis were C-band (wavelength,
λ=5.5 cm) SAR imagery from S1A and S1B Extra Wide (EW), S1A and
S1B Interferometric Wide (IW) and RADARSAT-2 ScanSAR Wide
(SCWA) acquired at dual polarization (HH+HV) from March to August
over the northern Canadian Arctic Archipelago and Greenland (Fig. 1)

in 2016 and 2017 (Table 1). The S1A and S1B imagery is freely avail-
able at the Copernicus Open Access Hub (https://scihub.copernicus.eu/
dhus/#/home) and RADARSAT-2 imagery is available online for a fee
at Natural Resources Canada's Earth Observation Data Management
System (https://www.eodms-sgdot.nrcan-rncan.gc.ca).

To evaluate the representativeness of the γCo products for 2016 and
2017, we used additional data from: i) the Advanced Scatterometer
(ASCAT) single polarization (VV) Scatterometer Image Reconstruction
(SIR; Early and Long, 2001) 4.45 km spatial resolution dataset available
online from Brigham Young University at http://www.scp.byu.edu/
data/Ascat/SIR/Ascat_sir.html; daily SAT from the extended Advanced
Very High Resolution Radiometer (AVHRR) Polar Pathfinder dataset
(APP-x; Key et al., 2014) available online from the NOAA National
Centers for Environmental Information at https://www.ncdc.noaa.gov/
cdr/atmospheric/extended-avhrr-polar-pathfinder-app-x; weekly in situ
snow thickness values over FYI at Eureka, Nunavut (Fig. 1, red box)
available online from the Canadian Ice Service (http://www.ec.gc.ca/
glaces-ice/, see Archive followed by Ice Thickness Data); and finally
25 km spatial resolution estimates of the first date of melt onset from
the Passive Microwave algorithm (PMW; Markus et al., 2009) available
online from the NASA Cryosphere Science Research Portal at https://
neptune.gsfc.nasa.gov/csb/ (see Data).

4. Construction of normalised composite gamma naught (γCo)
backscatter products

The ratio between the scattered and transmitted power of micro-
wave energy is referred to as radar backscatter and the backscatter
coefficient is this ratio expressed over a reference ground area (Ulaby
et al., 1986). Depending on which reference area chosen, the scattering
coefficient is different. Complete details with respect to scattering
coefficient differences are provided in Small (2011) but briefly, the
most common scattering coefficient is sigma naught (σ°) and is the
result when the reference area is the ground area projected on an el-
lipsoid. Beta naught (β°) which is also referred to as radar brightness
(see also Raney et al., 1994) is the simplest definition, least encumbered
by an Earth model, placing the reference area is in the sensor's slant
range plane, with no requirement for an ellipsoidal or terrain Earth
model. Finally, gamma naught (γ°) is the result when the reference area
is in the plane perpendicular to the local look direction, representing
the local area that the radar system actually sees.

Terrain-induced radiometric distortions are present in SAR back-
scatter maps unless they are properly compensated. Knowledge of
modern radar satellite state vectors and timing annotations has im-
proved to the point where tie-point free geolocation of each point in a
radar image is now routinely possible at better than 1m accuracy.
Accuracies achieved with multiple radar sensors were reported in
Schubert et al. (2012) and sub-meter accuracy for the two Sentinel-1
satellites was reported in Schubert et al. (2017). Use of high quality SAR
sensor geometric calibration enables routine automatic connection of
each SAR pixel with a corresponding digital elevation model (DEM)
location on the Earth's surface. Correction of the position of each mea-
surement is called geocoding, and is a standard step available in many
software packages, whereby the applicable Doppler (azimuth) and
range equations are solved. Although the geometry was corrected in the
geocoding step, unless further steps are taken, the effect of terrain on
the local radar brightness (radiometry) will remain tied to a simple el-
lipsoidal Earth model and not the local terrain and the variable re-
solution within a single acquisition will also remain (Small, 2011).

