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Abstract A user of a recommender system is more likely to be satisfied by
one or more of the recommendations if each individual recommendation is
relevant to her but additionally if the set of recommendations is diverse. The
most common approach to recommendation diversification uses re-ranking: the
recommender system scores a set of candidate items for relevance to the user; it
then re-ranks the candidates so that the subset that it will recommend achieves
a balance between relevance and diversity. Ordinarily, we expect a trade-off
between relevance and diversity: the diversity of the set of recommendations
increases by including items that have lower relevance scores but which are
different from the items already in the set.

In early work, the diversity of a set of recommendations was given by the av-
erage of their distances from one another, according to some semantic distance
metric defined on item features such as movie genres. More recent intent-aware
diversification methods formulate diversity in terms of coverage and relevance
of aspects. The aspects are most commonly defined in terms of item features.
By trying to ensure that the aspects of a set of recommended items cover the
aspects of the items in the user’s profile, the level of diversity is more person-
alized. In offline experiments on pre-collected datasets, intent-aware diversifi-
cation using item features as aspects sometimes defies the relevance/diversity
trade-off: there are configurations in which the recommendations exhibts in-
creases in both relevance and diversity.

In this paper, we present a new form of intent-aware diversification, which
we call SPAD (Subprofile-Aware Diversification), and a variant called RSPAD
(Relevance-based SPAD). In SPAD, the aspects are not item features; they are
subprofiles of the user’s profile. We present and compare a number of different
ways to extract subprofiles from a user’s profile. None of them is defined in

Mesut Kaya · Derek Bridge
Insight Centre for Data Analytics, School of Computer Science & Information Technology,
University College Cork, Ireland
E-mail: {mesut.kaya|derek.bridge}@insight-centre.org



2 M. Kaya and D. Bridge

terms of item features. Therefore, SPAD is useful even in domains where item
features are not available or are of low quailty.

On three pre-collected datasets from three different domains (movies, mu-
sic artists and books), we compare SPAD and RSPAD to intent-aware methods
in which aspects are item features. We find on these datasets that SPAD and
RSPAD suffer even less from the relevance/diversity trade-off: across all three
datasets, they increase both relevance and diversity for even more configura-
tions than other approaches to diversification. Moreover, we find that SPAD
and RSPAD are the most accurate systems across all three datasets.

Keywords Recommender systems · diversity · intent-aware diversification ·
subprofiles

1 Introduction

Recommender systems have become an essential part of social networks (such
as Facebook and Twitter), e-commerce sites (such as Amazon), music and
video streaming platforms (such as Spotify and Netflix) and many other ser-
vices on the web. Recommender systems help the users of these platforms
to discover new, interesting content. An assumption of very early work on
recommender systems was that the goal was to accurately predict the users’
opinions of candidate items, and to use these predictions to select items to
recommend. It was soon recognized that it is not enough for predictions to
be accurate or recommendations to be merely relevant. A focus on accuracy
or relevance may result in recommendations that are too obvious (e.g. sequels
in a movie recommender), too popular (e.g. blockbuster movies), too similar
to each other, or too similar to the user’s profile. It can lead to monotony in
a user’s interactions with the system (Eskandanian et al., 2017), and it may
narrow, rather than broaden, a user’s horizons (Cheng et al., 2017). In many
domains, recommendations must be novel to the user or serendipitous, and a
set of recommendations must be diverse (McNee et al., 2006). It is diversity
that is the focus of this paper.1

Diversity is one response to uncertainty. A recommender cannot be certain
of a user’s short-term or longer-term interests, both because some user profiles
are small and others, while they may not be so small, will contain preferences
over different kinds of items. In the face of uncertainty, a diverse set of rec-
ommendations is more likely to contain one or more items that will satisfy
the user. A number of user studies shows that a diverse set of recommenda-
tions can be more attractive to users, reduce the difficulty of selecting an item
to consume from among the recommendations, and even increase satisfaction

1 In this paper, we use the word “diversity” exclusively to refer to a property of a set
of recommendations. Elsewhere, “diversity” (or sometimes “sales diversity” or “aggregate
diversity”) is a property of a recommender system as a whole, referring to the extent to
which a system’s recommendations cover the item catalog. For a survey of concepts and
definitions, see (Kaminskas and Bridge, 2016).
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with the chosen item, e.g. (Willemsen et al., 2016), especially when visual in-
terfaces are designed to highlight the diversity of the recommended items, e.g.
(Tsai and Brusilovsky, 2017, 2018).

There is often thought to be a trade-off between accuracy and diversity.
A set of randomly-chosen items, for example, is likely to be diverse, but the
individual recommendations are less likely to be relevant to the user. Or, to
give another example, recommending a set of popular items will, in many
cases, result in high accuracy but may lead to lower diversity (Adomavicius
and Kwon, 2008). Past research has considered how to increase the level of
diversity at the expense of negligible accuracy loss (Adomavicius and Kwon,
2009). However, as we will show in this paper, newer diversification methods
may not be so susceptible to this trade-off and may even increase both the
accuracy and the diversity of the recommendations.

A diverse set contains items that are different from one another. Early work
measures the diversity of a set of items as an aggregate of the all-pairs dis-
similarity of the items. Dissimilarity is computed by a distance metric (or the
complement of a similarity metric) defined on item features (e.g. movie gen-
res), item ratings or latent factors. Typically, a recommender system finds a set
of recommendations incrementally, by considering the marginal contribution
that would be made by adding a candidate item to the result set (Carbonell
and Goldstein, 1998). The marginal contribution is usually a linear combina-
tion of how relevant an item is to the user and how dissimilar it is from the
set of items that have been included in the result set so far. Within the lin-
ear combination, a parameter determines the trade-off between accuracy and
diversity. In principle, this parameter can have different values for different
users (although this is rare in practice). But the assumption in this early work
is that diversity should be measured in the same way across all users (by item
distances); it is not personalized. This assumption may be wrong. Consider a
music recommender, for example. One user may like only pop and rock music;
for her, a diverse set is one that covers both genres. Another user may have
much more catholic tastes and, for him, a diverse set must cover a much wider
range of genres.

More recently within Information Retrieval, a new approach to result set di-
versification has emerged, known as intent-aware diversification (Santos et al.,
2010; Vargas et al., 2012). The idea is that, to satisfy a user, a result set must
cover her intention. In the case of an ambiguous query, there is uncertainty
about her intention. The query term “apple” could refer to the fruit or the
corporation, for example. In this case, there should be items in the result set
corresponding to each interpretation, thus ensuring that the user’s intent is
covered. The more ambiguous a query term is then, other things being equal,
the more diverse the result set needs to be if it is to cover all the possible
interpretations.

Vargas et al. (2011) have adapted intent-aware diversification from Infor-
mation Retrieval to recommender systems. In this case, there is usually no
query. Instead of covering different interpretations of an ambiguous query, the
idea analogously is to cover the different tastes or interests of the user, as
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revealed by her profile. A user’s tastes or interests are commonly modelled as
a probability distribution over so-called aspects of the items, which can be ex-
plicit item features (such as news item categories or music genres) or implicit
item features (such as the latent factors computed, e.g., by a matrix factoriza-
tion recommender). Although the same aspects (e.g. music genres) are used
for all users, the aspect probabilities, computed from the user profiles, may
differ from user to user, making intent-aware diversification a more personal-
ized approach. The recommendations to the user who likes only pop and rock
music, for example, are diversified to cover both pop and rock music and to
the degree that these are reflected in her profile, i.e. if there is more pop music
in her profile then, other things being equal, there should be more pop music
in the set of recommendations.

Using item features for aspects brings several problems. In some domains,
features are not available. Where they are available, the features themselves
may be noisy (especially in the case of user-generated tags) or they may be
inconsistently applied. They are often not very fine-grained; for example, the
well-known MovieLens system describes movies using just 18 genres (Harper
and Konstan, 2015). In domains where tastes and interests are complex, subtle
and highly subjective, such as movies and music, it may not be possible to fully
represent those tastes and interests by a probability distribution over a small
set of item features.

There is an alternative to defining tastes and interests in terms of item
features. Patterns in user interactions with items can be seen as indications of
the distinct tastes and intents of the users (Kula, 2017). Recommender systems
already record these interactions as explicit or implicit feedback in their ratings
matrix. Patterns of interaction with items, rather than item features, could
form the basis of the aspects of an intent-aware approach to diversification.

We are proposing a new intent-aware diversification framework, called
Subprofile-Aware Diversification (SPAD). In SPAD, aspects are user subpro-
files, rather than item features. A subprofile is simply a subset of the items that
the user likes, representing one of the user’s distinct tastes or interests. SPAD
has two advantages over existing intent-aware diversification methods. First,
it can be used in domains where item features are not available or are unreli-
able. Second, as we show in our experimental results, across multiple datasets
and across almost all settings, SPAD improves both accuracy and diversity. It
suffers much less from the relevance/diversity trade-off. We hypothesize that
this is because subprofiles are defined in terms of users’ interactions with items
and tend to give us more fine-grained aspects than item features: if the user
likes m items, then there are 2m−1 possible subprofiles, i.e. all subsets except
the empty set.

In this paper, we make the following contributions:

– We define the SPAD and RSPAD intent-aware diversification methods,
relating them to existing published work.

– We define eight methods for detecting subprofiles. We can group them into
three types of methods: (i) two methods (NN-1 and NN-2) that use the
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nearest-neighbours of liked items; (ii) three methods (IB+, DAMIB and
DAMIB-COVER) that use the explanations of top-n recommendations;
and (iii) three methods (IB+cp, DAMIBcp and DAMIB-COVERcp) that
consider profile coverage.

– We give a comprehensive empirical comparison of all eight methods for
detecting subprofiles on three different datasets. The methods that use the
nearest-neighbours of liked items have several advantages over the others,
and the empirical comparison shows that one of these methods (designated
NN-1) is also most often the best in terms of recommendation accuracy and
diversity.

– For each of the three datasets, we analyze the subprofiles that NN-1 finds.
We give descriptive statistics and plot distribution graphs to better un-
derstand how subprofiles differ from dataset to dataset. We also give an
explicit example of how subprofile detection works on one of the datasets
we use.

– Using NN-1 as the subprofile detection method, we compare SPAD and
RSPAD against several existing intent-aware-diversification frameworks
where aspects are item features. On our three datasets, we show that
SPAD and RSPAD always result in the highest precision. We also show
that SPAD and RSPAD increase both precision and diversity (measured
by α-nDCG and other metrics) in almost all settings. By contrast, the
other methods often increase both, but sometimes increase diversity at the
expense of precision. SPAD and RSPAD are the two methods that most
often defy the relevance/diversity trade-off.

We have presented two of the eight subprofile detection methods in previously
published work (Kaya and Bridge, 2017, 2018a), along with a subset of their
empirical results on just two of the datasets. Hence, by defining six other
subprofile detection methods, comparing the methods with each other, and
comparing the best method with other diversification techniques using more
metrics and one more dataset, this paper is a considerably more comprehensive
presentation of our research in this area. We have also referred to one of the
subprofile detection methods in a publication that describes a different task
(automatic playlist completion) on a dataset that is completely different from
any of those used here (Kaya and Bridge, 2018b).

Section 2 reviews the state-of-the-art in recommendation diversification.
Section 3 explains how SPAD and RSPAD work. Section 4 presents the details
of the eight different subprofile detection methods. Section 5 describes the
experimental methodology and datasets that we have used. Section 6 present
the results of the experiments. The paper concludes with a discussion and
ideas for future work in Section 7.

2 Related Work

In Information Retrieval (IR), there is value in ensuring that each retrieved
document is relevant to the user’s query but also that the set of retrieved doc-
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Algorithm 1 Greedy re-ranking algorithm
Input: RS, set of recommendations for user u, each with relevance score
Output: RL, ranked list containing all items in RS
1: RL← [ ]
2: while |RS| > 0 do
3: i∗ ← arg maxi∈RS fobj (i, RL)
4: delete i∗ from RS
5: append i∗ to the end of RL

6: return RL

uments is diverse, i.e. that they are different from one another (Carbonell and
Goldstein, 1998; Clarke et al., 2008). In IR, diversity is useful in improving the
extent to which the user’s intent is covered by at least one retrieved document,
especially in cases of uncertainty caused by query ambiguity or underspecifi-
cation (Agrawal et al., 2009). In recommender systems, uncertainty is caused
by small user profiles (e.g. for cold-start users) and by profiles that span dif-
ferent tastes. While a recommender should recommend items that it predicts
are relevant to the user, its chances of recommending items that satisfy the
user on a given occasion can be increased by recommending a set of diverse
items (Castells et al., 2015; Kaminskas and Bridge, 2016).

There is some work in which diversity is explicitly a part of the objective
function that the recommender system seeks to optimize when generating rec-
ommendations, e.g. (Hurley, 2013; Su et al., 2013; Cheng et al., 2017). There
is also work in which diversity is formulated as a subgraph selection problem
(Antikacioglu and Ravi, 2017). However, the dominant approach to diversifi-
cation is greedy re-ranking.

2.1 Greedy re-ranking

The greedy re-ranking approach assumes the existence of a conventional rec-
ommender algorithm (which we will refer to as the baseline recommender),
which, for user u, produces a set of recommended items, RS, and, for each
item i in RS, a relevance score, s(u, i) — the predicted relevance of recom-
mended item i to user u. The greedy algorithm re-ranks RS by iteratively
inserting into ordered result list RL the item i from RS that maximizes a
function, fobj (i, RL); see Algorithm 1. fobj is usually defined as a linear com-
bination of the item’s relevance score and the contribution item i makes to the
diversity of RL, div(i, RL), the trade-off between the two being controlled by
a parameter λ (0 ≤ λ ≤ 1):

fobj (i, RL) = (1− λ)s(u, i) + λ div(i, RL) (1)

In Maximal Marginal Relevance (MMR) (Carbonell and Goldstein, 1998),
for example, div(i, RL) is the maximum of the distances between i and the
items already selected:

div(i, RL) = max
j∈RL

dist(i, j) (2)
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The distance between items i and j, dist(i, j), can be calculated from meta-
data (such as movie genres or book categories (Smyth and McClave, 2001;
Ziegler et al., 2005)) or from item ratings data (Kelly and Bridge, 2006).
Alternatively, div(i, RL) can be computed as the average (or sum) of the all-
pairs intra-list distances, div(i, RL) = ILD({i} ∪ RL), where the ILD of any
list of items L is given by:

ILD(L) =
2

|L|(|L| − 1)

∑
i∈L

∑
j∈L,j 6=i

dist(i, j) (3)

The final recommendation comprises the top-N members of the re-ranked list,
RL, where N < |RL|. Re-ranking using the ILD can result in a top-N that
comprises items that are dissimilar to each other.

The assumption behind this form of diversification is that dissimilar items
will address the different tastes and interests of the user, but there is noth-
ing in the operation of the system to explicitly ensure that each of the user’s
tastes and interests are addressed, nor that each is addressed to an appro-
priate degree. More recent approaches, going under the name intent-aware
diversification, seek to select items that explicitly address different user tastes
and interests and that each is addressed to a degree that is reflected by their
prevalence in the user’s profile.

2.2 Intent-aware diversification

Intent-aware diversification in IR assumes a set of query aspects (e.g. document
categories or query reformulations from a search engine) and diversifies by re-
ranking the query result set in a way that balances relevance with the degree
to which these aspects are covered (Agrawal et al., 2009; Santos et al., 2010;
Vargas et al., 2011, 2012).

Intent-aware methods for recommendation diversification (Vargas et al.,
2011, 2012; Wasilewski and Hurley, 2016) take inspiration from the work done
in IR. These methods assume a set of aspects A which describe the items
and for which user interests can be estimated. The aspects might be explicit:
for example, categories, such as politics, sport and entertainment in a news
recommender, or genres, such as comedy, thriller and horror in a movie rec-
ommender. Alternatively, aspects might be implicit, e.g. corresponding to the
latent factors found by a matrix factorization recommender system (Koren
and Bell, 2011).

In our review of these methods, let Iu be items that are in the user’s profile.

2.2.1 xQuAD

User u’s interests can be formulated as a probability distribution p(a|u) for as-
pects a ∈ A. The probability of choosing an item i from the set of recommenda-
tions RS given an aspect a of user u is denoted by p(i|u, a). In Vargas’s adapta-
tion to recommender systems (Vargas Sandoval, 2015) of Santos et al.’s Query
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Aspect Diversification framework (xQuAD) (Santos et al., 2010), diversifica-
tion can be achieved by re-ranking a conventional recommender’s recommenda-
tion set as per Algorithm 1 and Eq. 1 but with div(i, RL) = novxQuAD(i, RL)
defined as:

novxQuAD(i, RL) =
∑
a∈A

[p(a|u)p(i|u, a)
∏
j∈RL

(1− p(j|u, a))] (4)

Consider the case where the aspects are explicit features F , i.e. A = F ,
hence we will write p(f |u) and p(i|u, f) instead of p(a|u) and p(i|u, a). Let Fi
be the subset of F that describes item i (e.g. the genres of movie i) and, as
above, let Iu denote the items that are in the user’s profile. Then p(f |u) can
be estimated as:

p(f |u) =
|{i ∈ Iu : f ∈ Fi}|∑

f ′∈F |{i ∈ Iu : f ′ ∈ Fi}|
(5)

p(i|u, f), the probability of choosing i from a set of recommendations RS given
explicit aspect f of user u, can be estimated as:

p(i|u, f) =
1(i, f)s(u, i)∑

j∈RS 1(j, f)s(u, j)
(6)

where 1(i, f) = 1 if f ∈ Fi and 0 otherwise.

xQuAD is a generalization of the IA-Select method (Agrawal et al., 2009).
The latter does not consider relevance, hence they are equivalent in the case
when λ = 1 in Eq. 1.