The approach we use to generate the multi-sensor γCo image pro-
ducts accounts for the aforementioned problems and is universal in that
it is applicable to both marine and terrestrial regions across the SAR
image. Although the focus of this study is Arctic sea ice, for which
terrain correction using a DEM is not possible but it is still required to
obtain the local ellipsoidal height, a complete description of the ap-
proach is provided because terrain correction is only one component of
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the overall processing chain illustrated in Fig. 3. The S1A, S1B and
RADARSAT-2 images are first converted to beta naught (β°). Then,
following Small (2011), radiometric terrain distortions are modeled by
summing up all DEM-facet contributions to each SAR image pixel. DEM
locations blocked from observation by radar shadow are accounted for
in the image simulation by not including such DEM-facets in the sum.
Once the map of local contributing area is complete, the original β°
image is normalised using that map. This newly normalised backscatter
is initially in radar geometry but can then be easily geocoded in a
further step to produce a radiometrically terrain corrected (RTC; γTo)
backscatter image in map geometry.

These RTC images are properly normalised radiometrically for ter-
rain distortions, but the variable resolution within a single acquisition
can remain quite considerable. To lower the noise and ensure that the
image and backscatter properties become even more uniform, a second
stage of processing is used that combines data from multiple tracks into
a single wide-area backscatter composite image. A set of Ni available

RTC images acquired within a time window i are combined by applying
their local resolution (i.e. the reciprocal of the local illuminated area
used to normalise them) as a weighting function. The methodology
behind this step is discussed in detail by Small (2012) which results in a
single backscatter composite per defined time window i (e.g. 1 day,
1–2 day and 2–4 day). An example of these final multi-sourced γCo
products for 1 day time window using 16 and 20 SAR images is shown
in Figs. 4 and 5, respectively. These final multi-sourced γCo products
have a spatial resolution of 400m with relatively spatially homogenous
image properties with lower noise than a single acquisition, making
them a useful “analysis ready data” level 3 product for higher level
application studies. They have for example been previously applied to
normalising terrain distortions to successfully map forest-type using
seasonal backscatter signatures over the whole of the Alps (Rüetschi
et al., 2018). This is the first known application to a relatively flat
landscape. The DEM utilized in this study (Santoro and Strozzi, 2012;
https://doi.org/10.1594/PANGAEA.779748) was deemed to be

Fig. 1. Multi-sensor γCo backscatter (dB) map of study region on (a) March 19, 2016 using data from Sentinel-1A and RADARSAT-2 and on (b) March 24, 2017 using
data from Sentinel-1A, Sentinel-1B and RADARSAT-2. The first-year ice (FYI) and multi-year ice (MYI) sample sites locations color code corresponds to the time series
plots in Figs. 6, 10, 12 and 13. (a) and (b) contain modified Copernicus Sentinel data (2017). RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates
Ltd. (2016; 2017) - All Rights Reserved. RADARSAT is an official trademark of the Canadian Space Agency. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

Fig. 2. Spatial distribution of available imagery (scenes per day) from Sentinel-1A, Sentinel-1B and RADARSAT-2 for (a) April 2016 and (b) April 2017.
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sufficient for product generation at 400m spatial resolution, but given
sufficient DEM resolution and quality, achieving 100m spatial resolu-
tion or higher would only be a matter of computational and storage
resources. Finally, it should be noted that although, this processing
chain was applied to both HH and HV polarizations, the higher noise
floor associated with the HV channel resulted in numerous temporal
gaps in the γCo time series and therefore, we restricted this analysis to
only the γCo products at HH polarization.

5. Temporal evolution of γCo products from winter to melt onset

Remotely sensed techniques using time series sigma nought (σ°)
values have a long history for detecting melt onset over Arctic sea ice
(e.g. Livingstone et al., 1987; Onstott et al., 1987; Winebrenner et al.,
1994; Yackel et al., 2001; Kwok et al., 2003; Mortin et al., 2014;
Mahmud et al., 2016). To our knowledge, γ° or γCo has not been pre-
viously utilized for time series melt onset detection over Arctic sea ice.
Moreover, γ° is less sensitive to incidence angle effects (Small, 2011)
making it potentially more robust than σ° for melt onset detection.