2.2.2 RxQuAD

A possible weakness of xQuAD is that its formulation implies selection of a
single item from the recommended setRS. In RxQuAD, Vargas et al. formulate
a model based on maximizing relevance, rather than the probability of choosing
a single item. Formally, div(i, RL) = novRxQuAD(i, RL) is defined as:

novRxQuAD(i, RL) =
∑
a∈A

[p(a|u)p(rel |i, u, a)
∏
j∈RL

(1− p(rel |j, u, a)p(stop|rel))]

(7)
p(rel |i, u, a) is the probability that user u finds recommended item i relevant
when interested in aspect a. In the case of explicit features, this probabil-
ity is obtained by mapping from relevance scores s(u, i) using an exponential
function (Vargas et al., 2012). p(stop|rel) is the probability that a user stops
exploring a recommendation list conditional on finding a relevant item. Vargas
observes that, to maximize α-nDCG, the best value for p(stop|rel) is approx-
imately equal to the value of α (Vargas Sandoval, 2015).
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2.2.3 SxQuAD and SRxQuAD

Vargas and Castells (2013) define another two forms of intent-aware diversi-
fication, which they refer to as SxQuAD and SRxQuAD, this time based on
combining sets of recommendations. Specifically, given the set of items that
a user u has interacted with and a set of explicit features F , they define a
subprofile for each feature f ∈ F : the subset of the items u has interacted
with that possess feature f . This means that there are as many subprofiles as
there are features (|F|). When there are many features (e.g. where features are
user-generated tags), there is a scalability problem, which Vargas & Castells
handle by using only a user’s top features. Then they make recommendations
to each subprofile. These sets of recommendations are combined using a modi-
fied version of either Eq. 4 or Eq. 7, which in turn is used for greedy re-ranking
using Eq. 1, from which a top-N can finally be recommended.

For SxQuAD, p(i|u, a) in Eq. 4 is replaced by p(i|uf ), where uf is the
subset of items that the user has interacted with and that possess feature f :

novSxQuAD(i, RL) =
∑
f∈F

[p(f |u)p(i|uf )
∏
j∈RL

(1− p(j|uf ))] (8)

p(i|uf ) is estimated as:

p(i|uf ) =
s(uf , i)∑

j∈Ruf
s(uf , j)

(9)

where s(uf , i) is the predicted score for item i based on just subprofile uf and
Ruf

is the set of recommendations generated for subprofile uf .
For SRxQuAD p(rel |i, u, a) in Eq. 7 is replaced by p(rel |i, uf ).
There is an apparent similarity between our new approaches to diversifi-

cation, SPAD and RSPAD, and Vargas & Castell’s SxQuAD and SRxQuAD.
Both use subprofiles. But, this similarity is superficial; they differ in several
ways. First, Vargas & Castells define subprofiles in terms of explicit features:
the items a user has interacted with and that share a feature. By contrast, we
extract subprofiles without reference to any meta-data, based instead purely
on patterns of items that the user likes (Section 4). Second, Vargas & Castells
make separate recommendations to each subprofile and then combine them.
We do not do this at all. By contrast, we make a set of recommendations to the
user and re-rank them in the style of xQuAD, i.e. by treating each subprofile
as an aspect and modeling the user’s interests as a probability distribution
over the aspects.

2.3 c-pLSA and other intent-aware work

The advantage in intent-aware approaches, such as xQuAD and its variations,
of using explicit aspects, such as movie genres, is their interpretability. A
disadvantage is that they may be less accurate. The advantage, by contrast,
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of using implicit aspects, such as latent factors, is that they have been chosen
for their predictive performance; their disadvantage is that they may be less
interpretable (Wasilewski and Hurley, 2016). Wasilewski & Hurley propose
an intent-aware diversification method that is based on explicit aspects (and
is hence interpretable) but in which the probabilities are learned (and hence
are optimized for predictive performance) (Wasilewski and Hurley, 2016). The
learning is done by a constrained pLSA model (Hofmann, 2004). They call
their approach c-pLSA. More recently, the same authors presented an intent-
aware framework that uses a minimum variance criterion based on portfolio
theory from finance (Wasilewski and Hurley, 2017).

Recently, Anelli et al. have incorporated temporal aspects into an intent-
aware diversification framework based on xQuAD (Anelli et al., 2017). Noting
that a user’s intent can change during an interaction, they propose versions of
Eq. 5 that include a temporal decay function on the one hand and that handle
sessions on the other hand.

The advantage of intent-aware approaches to diversification is that they
personalize the level of diversification. Probabilities differ between users since
they are computed from each user’s profile. In the next section, we review
other work on personalized diversification.

2.4 Personalized diversification

There has been an amount of recent research on personalizing the level of
diversification in IR, e.g. (Vallet and Castells, 2012; Liang et al., 2014), and
in recommender systems, e.g. (Shi et al., 2012; Di Noia et al., 2017; Puthiya
Parambath et al., 2016; Zhang and Hurley, 2008; Vargas and Castells, 2013;
Wasilewski and Hurley, 2017).

In IR, Vallet and Castells (2012) propose to diversify search results in
a personalized way by taking intent-aware diversification methods, such as
xQuAD, and introducing the user as an explicit random variable. Liang et al.
(2014) take a very different approach, treating diversification as a form of
supervised learning using document terms and latent topics as features. They
learn a model that estimates whether a document relates to a user’s interests
using a loss function that combines user relevance with diversification.

Turning to recommender systems, in the work of Shi et al., the level of
diversification for a user increases with the uncertainty in the user’s tastes
(Shi et al., 2012). There is more uncertainty if a user’s profile is small or if a
user’s profile already exhibits a wide range of tastes, measured by the variances
of the latent factors of the items in the profile.

Di Noia et al. model a user’s propensity to diversity (Di Noia et al., 2017):
for each attribute of the items, they measure the entropy across the values
of that attribute for items in the user’s profile and then, from this, classify
the user into one of four quadrants according to whether she has low or high
entropy and whether she has a small or large profile. They then re-rank rec-
ommendation sets using modified versions of both Eq. 3 and Eq. 4. The mod-
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ifications introduce quadrant-specific weights, thereby controlling the degree
of diversification in a personalized way.

Puthiya Parambath et al. (2016) do not use greedy re-ranking. Instead,
they recommend a set of items that covers the items in the user’s profile.
Relevance follows from a definition of coverage that takes into account the
positively-rated items in the user’s profile and the similarities between the
items in the user’s profile (using rating similarity). Diversification follows from
the definition of coverage being submodular so that there is more gain in
covering uncovered items than in covering ones that are already covered.

Eskandanian et al. (2017) use a clustering approach for personalizing diver-
sity. They do not use greedy re-ranking. Instead, they cluster the users based
on the degree of diversity in their profiles and perform collaborative filtering
independently on the cluster of users. They measure the degree of diversity
for users based on item categories (such as genres in movies).

Zhang & Hurley present the problem of maximizing the diversity of a rec-
ommendation set while maintaining the accuracy as constrained binary opti-
mization problems, and solve those optimization problems (Zhang and Hurley,
2008). In other work, the same authors cluster the items in a user’s profile, us-
ing rating similarities (Zhang and Hurley, 2009). They make recommendations
to each partition and solve optimization problems to combine these recommen-
dations into a final recommendation set in a way that balances relevance with
diversity.

3 Subprofile Aware Diversity

In this section, we explain our approach, Subprofile Aware Diversification
(SPAD), in detail. Like other intent-aware approaches, SPAD aims to ensure
that the final set of recommendations covers the aspects revealed by the user’s
profile. In the work on intent-aware diversification that we described earlier
(Section 2), aspects were often based on explicit item features, e.g. movie gen-
res. In SPAD, by contrast, aspects are user subprofiles, i.e. subsets of the items
that the user likes.

Let I be the set of all items, U be the set of all users, and R be a |U | × |I|
matrix, where rui ∈ R is u’s rating of i or rui = ⊥ if u has not rated i; and
let Iu be the set of items that user u has rated, i.e. Iu = {i ∈ I : rui 6= ⊥}.
Subprofiles are defined in terms of items that the user likes, i.e. ones to which
she has given a positive rating. Henceforth, we will use the phrase liked-item-
set to refer to the set of items that the user likes, and will designate this set
by I+u where I+u ⊆ Iu. In the case of a recommender system that uses positive-
only feedback, user u’s liked-item-set is the set of items she has interacted
with (liked, clicked on, purchased, etc.), i.e. I+u = Iu = {i ∈ I : rui 6= ⊥}. In
the case of a recommender system that uses numeric explicit ratings rui (e.g.
1–5 stars), then I+u must be defined in terms of items the user liked, which
will usually involve thresholding the ratings, e.g. in our experiments, we use
I+u = {i ∈ Iu : rui ≥ 4} for 1–5 stars ratings.
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User u’s candidate subprofiles are simply the non-empty subsets of I+u . In
SPAD, we select from among these candidate subprofiles ones that capture the
different interests and tastes of the user. We will denote user u’s set of subpro-
files by S∗u. Different subprofiles S ∈ S∗u can be of different lengths; the number
of subprofiles |S∗u| can differ across users. We have explored several ways of
deciding which of the candidate subprofiles best capture the user’s tastes and
interests. We postpone our presentation of this to Section 4. For now, we will
show how SPAD uses the subprofiles S∗u to re-rank recommendations.

We produce a set of recommendations RS using some baseline recom-
mender. This can be any recommender that produces relevance scores, s(u, i),
for the items that it recommends. The set RS is greedily re-ranked (Al-
gorithm 1) using the objective function given as Eq. 1 with div(i, RL) =
novxQuAD(i, RL) (Eq. 4).

3.1 SPAD

What differs between SPAD and other forms of intent-aware diversification is
the computation of the probabilities used in Eq. 4. Given that aspects are now
subprofiles, we will write p(S|u) and p(i|u, S) instead of p(a|u) and p(i|u, a)
for S ∈ S∗u.

Analogously to Eq. 5, p(S|u) can be estimated as:

p(S|u) =
|S|∑

S′∈S∗u
|S′|

(10)

p(i|u, S), the probability of choosing i from a set of recommendations RS given
subprofile S of user u, can be estimated as:

p(i|u, S) =
1(i, S)s(u, i)∑

j∈RS 1(j, S)s(u, j)
(11)

But here there is a problem. We want 1(i, S) to be 1 when item i is ‘related to’
subprofile S, and 0 otherwise. We cannot just use membership (i ∈ S), because
i is a candidate recommendation and therefore will not in general already be a
member of the user’s profile or its subprofiles. Accordingly, in SPAD we define
1(i, S) as follows:

1(i, S) =

{
1 if i ∈

⋃
j∈S KNN(j)

0 otherwise
(12)

where KNN(j) is the set of j’s k-nearest-neighbours in I. In other words, i
must be a neighbour of a member of S. (We have tried a simpler version of
Eq. 12, where we use similarity more directly but, in preliminary experiments,
it performed less well. We may explore it further in future.)
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Table 1 Subprofile detection methods

Description Name
Candidate subprofiles are based on the nearest-neighbours of u’s
liked-item-set

NN-1
NN-2

A recommender generates a set of top-n recommendations from
u’s unrated items. Candidate subprofiles are explanations for the
recommendations

IB+
DAMIB

DAMIB-COVER
A recommender generates a ranked list of u’s unrated items.
Candidate subprofiles are explanations for items in the ranked
list, such that the explanations cover u’s liked items

IB+cp

DAMIBcp

DAMIB-COVERcp

3.2 RSPAD, SSPAD and SRSPAD

Analogously to the relationship between xQuAD and RxQuAD (Vargas et al.,
2012), we can define RSPAD, which is a variant of SPAD, by replacing aspects
a by subprofiles S in Eq. 7.

Similarly, we can also define two further approaches, SSPAD and SRSPAD,
which are analogous to SxQuAD and SRxQuAD (Section 2.2.3). SSPAD and
SRSPAD first generate recommendations for each subprofile S ∈ S∗u. Then,
they combine these recommendations in the same way that SxQuAD and
SRxQuAD do this (Vargas and Castells, 2013).

In our experiments, SSPAD and SRSPAD did not work well, so we do not
give any further details, nor do we show their results in this paper.

In the next section, we explain how we compute the subprofiles.

4 Subprofile detection

In the previous section, we explained how SPAD and RSPAD re-rank a rec-
ommendation set RS generated by a baseline recommender using a user’s
subprofiles. What this does not yet explain is how we compute the subprofiles.
Here, we present eight different subprofile detection methods. We group them
into three and summarize them in Table 1. The following sections present the
eight methods in detail. Of these eight, DAMIB and DAMIB-COVER come
from the work of Verstrepen and Goethals (2015). We have previously shown
how DAMIB-COVER and IB+ can be used with SPAD in (Kaya and Bridge,
2017) and (Kaya and Bridge, 2018a), respectively. NN-1 is briefly referred to
in (Kaya and Bridge, 2018b) for the task of automatic playlist completion.

4.1 Subprofile detection from nearest-neighbours of liked items

The subprofile detection approaches that we explain in this section rest on the
intuition that similar items in a user’s liked-item-set will tend to be in the same
subprofile. We present two approaches that use an item’s nearest-neighbours
to achieve this, referring to them as NN-1 and NN-2.
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4.1.1 NN-1

For each item in the user’s liked-item-set i ∈ I+u , we form a candidate subprofile
Siu that contains i itself and any other items j in the user’s liked-item-set
j ∈ I+u , j 6= i that have item i as one of their k-nearest-neighbours:

Siu = {j ∈ I+u : i ∈ KNN(j) ∧ i 6= j} ∪ {i} (13)

KNN(j) contains the top-k items j′ ∈ I whose similarity to j, sim(j, j′), is
highest. For similarity, sim(j, j′), we use cosine similarity between j and j’s
ratings in R.

It follows that the number of candidate subprofiles is the same as the
number of items in the liked-item-set. But the candidate subprofiles themselves
can be of any length between 1 and |I+u |.

Let Su be the set of candidate subprofiles. We prune the candidates to
obtain the final set of subprofiles for this user, S∗u. Specifically, we define S∗u
to be those members of Su that do not contain any other members of Su:

S∗u = {S ∈ Su : ¬∃S′ ∈ Su ∧ S ⊂ S′} (14)

We obtain S∗u from Su by sorting the elements of Su in descending order of
size and greedily retaining those that are not subsets of any already chosen.
This pruning step is in fact used in all of the subprofile detection approaches
that we explain in this paper.

4.1.2 NN-2

A simple alternative to NN-1 suggests itself. Still taking each i ∈ I+u in
turn, instead of finding other members of j ∈ I+u which have i among their
nearest-neighbours, we include j in i’s candidate subprofile if j is in i’s nearest-
neighbours:

Siu = {j ∈ I+u : j ∈ KNN(i) ∧ i 6= j} ∪ {i} (15)

It follows that there is still one candidate subprofile per member of I+u . But
now the length of a candidate subprofile is at most 1 + k.

The candidates are pruned as before using Eq. 14.
Both NN-1 and NN-2 introduce a hyper-parameter, namely k, the number

of neighbours to use. This is in addition to, and different from, the hyper-
parameter k used in the indicator function in Eq. 12. To distinguish them, we
refer to the latter using kind and the former by knn .

4.2 Subprofile detection from the explanations of top-n recommendations

In this section, we present three further approaches to subprofile detection,
which we designate IB+, DAMIB and DAMIB-COVER. They share the fol-
lowing intuition: a subprofile can be an explanation of a recommendation. They
generate a set of top-n recommendations for u, each with an explanation. It is
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important to emphasize that u is not shown these recommendations. Gener-
ating these recommendations is simply a step within the process of detecting
subprofiles. Explanations are subsets of u’s liked-item-set. These explanations
are the candidate subprofiles. Finally, they prune the candidate subprofiles in
the same way as NN-1 and NN-2, using Eq. 14.

The recommender system that IB+, DAMIB and DAMIB-COVER use
is an item-based nearest-neighbours recommender system (Deshpande and
Karypis, 2004). This is chosen because it has a straightforward way of defin-
ing explanations and these explanations are subsets of the user’s liked-item-set
(see below), which means that we can treat the explanations as candidate sub-
profiles.

These three methods introduce two more hyper-parameters, namely n and
k. n is the number of recommendations and, since all three methods use item-
based nearest-neighbours recommender systems (see below), k is the number
of neighbours used by these systems. This is yet another different k. When we
need to distinguish it from the others, we will use kIB .

In these three methods, since there is one candidate subprofile per rec-
ommendation, it follows that there will be n candidate subprofiles. Since the
candidate subprofiles are explanations, drawn from the liked-item-set, their
length will be between 1 and |I+u | inclusive.

We will now present IB+, DAMIB and DAMIB-COVER in turn.