5.1. First-year ice (FYI)

Over the FYI sample site in 2016 and 2017, γCo backscatter values
for all constructed SAR products were relatively low during the pre-
melt winter period from day of year (DOY) 90–150 because the near
snow-ice interface is cold resulting in low basal layer snow brine vo-
lume, a relatively small dielectric permittivity and low volume scat-
tering (Fig. 6). Surface scattering largely controls C-band backscatter at
these cold temperatures. The variability in the winter backscatter time
series is known to be influenced by atmospheric forcing as a function of
snow thickness causing changes in brine volumes in the snow and at the

snow-sea ice interface that are reflected in the backscatter coefficient
(Barber et al., 1995; Barber and Nghiem, 1999). Changing incidence
angles also contribute to backscatter variability over FYI during the
winter (Mäkynen and Karvonen, 2017; Mahmud et al., 2018). The
higher γCo values in 2016 versus 2017 are likely the result of a rougher
sea ice surface surrounding the sample site in 2016, as evident from
Fig. 7, and not atmospheric forcing. Moreover, the rougher surface in
2016 was also associated with thicker snow on sea ice (Fig. 8) which
would likely buffer against the influence of atmospheric forcing on the
γCo backscatter.

The major difficulty with using a threshold backscatter change for
melt onset detection over FYI from SAR is separating winter backscatter
variability from the first major upturn in backscatter that denotes melt
onset, especially when temporal gaps are present in the time series.
Warming first causes an increase in the brine volume at the snow-sea
ice interface, increasing volume scattering that facilitates the major
backscatter upturn (Drinkwater, 1989; Barber et al., 1995). For the
sample site in 2016, the melt onset upturn was indeed difficult to
pinpoint (~DOY170) because of high γCo variability during the winter,
combined with some temporal gaps in the time series for all products
(Fig. 6a). In 2017, the upturn in γCo was also difficult to identify using
the 2–4 day R2 product given the presence of temporal gaps however,
the γCo upturn was clearly apparent after DOY160 for the 1-day
S1AB+R2 and 1–2 day S1AB products (Fig. 6b).

To explore the utility of these products beyond surface roughness
conditions surrounding the local time series scale at Eureka, we cal-
culated the April (DOY90–120) mean γCo of all FYI landfast pixels
(~500,000) in the study region for all constructed SAR products in both
years. For each product, FYI pixels were identified using the Kwok
(2004) threshold as having a γCo value less than −14.5 dB. The varia-
bility in mean April γCo for all products, for both years is illustrated by

Table 1
SAR image products and counts used in this analysis for 2016 and 2017.

Image product Spatial resolution (m) Incident angle Swath (km) Count 2016 Count 2017

RADARSAT-2 SCWA-SGF 100 20.0°-49.3° 500 280 321
Sentinel-1 EW-GRDM 90 18.0°-47.0° 400 1699 2428
Sentinel-1 IW-GRDH 20 31.0°-46.0° 250 301 681

Fig. 3. Processing chain for construction of the composite γCo backscatter products.
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boxplots in Fig. 9. In 2016, γCo winter variability was similar for all
products and suggests additional imagery in the multi-sensor product
does not appreciably impact its winter variability (Fig. 9a). However,
higher temporal resolution multi-sourced 1–2 day S1A+R2 product
certainly provided a γCo temporal evolution with less temporal gaps
compared to the 2–4 day products (Fig. 6a). There was more imagery
utilized for the γCo products in 2017 compared to 2016 (Table 1) and
winter γCo variability was subsequently lower in 2017 (Fig. 9). More-
over, the largest amount of imagery was utilized for the 1–2 day S1AB
and 1 day S1AB+R2 products in 2017 that in turn experienced the
lowest winter γCo variability (Fig. 9b).

Image availability from SAR typically results in a trade-off between
image homogeneity and temporal blurring using local resolution
weighting (Small, 2012) but with the considerable amount of imagery
available over the study region in 2017, it is evident that both image
homogeneity and temporal resolution can be maintained. Specifically,
Figs. 6b and 9b illustrate that the mean weighted backscatter for the
higher temporal resolution SAR products that take into account all
available imagery (i.e. increased number of looks) contributes to less
variable γCo values and in turn a more robust temporal evolution of γCo
over FYI during the winter period. This suggests that for multi-sourced
γCo products with higher temporal resolution and more included ima-
gery, separating the melt onset upturn from winter γCo variability over
FYI is less problematic.

5.2. Multi-year ice (MYI)

Over the MYI sample site in 2016 and 2017, γCo for all products was
high and stable during the pre-melt winter period (DOY90–150)

(Fig. 10) because air bubbles cause volume scattering to occur within
the ice. Over MYI which is brine free, the first major downturn in
backscatter is identified as melt onset because ice volume scattering is
masked by increases in liquid water content within the snowpack
(Winebrenner et al., 1994). The differences in temporal evolution were
close to negligible between the γCo products, although more temporal
gaps were apparent in 2016 than 2017 (Fig. 10). With the exception of
the 2–4 day R2 product in 2017 that contained considerable temporal
gaps, all the downturn in γCo was easily distinguishable on DOY158 and
DOY165 for 2016 and 2017, respectively in all products (Fig. 10). The
winter stability of γCo resulting from an absence of brine induced
changes on γCo allows identifying the melt onset downturn over MYI
less problematic than FYI. Moreover, the winter backscatter over MYI is
less sensitive to incidence angle variations (Mahmud et al., 2018).

Analogous to FYI, we also calculated the mean April (DOY90–120)
γCo of all MYI landfast pixels (~250,000) in the study region for all
constructed SAR products. MYI pixels were identified using the Kwok
(2004) threshold as having a γCo value greater than −14.5 dB. Boxplots
of the mean April γCo over landfast MYI during the winter for all con-
structed SAR products are shown in Fig. 11 and confirm that γCo
variability is less than over FYI. Fig. 11 also indicates that the mean
weighted backscatter for the highest temporal resolution multi-sensor
SAR products (i.e. 1–2 day S1AB and 1 day S1AB+R2) has less of an
impact on γCo winter variability over MYI compared to FYI since it is
already quite stable (i.e. absence of brine). Despite this, the highest
temporal resolution SAR products that utilized the most imagery cer-
tainly facilitated an improved and more robust γCo temporal evolution
over MYI compared to lower temporal resolution product (Fig. 10).

Fig. 4. Multi-sensor γCo backscatter (dB) for (a) July 3, 2017 using 16 images from Sentinel-1A and Sentinel-1B. Contain modified Copernicus Sentinel data (2017).
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5.3. Comparison with ASCAT σ°, passive microwave estimates of melt onset
and surface air temperature

The high temporal resolution of satellite-based passive microwave

brightness temperatures and scatterometer backscatter has contributed
to these sensors being widely utilized for melt onset detection, with the
trade-off being moderate to coarse spatial resolution. Considering that
the multi-sensor γCo S1A+R2 product in 2016 and S1AB+R2 product
in 2017 provided the highest achievable temporal resolution in our
study region, we now compare these products to ASCAT σ°, melt onset
from the PMW algorithm and SAT.

At the sample sites for 2016 and 2017, variability from the multi-
sensor γCo products was larger than ASCAT σ° at the daily time scale,
but the overall temporal evolution was remarkably similar (Figs. 12,
13). Correlations (r) between ASCAT σ° and multi-sensor γCo ranged
from r=0.81–0.93. The multi-sensor γCo also correlated reasonably
well with SAT ranging between r=0.48–0.71 denoting changes in di-
electrics are responding to changes in SAT that are in turn reflected
inγCo. The strength of relationship is similar to Yackel et al. (2001) who
found SAT explained between 30 and 55% of the variation in the
backscatter.