4.2.1 IB+

IB+ is an item-based nearest-neighbours recommender system for implicit
ratings (i.e. for positive-only ratings) (Deshpande and Karypis, 2004). It rec-
ommends those candidate items that are most similar to the items in u’s liked-
item-set. Candidate items are ones that are not in the user’s liked-item-set,
I \ I+u . For each candidate item i, IB+ finds items in the users liked-item-set
that have the candidate items as one of their k-nearest-neighbours:

Siu = {j ∈ I+u : i ∈ KNN(j)} (16)

Here, the set Siu is the explanation for why candidate i should be recommended:
items that u likes and that are similar to i.

IB+ scores each candidate by taking the sum of the similarities of the
candidate to the items in Siu:

sIB+(u, i) =
∑
j∈Si

u

sim(i, j) (17)

The candidate subprofiles (Su) are the explanations (Siu) for the n candi-
date items whose scores are highest. These are pruned using Eq. 14 to give
the final subprofiles (S∗u).
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4.2.2 DAMIB

The DAMIB and DAMIB-COVER recommender systems were originally de-
veloped by Verstrepen & Goethals for recommending to shared accounts (Ver-
strepen and Goethals, 2015). They assume that a group of people, such as a
family, share a single account, e.g. a single online shopping or TV-streaming
account. The user profile for this account therefore captures the various tastes
of several individual family members. Informally, the goal of DAMIB and
DAMIB-COVER is to recommend a set of n items that includes recommenda-
tions targeted toward subprofiles (corresponding to the different family mem-
bers) and to avoid recommending items that are overly general, which might
be suitable for the profile as a whole but which do not suit the individuals
who share the account.

What DAMIB and DAMIB-COVER are really doing is recommending to
different subprofiles within a single account. It can be a shared account but it
can just as well be a single-user account. In the case of a single-user account,
the different subprofiles will represent the user’s different tastes or interests,
and there will be recommendations targeted at each of these tastes or interests
— as many as can be accommodated in a top-n recommendation list.

We use DAMIB and DAMIB-COVER in the same way as we use IB+
above, i.e. as a recommender system whose explanations will be the subprofiles
that we use in SPAD. Even though we are re-purposing these two recommender
systems to use them for subprofile extraction, we will continue to refer to them
here as DAMIB and DAMIB-COVER.

Consider the powerset of u’s liked-item-set, 2I
+
u . This is the set of all of u’s

possible subprofiles. DAMIB computes the relevance of each candidate item
{i ∈ I : rui = ⊥} to each member of the powerset S ∈ 2I

+
u . It does this in a

similar way to the IB+ recommender system: for each item j in S whose set
of k-nearest-neighbours contains candidate item i, the score for i is increased
by its similarity to j:

sDAMIB (S, i) =
∑

j∈S,i∈KNN(j)

sim(i, j) (18)

The relevance of a candidate item i to u, sDAMIB (u, i), is then based on the
highest of the sDAMIB (S, i):

sDAMIB (u, i) = max
S∈2I+u

1

|S|0.75
sDAMIB (S, i) (19)

As can be seen in Eq. 19, DAMIB multiplies the scores by 1
|S|0.75 , where the

value 0.75 is chosen based on experimental results in (Verstrepen and Goethals,
2015). Since p > 0, this has the effect of penalizing scores that come from larger
subprofiles. The intuition here is to give higher scores to candidates with high
similarities to a few items than to candidates with small similarities to many
items. The member of the powerset that maximizes s(u, i) is the corresponding
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explanation:

Siu = arg max
S∈2I+u

1

|S|p
s(S, i) (20)

Eq. 19 and Eq. 20 imply exponential amounts of computation: for each candi-
date item, computing the maximum of 2m scores, where m = |I+u |. However,
Verstrepen & Goethals use a prefix property to eliminate some of the compu-
tations and prove that it can be computed in O(m logm) time.

DAMIB would recommend the n candidate items with the highest scores,
sDAMIB (u, i). We, instead, use their explanations as candidate subprofiles,
which we prune using Eq. 14.

4.2.3 DAMIB-COVER

Verstrepen & Goethals identify a problem with using the DAMIB algorithm to
recommend items to the users of a shared account. If we recommend the top-n
items with the highest sDAMIB (u, i), it may be the case that this top-n fails
to include any recommendations for some of the users who share the account.
DAMIB-COVER works exactly as DAMIB except, instead of recommending
the n candidates with the highest sDAMIB (u, i), DAMIB-COVER feeds the
candidate items and their scores into a coverage algorithm that attempts to
maximize the number of users who have at least one recommended item in the
top-n. In essence, this part of the system forms a top-n from the candidates by
including an item in the top-n only if its explanation includes at least one item
that is not a member of the unions of the explanations of the higher-ranked
items.

As we did with DAMIB, we adapt DAMIB-COVER so that, instead of
returning n recommendations, it returns n candidate subprofiles (which are
the explanations for those recommendations). We show how we do this in
Algorithm 2. As usual, the candidate subprofiles (Su) are then pruned using
Eq. 14 to give the final subprofiles (S∗u).

4.3 Subprofile detection using profile coverage

As methods for subprofile detection, IB+, DAMIB and DAMIB-COVER have
the weakness that we must decide in advance the maximum number of candi-
date subprofiles, n, corresponding to the n recommendations. We decided to
design variants of IB+, DAMIB and DAMIB-COVER that would not be con-
strained in this way. These three variants, designated IB+cp, DAMIBcp and
DAMIB-COVERcp, attempt to find candidate subprofiles that cover a certain
percentage of the user’s liked-item-set. This is done by Algorithm 3.

Algorithm 3 takes in four inputs, u, cp, alg and cover . u is the user. cp ∈
(0, 1] is the parameter that controls how much of the user’s liked-item-set we
want the subprofiles to cover. For example, if cp = 0.5, we want the candidate
subprofiles to contain at least 50% of the items in the liked-item-set. This can
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Algorithm 2 DAMIB-COVER(u, n)

Input: u ∈ U , n ∈ N+

Output: n candidate subprofiles from I+u
1: Use DAMIB to compute sDAMIB (u, i) and Si

u for all i for which rui = ⊥
2: Produce ranked list t of all i for which rui = ⊥ in descending order of s(u, i), where t[r]

refers to the item in position r
3: r ← 1
4: Covered ← {}
5: Su ← {}
6: while |Su| < n do
7: i← t[r]
8: if |Si

u \ Covered | ≥ 1 then
9: insert Si

u into Su
10: Covered ← Covered ∪ Si

u
11: remove i from t
12: if Covered = I+u then
13: Covered ← {}
14: r ← 1
15: else
16: r ← r + 1
17: if r > |t| then
18: Covered ← {}
19: r ← 1
20: return Su

Algorithm 3 COVER(u, cp, alg , cover)

Input: u ∈ U , cp ∈ (0, 1], alg ∈ {IB+,DAMIB}, cover ∈ {true, false}
Output: candidate subprofiles from I+u
1: Use alg to compute salg (u, i) and Si

u for all i for which rui = ⊥
2: Produce ranked list t of all i for which rui = ⊥ in descending order of s(u, i), where t[r]

refers to the item in position r
3: r ← 1
4: Covered ← {}
5: Su ← {}
6: while true do
7: i← t[r]
8: if cover ∧ |Si

u \ Covered | < 1 then
9: continue

10: insert Si
u into Su

11: Covered ← Covered ∪ Si
u

12: if |Covered | ≥ cp× |I+u | then
13: break
14: r ← r + 1
15: if r > |t| then
16: break
17: return Su

be seen in line 12 of the algorithm: we break from the loop when the subprofiles
cover enough of I+u . alg determines which method we want to use when scoring
the candidate items, either IB+ (Eq. 17) or DAMIB (Eq. 19). Finally, cover is
a Boolean which, if true, will additionally apply DAMIB-COVER’s coverage
criterion. This can be seen in line 8 of the algorithm: if cover is true, we
ignore the candidate subprofile if it is not different enough from what has
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Table 2 Subprofile detection using profile coverage

Subprofile detection method Method call
IB+cp COVER(u, cp, IB+, false)

DAMIBcp COVER(u, cp,DAMIB, false)
DAMIB-COVERcp COVER(u, cp,DAMIB, true)

already been covered. The key point, in summary, is that this algorithm does
not have to keep looping until it finds n candidate subprofiles. It stops as soon
as its coverage criterion is satisfied.

We obtain our three new detection methods, IB+cp, DAMIBcp and
DAMIB-COVERcp, by the way we call Algorithm 3, as shown in Table 2.
IB+cp, DAMIBcp and DAMIB-COVERcp replace hyper-parameter n by hyper-
parameter cp. They produce a number of candidate subprofiles that is not con-
strained to be n (unlike IB+, DAMIB and DAMIB-COVER); instead, there
can be up to |I+u | of them (like NN-1 and NN-2).

4.4 Comparison of subprofile detection methods

We have presented eight subprofile detection methods. We compare them em-
pirically in Section 6.2. Here, we compare them in a more qualitative way.