For all test sites, the first major upturn (FYI) or downturn (MYI) of
the multi-sensor γCo generally corresponded with SAT approaching or
rising slightly above 0 °C (Figs. 12, 13). This correspondence has been
widely reported by previous studies identifying factors that are asso-
ciated with melt onset detected by microwave remote sensing (e.g.
Yackel et al., 2001; Belchansky et al., 2004; Mortin et al., 2014;
Mahmud et al., 2016). For the first date of melt onset from the PMW
algorithm, only the landfast MYI site in 2016 (Fig. 12b) and the mobile
MYI site in 2017 (Fig. 13a) were in good agreement with the multi-
sensor γCo melt onset transition. The PMW algorithm detected melt

Fig. 5. Multi-sensor γCo backscatter for July 3, 2017 using 20 images from Sentinel-1A, Sentinel-1B, and RADARSAT-2. Contains modified Copernicus Sentinel data
(2017). RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates Ltd. (2017) - All Rights Reserved. RADARSAT is an official trademark of the
Canadian Space Agency.

Fig. 6. Time series of γCo backscatter (dB) products over seasonal first-year ice
(FYI) for (a) 2016 and (b) 2017.
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Fig. 7. Multi-sourced γCo backscatter (dB) image on (a) March 19, 2016 and (b) March 24, 2017. The red square corresponds to the location of the snow depth on sea
ice measurements and the seasonal first-year ice (FYI) γCo time series shown in Fig. 6. (a) and (b) contain modified Copernicus Sentinel data (2017). RADARSAT-2
Data and Products © MacDonald, Dettwiler and Associates Ltd. (2016; 2017) - All Rights Reserved. RADARSAT is an official trademark of the Canadian Space
Agency. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Time series of snow depth on sea ice (cm) at Eureka, Nunavut for 2016
and 2017.

Fig. 9. Boxplots of the mean γCo backscatter (dB) for each constructed product (x-axis) calculated over landfast first-year ice (FYI) during the winter period from day
of year 90–120 for (a) 2016 and (b) 2017.

Fig. 10. Time series of γCo backscatter (dB) products over seasonal multi-year
ice (MYI) for (a) 2016 and (b) 2017.
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onset too early for the remaining samples sites (Figs. 12a, c, 13b, c).
Very early melt detection was apparent at the 2017 landfast MYI test
site when both ASCAT and multi-sensor γCo showed that the first major
downturn was much later (Fig. 13b). Possible explanations for the early
PMW algorithm melt detection as well as a spatial inter-comparison are
presented in the following section. Overall, with temporal evolution of
the multi-sensor γCo being similar to ASCAT σ°, the melt onset transi-
tions were relatively easy to detect, which is a considerable improve-
ment compared to previous studies using time series SAR for melt de-
tection (e.g. Yackel et al., 2007; Mahmud et al., 2016) where the
datasets suffered from irregular temporal resolution inconsistency.

6. Spatially mapping multi-sensor γCo detected melt onset

6.1. Melt onset transition retrieval

We now make use of γCo at its highest available temporal resolution
(S1A+R2 product in 2016 and S1AB+R2 in 2017) to develop a melt
onset threshold retrieval approach for spatial application and evalua-
tion. Given that such a multi-sensor γCo time series has never been
utilized for melt onset detection over sea ice, a different strategy with
different thresholds was required compared to previous algorithms
based on σ° values. Our intent in this study is to provide a simple, yet
robust approach for comparison purposes, as the focus of this paper is
not melt onset algorithm development. Accordingly, we also develop an
approach to map melt onset in our study region from ASCAT σ° to best
compare against multi-sensor γCo. We acknowledge that application of

Fig. 11. Boxplots of the mean γCo backscatter (dB) values for each constructed product (x-axis) calculated over landfast multi-year ice (MYI) during the winter period
from day of year 90–120 for (a) 2016 and (b) 2017.