– Algorithmic. Referring to Table 1, we can see a major algorithmic differ-
ence: the first two methods (NN-1 and NN-2) use the nearest-neighbours
of items the user likes; the other six methods predict scores using a rec-
ommender algorithm (whose recommendation are never shown to the user
but whose explanations are candidate subprofiles). NN-1 and NN-2 are
therefore considerably simpler from an algorithmic point of view and run
faster.

– Methodological. The eight methods differ in their hyper-parameters. All
have kind for use by Eq. 12. But NN-1 and NN-2 have just one more hyper-
parameter, knn , the number of neighbours to use in Eq. 13 and Eq. 15
respectively. The other six methods, all of which use an item-based recom-
mender algorithm, share hyper-parameter kIB , which is used within the rec-
ommender algorithm (Eq. 16). Then, IB+, DAMIB and DAMIB-COVER
additionally have hyper-parameter n, the number of recommendations to
generate (and hence the number of candidate subprofiles), whereas IB+cp,
DAMIBcp and DAMIB-COVERcp have hyper-parameter cp, the propor-
tion of I+u to cover, instead of n.

– Information used. NN-1 and NN-2 compute subprofiles directly from the
user’s liked-item-set and item similarities. The other approaches are indi-
rect since they produce subprofiles from recommendations for items that
are not in the user’s profile. This difference might even result in some
strange behaviour: when a new item is rated by users other than u, in the
methods that find subprofiles from recommendations for items unseen by
u, the subprofiles might change, whereas they are less likely to change in
the case of NN-1 and NN-2 (unless item similarities change significantly).
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Table 3 Datasets

MovieLens 6040 users; 3706 items; ∼1M ratings
avg. 165.6 (σ = 192.74) movies per user
18 genres in total; avg. 1.65 per movie

LastFM 992 users; 7280 items; ∼500k ratings
avg. 515.94 (σ = 475.14) artists per user
71833 tags in total; avg. 8 per artist

LibraryThing 7279 users; 37232 items; ∼750K ratings
avg. 102.95 (σ = 132.68) books per user
4800 tags in total; avg. 9.08 per book

It seems then that, from a qualitative point of view, there is a clear preference
for NN-1 and NN-2.

5 Experiments

In this section, we report our empirical investigation of SPAD, RSPAD and
other approaches to diversification.

5.1 Datasets

We use three datasets: the MovieLens 1M dataset,2 the LastFM dataset,3 and
LibraryThing dataset (Clements et al., 2008), which record user preferences for
movies, music artists and books, respectively. We modify the MovieLens 1M
and LastFM datasets in the same way as in (Kaminskas and Bridge, 2016).
Specifically, the listening event frequencies in the LastFM dataset are con-
verted into ratings on a 1–5 scale, artists who are listened to by fewer than 20
users are discarded, and the dataset is augmented with additional meta-data
(user-generated tags). In the LibraryThing dataset, ratings are on a 1–5 scale,
and we took an approach similar to the one in (Kaminskas and Bridge, 2016)
for obtaining meta-data: we retrieved a maximum of the 10 most popular tags
for every book and kept the tags that appeared in the profiles of at least 10
books. We summarize the characteristics of the resulting datasets in Table 3.

5.2 Recommender systems

We compare SPAD and RSPAD with the other diversification techniques
available in the RankSys library4: MMR (Carbonell and Goldstein, 1998),
xQuAD (Vargas et al., 2011), RxQuAD (Vargas et al., 2012) and c-pLSA
(Wasilewski and Hurley, 2016). We also compare our methods with SxQuAD

2 http://grouplens.org/datasets/movielens/
3 http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/lastfm-1K.html
4 https://github.com/RankSys
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and SRxQuAD (Vargas and Castells, 2013). Since they are not available in
the RankSys library, we implemented them ourselves.

All of these approaches to diversification use greedy re-ranking, therefore
they need a baseline recommender, whose recommendation sets are re-ranked.
We use the following baseline recommenders (again using their RankSys imple-
mentations): probabilistic latent semantic analysis (pLSA) (Hofmann, 2004), a
fast alternative least-squares matrix factorization recommender (MF) (Pilászy
et al., 2010), and a factorization machine that uses Bayesian pairwise loss for
ranking (FMBPR) (Bayer, 2015).

Three baselines paired with nine re-ranking approaches (the eight above
but also none at all) gives 27 systems to compare on each dataset. However,
we were unable to obtain results for c-pLSA on the LastFM and LibraryThing
datasets because the implementation is based on the maximum possible item
features (71833 user-generated tags in LastFM and 4800 in LibraryThing),
whereas the other re-ranking approaches that use item features only depend
on the number of distinct features that describe the items in Iu.

5.3 Methodology

In our experiments, we randomly partition the ratings into training, validation
and test sets such that 60% of each user’s ratings are in the training set, 20% of
them are in the validation set and 20% are in the test set. Results are averaged
over five runs with different random splits.

There are many hyper-parameters. We find their values using the validation
sets. We select the hyper-parameter values for each baseline recommender that
optimize precision on the validation sets (Vargas et al., 2012). Then, for each
user, we generate a recommendation set RS, where |RS| = 100, using the
baseline recommender with its best hyper-parameter values. We re-rank RS
to produce ranked list RL using each of the re-ranking methods with each of
their combinations of hyper-parameter values. Then, from each RL, we select
the top-N recommendations, N = 10. Finally, for each re-ranking method, we
select hyper-parameter values that give the best average α-nDCG across the
validation sets. We show all the hyper-parameter values in the Appendix to
this paper.

Now we train the baselines using their selected hyper-parameter values on
the union of the training and validation sets and, for each user, generate a
recommendation set RS, where |RS| = 100. Then, we re-rank each RS to pro-
duce ranked lists RL using each of the re-ranking methods with their selected
hyper-parameter values. Then, from each RL, we select the top-N recommen-
dations, N = 10, and measure the evaluation metrics that we describe in
Section 5.4 on the test set.
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5.4 Evaluation measures

For relevance, we measure Precision @N for N = 10:

Precision @N =

∑N
i=1 rel(u, i)

N
(21)

where rel(u, i) mean item i is relevant to user u. We treat test set items with
a rating of 4 or 5 as being relevant for the MovieLens and LastFM datasets.
LibraryThing uses a 1–5 rating scale but allows half-marks, such as 4.5; for
consistency, we treat a LibraryThing rating of 4 or more as being relevant.

There is no single ideal metric for diversity. Accordingly, we use five met-
rics: (i) α-nDCG (Clarke et al., 2008), which is an aspect-aware version of
nDCG; (ii) intent-aware expected reciprocal rank, ERRIA (Agrawal et al.,
2009); (iii) subtopic recall, Srecall (Zhai et al., 2003); (iv) Intra-List Diversity,
ILD, as computed by Eq. 3 (Ziegler et al., 2005); and (v) Expected Intra-List
Diversity, EILD (Vargas and Castells, 2011), which is a rank- and relevance-
aware version of ILD. We give their definitions below. For each, we use their
RankSys implementations.

α-nDCG is based on nDCG but it is aspect and redundancy-aware, which
makes it a measure of diversity:

α-nDCG(L) =

1

α-IDCG

∑
i∈L

 1

log2(r(i, L) + 1)

∑
f∈F

rel(i|u, f)
∏
j∈L,

r(j,L)<r(i,L)

(1− α rel(j|u, f))


(22)

where α-IDCG is the highest possible value of α-nDCG in the case where
the recommendation set is made of ideally diversified relevant items, L is
the ranked list of recommended items (of size N) that is being evaluated,
r(i, L) is the position of i in L, and rel(i|u, f) is 1 if item i has feature f and
is relevant to user u but 0 otherwise. α is the parameter that controls the
penalty for redundancy. We use α = 0.5. (Hence, following the argument from
(Vargas Sandoval, 2015) given earlier, we use p(stop|rel) = 0.5 in RxQuAD
and RSPAD too.)

We also use ERRIA (Agrawal et al., 2009), which is an intent-aware mea-
sure:

ERRIA(L) =∑
f∈F

p(f |u)
∑
i∈L

1

r(i, L)
p(rel |i, u, f)

∏
j∈L,

r(j,L)<r(i,L)

(1− p(rel |j, u, f)) (23)
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where p(f |u) is the probability of feature f given user u, and p(rel |i, u, f) is
the probability that user u finds recommended item i relevant when interested
in feature f . When evaluating xQuAD and its variants, it is obvious what
values to use for these probabilities: the ones computed by the xQuAD algo-
rithm. But other algorithms, including SPAD and RSPAD, do not have these
probabilities and therefore ERRIA cannot be used directly (Wasilewski and
Hurley, 2016). What we do is to use the probabilities computed by xQuAD,
even when evaluating SPAD and RSPAD. This gives xQuAD an advantage,
which must be kept in mind when looking at the results.