Fig. 12. Time series of γCo backscatter (dB), the ASCAT sigma naught (σ°)
backscatter, surface air temperature (SAT) and the first date of melt onset de-
tected by the passive microwave (PMW) algorithm in 2016 over (a) mobile
multi-year ice (MYI), (b) landfast MYI and (c) landfast seasonal first-year ice
(FYI).

Fig. 13. Time series of γCo backscatter (dB), the ASCAT sigma naught (σ°)
backscatter, surface air temperature (SAT) and the first date of melt onset de-
tected by the passive microwave (PMW) algorithm in 2017 over (a) mobile
multi-year ice (MYI), (b) landfast MYI and (c) landfast seasonal first-year ice
(FYI).
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these algorithms beyond this study region may require modifications.
For multi-sensor γCo melt onset detection, we first calculate the

winter mean γCo during April for each pixel. We use the winter mean γCo
as a baseline from which to flag melt onset for a pixel if γCo departs at a
certain absolute value threshold from it. Next, we separate FYI and MYI
using a value of −14.5 dB (Kwok, 2004) because the magnitude of the
γCo upturn (FYI) is different than the magnitude of the γCo downturn
(MYI) as shown in both Figs. 12 and 13. In order to determine a melt
onset γCo absolute value threshold, we iterated through numerous va-
lues in 0.25 dB increments starting with at 3 dB for each ice type, ar-
riving at 8 dB for MYI and 5 dB for FYI. The 5 dB threshold for FYI was
sufficient to avoid most early melt onset detection from time series
winter γCo variability and still capture the first major upturn (not
shown). When the 5 dB threshold was also applied to MYI, melt onset
detection was too early, especially over mobile MYI in the presence of
leads (not shown). Using the 8 dB threshold for MYI best reduced early
melt onset detection in these mobile MYI regions however, this
threshold was too aggressive over FYI as it resulted in very late melt
onset (not shown). Overall, in this study region, using the aforemen-
tioned thresholds for FYI and MYI best ensured the γCo detected melt
onset fell within the first significant upturn or downturn of the γCo time
series and was representative of each ice type.

For ASCAT, we also calculated the winter mean backscatter during
April for each pixel and used it as a baseline from which to flag melt
onset. However, unlike γCo, there was no improvement in using sepa-
rate thresholds for FYI and MYI (not shown) and as a result, we selected
a threshold of 5 dB to denote melt onset with ASCAT σ° in our study
region. Based on the time series plots in Figs. 12 and 13, the 5 dB
threshold was sufficient to avoid early melt onset detection from winter

variability while at the same time not being overly aggressive to result
in very late melt onset as would be the case with higher threshold va-
lues over MYI. Divergent sea ice motion resulting in leads was not an
appreciable problem for early melt onset detection with ASCAT because
unless there is a sustainable amount of open water, ice will still be the
dominant scattering mechanism given ASCAT's moderate spatial re-
solution.

6.2. Spatial distribution of melt onset

Fig. 14 illustrates melt onset timing spatially for the multi-sensor
γCo, ASCAT σ° and the PMW algorithm for 2016 and 2017. It is im-
portant to note that the 2017 melt onset map is more representative
because it was based on a 1 day γCo time series with fewer spatio-
temporal gaps than 2016. The most striking feature in Fig. 14 is the
level of spatial detail captured by the multi-sensor γCo products in both
years. Early melt onset was expected within the surrounding region of
North Water Polynya and south of the ice arch in Nares Strait. Early
melt onset was also expected in the south west region of the study area
as it is known to be a location for recurring polynyas (Smith and Rigby,
1981). Coarse PMW algorithm retrievals were unable to detect melt
onset in Nares Strait and the narrow channels located in the Canadian
Arctic Archipelago. ASCAT performed slightly better in the aforemen-
tioned regions but spatial gaps were still apparent.

While the multi-sensor γCo certainly provides unprecedented spatial
detail, leads caused by divergent sea ice motion are better resolved. As a
result, in both 2016 and 2017 the multi-sensor γCo algorithm detected
these leads as earlier melt onset within the Arctic Ocean MYI pack as
well as along the shear zone between the Arctic Ocean and northern

Fig. 14. Melt onset spatial distribution as detected by multi-sensor γCo (a and d), ASCAT sigma naught (σ°) (b and e) and the passive microwave (PMW) algorithm (e
and f) for 2016 and 2017. (a-f) contain modified Copernicus Sentinel data (2016–2017). RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates Ltd.
(2016; 2017) - All Rights Reserved. RADARSAT is an official trademark of the Canadian Space Agency.
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Canadian Arctic Archipelago (Fig. 14a, d). These dynamic sea ice fea-
tures are less of a concern for the lower resolution ASCAT and PMW
satellite sensors as the open water does not exert sufficient influence on
their larger pixels to be classified as melt onset (Fig. 14b, c, e, f).

The highest frequency range of multi-sensor γCo melt onset detection
was observed between DOY155–165 in 2016 and between
DOY145–175 in 2017 (Fig. 15). For both 2016 and 2017, these date
ranges were in good agreement with the spatial distribution of SAT
between −5 °C and 5 °C (Fig. 16) when melt onset is expected to be
detected from microwave sensors (Barber et al., 1995; Yackel et al.,
2007). Melt onset was detected first by the PMW algorithm, ASCAT and
then multi-sensor γCo (Table 2; Fig. 15). The standard deviation was
high for the multi-sensor γCo approach (Table 2) as a result of leads on
the Arctic Ocean MYI pack, but more so from early melt detection in
Nares Strait and the North Water Polynya (Fig. 14a, d).

The multi-sensor γCo approach likely detects slightly later melt onset
dates than ASCAT because MYI regions are better isolated in the multi-
sensor γCo product. When MYI is ‘sampled’ in the ASCAT pixel it almost
always captures some FYI since MYI floes are found at sub-resolution of
4.45 km ASCAT. Therefore, the brine effect with FYI that contributes to
earlier melt onset detection is likely picked up in MYI samples for
ASCAT. The PMW algorithm likely detects melt onset earlier than
ASCAT and multi-sensor γCo because the shorter wavelengths used in
the PMW algorithm are more sensitive to changes in liquid water
content at the surface. It has been shown that small increases in liquid
water will cause the scattering to be dominated by water instead of dry

snow (Linlor, 1980; Hallikainen et al., 1986). The process is enhanced
within FYI compared to MYI because of the strong influence of tem-
perature on brine volume and dielectric permittivity and in turn the
backscatter (Barber and Thomas, 1998). This is particularly apparent in
our study for 2017 as the PMW algorithm detected the majority of very
early melt onset over heterogeneous MYI and FYI landfast regions on
DOY145 whereas ASCAT and multi-sensor γCo did not (Figs. 14d–f,
15c). This very early melt detected by the PMW algorithm on DOY145
for 2017 was coincident with SAT in the range of −5 °C to 0 °C which is
sufficient to be detected at lower PMW frequencies (Fig. 16d). One of
our temporal evolution time series sample sites was within this region
and confirmed that SAT increases circa DOY145 were indeed sufficient
to detect melt onset using the PMW (Fig. 13b). The SAT increases circa
DOY145 did contribute to change in the backscatter of both the multi-
sensor γCo and ASCAT σ° values but not of sufficient magnitude to detect
melt onset (Fig. 13b).