Subtopic Recall, Srecall, is a metric that measures how well the recommen-
dation set covers the feature space (Zhai et al., 2003):

Srecall(L) =
| ∪i∈L Fi|
|F|

(24)

where Fi is the set of features of item i and F is the set of all features.
Intra-List Diversity, ILD, measures the average pairwise distance of the

items in a recommendation set (Ziegler et al., 2005). We presented its definition
already as Eq. 3.

Expected Intra-List Diversity (Vargas and Castells, 2011) is a rank- and
relevance-aware version of Equation 3:

EILD(L) =
∑

i,j∈L,i 6=j

Ci disc(ki) disc(kj |ki)p(rel |i, u)p(rel |j, u) dist(i, j) (25)

where disc(ki) = 1
log(ki+2) is the rank discount for item i at position k, and

disc(kj |ki) = disc(max(1, kj − ki)) is a relative rank discount for an item j at
position kj knowing that position ki has been reached. p(rel |i, u) is a binary
relevance factor, the value of which is 1 if and only if in the test set item
i is a relevant item for user u. dist(i, j) is the Jaccard distance between the
features of items i and j. Ci = C∑

j′∈L\{i} disc(k
′
j |ki)p(rel |j′,u)

is a normalizing

constant given C = 1
|L| . Note that when there is no rank discount, no relative

rank discount (i.e. when disc(ki) = 1 and when disc(kj |ki) = 1) and when the
measure is not relevance-aware (i.e. p(rel |i, u) = 1 and p(rel |j, u) = 1), then
EILD is equivalent to ILD (Vargas and Castells, 2011).

We have already mentioned that xQuAD has an advantage in the case of
ERRIA. But, in fact, all five measures of diversity are computed with respect
to item features F . All may therefore favour recommenders that re-rank using
those features, such as MMR, xQuAD, RxQuAD and c-pLSA. Our new meth-
ods, SPAD and RSPAD, make no use of the features at all and so they are at
a disadvantage in these experiments.

6 Results

We divide this section into three: first we analyze the subprofiles that we found
in the user profiles in the different datasets; then, we compare the performance
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Table 4 Subprofile Stats

MovieLens avg. 51.09 (σ = 61.5) subprofiles per user
avg. len of subprofiles is 7.78 (σ = 6.25)
avg. sim of subprofiles is 0.0379

LastFM avg. 134.37 (σ = 161.41) subprofiles per user
avg. len of subprofiles is 30.08 (σ = 28.11)
avg. sim of subprofiles is 0.1045

LibraryThing avg. 32.49 (σ = 46.71) subprofiles per user
avg. len of subprofiles is 8.8 (σ = 10.72)
avg. sim of subprofiles is 0.044

0

50

100

150

200

0 100 200 300 400 500

Number of subprofiles

C
o

u
n

t

(a) MovieLens

0

5

10

0 100 200 300 400 500

Number of subprofiles

C
o

u
n

t

(b) LastFM

0

100

200

300

0 50 100 150 200

Number of subprofiles

C
o

u
n

t

(c) LibraryThing

Fig. 1 Number of subprofiles

0

10000

20000

30000

0 10 20 30 40 50

Subprofile Length

C
o

u
n

t

(a) MovieLens

0

1000

2000

3000

4000

0 50 100 150 200

Subprofile Length

C
o

u
n

t

(b) LastFM

0

10000

20000

30000

40000

0 25 50 75 100

Subprofile Length

C
o

u
n

t

(c) LibraryThing

Fig. 2 Length of subprofiles

of the different subprofile detection methods; finally, we compare SPAD and
RSPAD to existing intent-aware diversification algorithms.

6.1 Subprofile analysis

For each dataset, we extract subprofiles from each user’s liked-item-set and
compute descriptive statistics and plot the distribution graphs. We use NN-1 as
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subprofile detection algorithm since, from the discussion we gave in Section 4.4
and the results we will give in Section 6.2, it is the one we select to use in
Section 6.3. NN-1 has hyper-parameters. We set their values using the method
already described. Specifically, we use the values in the Appendix where MF
is the baseline recommender.

Table 4 shows the average number of subprofiles per user and the average
length of the subprofiles. In more detail, Figure 1 contains histograms for the
number of subprofiles, i.e. how many users have just one subprofile (equal to
the whole liked-item-set), how many have two, how many have three, and so
on. Figure 2 is a histogram for subprofile lengths, i.e. how many subprofiles
contain just one item, how many contain two, and so on. We can see that
for the LastFM dataset both the number of subprofiles and the lengths of
the subprofiles are greater than for the MovieLens and LibraryThing datasets.
This can be partly explained by characteristics of the music domain. The time
to listen to a piece of music is typically much less than the time to watch
a movie or read a book. Therefore, users can consume more pieces of music
and this appears to remain the case even when consumption is aggregated by
artists. Hence, user profiles are longer in the LastFM dataset — see Table 3.
Longer user profiles tend to contain longer liked-item-sets, which will tend to
give rise to more subprofiles and longer subprofiles.

Table 4 also shows the average similarity of subprofiles for each dataset. For
a given user u, we compute the all-pairs average similarity of u’s subprofiles:

avg-p-sim(u) =

∑
S∈S∗u

∑
S′∈S∗u,S 6=S′

p-sim(S, S′)

|S∗u|(|S∗u| − 1)
(26)

where S∗u is the final set of subprofiles for u and p-sim measures the similar-
ity between two subprofiles. Subprofiles are just set of items (movies, books,
etc.) and so the similarity between two subprofiles that we want here is sim-
ply how much they overlap, for which Jaccard similarity seems appropriate:

p-sim(S, S′) = |S∩S′|
|S∪S′| . The value in Table 4 is the mean avg-p-sim(u) for all

users u.
As Table 4 shows, LastFM subprofiles are more similar to each other than

MovieLens and LibraryThing subprofiles. Intuitively, this means that while a
book or a movie covers a few different tastes or interests (subprofiles) of a
user, a musician covers more tastes or interests.

We also give an explicit example of the final subprofiles for a user in the
MovieLens dataset — Table 5. The table shows the user’s liked-item-set. Then,
for each member of the liked-item-set, the table shows the corresponding sub-
profile. Consider, for instance, the movie Star Wars: Episode IV — A New
Hope. The user likes this movie and it is one of the nearest-neighbours of the
movies A Clockwork Orange, Back to the Future, Indiana Jones and the Last
Crusade and The Matrix, which are also in the liked-item-set. Consider now
the movie The Shining. The table shows that its corresponding subprofile con-
tains only the movie itself, which means none of the other members of the
liked-item-set has The Shining as one of their nearest-neighbours.
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Table 5 Example subprofiles. These are the final subprofiles of user 5870 in the MovieLens
dataset.

User 5870’s liked-item-set
October Sky, Star Wars: Episode IV — A New Hope, Back to the Future, A Clockwork
Orange, Pulp Fiction, Swingers, The Sixth Sense, The Matrix, Dogma, Alive, Being
John Malkovich, The Big Lebowski, Full Metal Jacket, Fight Club, This is Spinal Tap,
The Shining, Rushmore, Fear and Loathing in Las Vegas, Indiana Jones & the Last
Crusade, The Shawshank Redemption, Fargo, Grosse Pointe Blank, Natural Born
Killers, Brazil, Die Hard, American Beauty
Item Corresponding subprofile

Star Wars: Episode IV — A
New Hope

Star Wars: Episode IV — A New Hope, A
Clockwork Orange, Back to the Future,
Indiana Jones & the Last Crusade, The
Matrix

The Matrix
The Matrix, Star Wars: Episode IV — A New
Hope, The Sixth Sense

The Shining The Shining

Rushmore
Rushmore, Swingers, The Big Lebowski,
Being John Malkovich, Fear and Loathing in
Las Vegas, Fight Club

Natural Born Killers Natural Born Killers
Brazil Brazil, A Clockwork Orange

Pulp Fiction

Pulp Fiction, Fargo, Swingers, The Big
Lebowski, Being John Malkovich, The Sixth
Sense, American Beauty, Rushmore, Grosse
Pointe Blank, The Shawshank Redemption,
Fight Club

American Beauty

American Beauty, Fargo, Being John
Malkovich, Pulp Fiction, The Sixth Sense,
Rushmore, Dogma, The Shawshank
Redemption, Fight Club

This Is Spinal Tap This Is Spinal Tap

The Shawshank Redemption
The Shawshank Redemption, Fargo, Alive,
October Sky, Pulp Fiction, The Sixth Sense,
American Beauty

Grosse Pointe Blank
Grosse Pointe Blank, Swingers, The Big
Lebowski, Dogma

Die Hard
Die Hard, Full Metal Jacket, Indiana Jones &
the Last Crusade

The twelve subprofiles shown in Table 5 are used as the aspects of the
user in SPAD and RSPAD. We regard them as defining the different tastes
and interests of this user. Note that the other thirteen members of this user’s
liked-item-set will also be associated with candidate subprofiles. We did not
show these because they are removed using Eq. 14: they are subsets of other
candidate subprofiles.