7. Conclusions

In this analysis, we employed radiometric terrain flattening and
local resolution weighting techniques described by Small (2011) and
Small (2012) to construct high temporal resolution γCo products (1 day,
1–2 day and 2–4 day) from S1A, S1B and RADARSAT-2 SAR imagery.
We then evaluated the γCo products for melt onset detection over Arctic
sea ice as compared to ASCAT and the PMW algorithm in 2016 and
2017 for a study region located in the Canadian Arctic and Greenland.

Fig. 15. Frequency distribution (%) of melt onset date (day of year) estimated from multi-sensor γCo, ASCAT sigma naught (σ°) the passive microwave (PMW)
algorithm for landfast ice (a and c) and mobile ice in the Arctic Ocean (b and d).
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The weighted γCo mean for the higher temporal resolution multi-
sourced SAR products that take into account the most imagery facil-
itates more homogenous (less variable) γCo values and enhances the
temporal stability of γCo. This was particularly apparent with the 2017
multi-sensor γCo product that used more imagery than the 2016 multi-
sensor γCo. The temporal evolution from the multi-sensor γCo was found
to be consistent with temporal evolution of ASCAT σ°. This was found to
be particularly useful over FYI and provided improved separability
between dry winter conditions and melt onset which have been a sig-
nificant challenge for SAR-based melt onset algorithms. Estimating melt
onset over sea ice the study region using highest temporal resolution
the multi-sensor γCo products in both years resulted in an un-
precedented level of detail with respect to the spatial distribution of
melt onset in both years. Melt onset was found to be coincident in its
spatial distribution with SAT approaching 0 °C associated with earlier
melt in 2016 and later melt in 2017. Multi-sensor γCo melt onset de-
tection was also found to be in good agreement with ASCAT and the
PMW algorithm over homogenous sea ice regions but very noticeable
improvement was found within narrow channels and regions with more
heterogeneous sea ice. However, the high spatial resolution from multi-
sensor γCo products detected erroneous melt onset in leads within the

Arctic Ocean MYI pack as well as along the shear zone between the
Arctic Ocean and northern Canadian Arctic Archipelago. Localised sea
ice dynamics will therefore need to be taken into consideration for
future melt onset algorithm development from multi-sensor γCo SAR
products. However, the ability of the multi-sensor γCo SAR products to
identify leads suggests these products could be utilized for lead detec-
tion studies.

Given that the timing of melt onset influences the end of summer
sea ice extent in the Arctic (Perovich et al., 2007) and that positive
trends in downwelling longwave radiation are linked to positive melt
onset trends across the Arctic (Mortin et al., 2016), continuing to pro-
vide melt onset estimates is important for understanding the response of
sea ice to a warming Arctic. Indeed, the PMW algorithm provides the
best long-term measure of melt onset but SAR imagery can provide
more robust estimates, especially as the spatiotemporal constraints of
its application are dwindling with the current generation of C-band SAR
satellites (i.e. S1A, S1B and RADARSAT-2). Efforts to implement re-
trieved sea ice geophysical variables from SAR in data assimilation
systems are currently underway and eventually SAR imagery will find
utility in seasonal forecasting systems (e.g. Komarov and Buehner,
2017). In this study, we have shown excellent potential for the use of
multi-sensor backscatter from SAR to provide high quality melt onset
information over Arctic sea ice which would be of significant value to
data assimilation systems. In anticipation of the availability of data
from even more SAR satellites with the launch of the RADARSAT
Constellation Mission, the multi-sensor γCo approach presented here
may offer the most robust approach to estimate the timing of melt onset
over sea ice across the Arctic.

Fig. 16. Surface air temperature (SAT) spatial distribution in the study region on day of year (DOY) (a) 155, (b) 160 and (c) 165 for 2016 and DOY (d) 155, (e) 170
and (f) 175 for 2017.

Table 2
Mean melt onset timing dates for each sensor with standard deviation in
brackets.

Approach 2017 2016

Multi-sensor γCo 167 (44.2) 168 (43.9)
ASCAT σ° 166 (17.7) 161 (20.5)
PMW algorithm 155 (14.8) 152 (14.28)
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