6.2 Results for different subprofile detection methods

In this section, we compare the performance of the eight subprofile detection
methods.
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Table 6 Precision and α-nDCG for different subprofile detection approaches for MovieLens,
LastFM and LibraryThing datasets using MF as the baseline. The best result for each metric
is highlighted in bold for each block. The value of λ that optimizes α-nDCG for each baseline
and re-ranking strategy is given. All of the results are statistically significant with respect
to their baseline (Wilcoxon signed rank with p < 0.05) except those shown in italics.

% change
Metrics over baseline

λ Precision @10 α-nDCG Precision @10 α-nDCG
MovieLens

MF 0.2916 0.3197
NN-1 0.4 0.3005 0.3351 3.03 4.81
NN-2 0.5 0.2982 0.3403 2.27 6.42
IB+ 0.6 0.2947 0.337 1.04 5.39

DAMIB 0.6 0.2952 0.3372 1.23 5.46
DAMIB-COVER 0.6 0.2961 0.3371 1.53 5.44

IB+cp 0.4 0.2953 0.3305 1.27 3.36
DAMIBcp 0.5 0.2934 0.3313 0.62 3.61

DAMIB-COVERcp 0.5 0.2981 0.337 2.21 5.39
LastFM

MF 0.4654 0.4244
NN-1 0.2 0.4742 0.4296 1.9 1.24
NN-2 0.2 0.4725 0.4276 1.53 0.76
IB+ 0.3 0.4733 0.429 1.69 1.11

DAMIB 0.2 0.4708 0.4272 1.16 0.68
DAMIB-COVER 0.3 0.4739 0.4288 1.84 1.06

IB+cp 0.2 0.4682 0.4242 0.61 -0.03
DAMIBcp 0.2 0.47 0.4255 1.0 0.27

DAMIB-COVERcp 0.2 0.471 0.4278 1.21 0.81
LibraryThing

MF 0.1733 0.2412
NN-1 0.4 0.1896 0.2588 9.4 7.28
NN-2 0.4 0.1924 0.2623 11.05 8.72
IB+ 0.5 0.1849 0.253 6.7 4.89

DAMIB 0.4 0.1895 0.2607 9.38 8.07
DAMIB-COVER 0.4 0.19 0.2623 9.66 8.75

IB+cp 0.4 0.1857 0.256 7.18 6.14
DAMIBcp 0.4 0.1892 0.2601 9.16 7.83

DAMIB-COVERcp 0.5 0.1909 0.2625 10.16 8.82

Table 6 shows the results for the MovieLens, LastFM and LibraryThing
datasets using MF as the baseline recommender system. We do not show the
results for the cases where pLSA and FMBPR are the baseline recommender
systems due to space limitations. We chose to show the MF results because
all of the re-ranking algorithms achieve both their best precision and α-nDCG
values using MF as the baseline recommender.

Table 6 shows that, of the eight methods, NN-1 has the highest precision
for all but the LibraryThing dataset, where NN-2 has the highest precision.
Looking at the diversity metric (α-nDCG), we see that the results are more
mixed. For the MovieLens dataset, NN-2 performs the best; for LastFM, it is
NN-1; and for LibraryThing, it is DAMIB-COVERcp. On balance, NN-1 is the
best-performing method for the MF baseline. Although not shown, it is also
the best-performing method when pLSA and FMBPR are the baselines. The
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Table 7 Precision and α-nDCG for different re-ranking algorithms on the MovieLens
dataset using MF as the baseline. The best result for each metric is highlighted in bold
for each block. The value of λ that optimizes α-nDCG for this baseline and each re-ranking
strategy is given. All of the results are statistically significant with respect to their baseline
(Wilcoxon signed rank with p < 0.05).

% change
Metrics over baseline

λ Precision @10 α-nDCG Precision @10 α-nDCG
MF 0.2916 0.3197

MMR 0.2 0.2906 0.3243 -0.34 1.43
xQuAD 0.5 0.2739 0.3668 -6.08 14.72

RxQuAD 0.7 0.2629 0.3586 -9.85 12.15
SxQuAD 0.6 0.2743 0.3687 -5.93 15.32

SRxQuAD 0.6 0.2715 0.3658 -6.9 14.39
c-pLSA 0.3 0.2978 0.3292 2.1 2.96
SPAD 0.4 0.3005 0.3351 3.03 4.81

RSPAD 0.7 0.2975 0.3356 2.02 4.97

Table 8 Diversity metrics except α-nDCG for different re-ranking algorithms on the Movie-
Lens dataset using MF as the baseline. The best result for each metric is highlighted in bold
for each block. The values of λ that we use are the ones in Table 7. All of the results are
statistically significant with respect to their baseline (Wilcoxon signed rank with p < 0.05)
except those shown in italics.

% change
Metrics over baseline

ERRIA Srecall EILD ILD ERRIA Srecall EILD ILD
MF 0.2102 0.4783 0.2123 0.7176

MMR 0.2115 0.5116 0.2217 0.7566 0.61 6.97 4.45 5.44
xQuAD 0.2232 0.6271 0.2033 0.7592 6.17 31.13 -4.24 5.80
RxQuAD 0.2369 0.5834 0.1907 0.7405 12.67 21.98 -10.2 3.19
SxQuAD 0.2297 0.5846 0.2016 0.7353 9.25 22.23 -5.06 2.46
SRxQuAD 0.24 0.6199 0.2094 0.7768 14.19 29.61 -1.38 8.25
c-pLSA 0.2174 0.478 0.2171 0.7083 3.44 -0.06 2.27 -1.29
SPAD 0.2197 0.4957 0.2219 0.7244 4.52 3.63 4.5 0.95
RSPAD 0.2202 0.5071 0.2211 0.7309 4.74 6.03 4.13 1.86

qualitative arguments we gave in Section 4.4 also favoured NN-1 and NN-2:
they are simpler, run faster and require setting fewer hyper-parameters. Hence,
in the next section, we present results for SPAD and RSPAD using NN-1.

6.3 Results for intent-aware diversification algorithms

We divide this section into two: first we give results that compare SPAD and
RSPAD with other re-ranking algorithms; then we show the precision and
diversity results for different values of λ.

6.3.1 Results for different algorithms

The precision and α-nDCG results for the experiments on the MovieLens
dataset are shown in Table 7; and the results for the other diversity met-
rics (i.e. ERRIA, Srecall, EILD and ILD) are given in Table 8. MF is the
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Table 9 Precision and α-nDCG for different re-ranking algorithms on the LastFM dataset
using MF as the baseline. The best result for each metric is highlighted in bold for each
block. The value of λ that optimizes α-nDCG for this baseline and each re-ranking strategy
is given. All of the results are statistically significant with respect to their baseline (Wilcoxon
signed rank with p < 0.05).

% change
Metrics over baseline

λ Precision @10 α-nDCG Precision @10 α-nDCG
MF 0.4654 0.4244

MMR 0.3 0.4545 0.4312 -2.35 1.62
xQuAD 0.3 0.4701 0.4354 1.01 2.61

RxQuAD 0.3 0.4654 0.4253 0.01 0.22
SxQuAD 0.2 0.4694 0.4251 0.87 0.17

SRxQuAD 0.3 0.4665 0.427 0.23 0.63
SPAD 0.2 0.4742 0.4296 1.9 1.24

RSPAD 0.4 0.4774 0.4302 2.57 1.38

best performing baseline in terms of precision and α-nDCG. Moreover, all of
the re-ranking approaches achieve their best values of precision and α-nDCG
by re-ranking RS recommendation sets initially generated by the MF base-
line recommender. Therefore, we only show re-ranking results for MF. In each
block of Tables 7 and 8 (and also Tables 9, 10, 11 and 12), results for the
MF baseline are presented first, and then results for each of the re-ranking
algorithms. For each algorithm, we report the results using the value of λ that
gives highest α-nDCG on the validation set (Wasilewski and Hurley, 2016).

Consider precision and α-nDCG first. SPAD achieves the highest precision,
while c-pLSA and RSPAD achieve the second and the third best precision
scores. For α-nDCG, SxQuAD is the best re-ranking method, and all variations
of xQuAD perform better than SPAD and RSPAD. SPAD and RSPAD are at a
disadvantage since they make no use of the explicit features. Indeed, α-nDCG
is very similar to what is used for re-ranking in xQuAD and its variations.
Even so, SPAD and RSPAD achieve higher diversity than c-pLSA and MMR.
Furthermore, when we look at precision and α-nDCG together, we see that
xQuAD and its variations achieve their diversity at the expense of the largest
decreases in precision.

Next, consider the other diversity metrics shown in Table 8. SPAD, RSPAD
and MMR improve all these diversity metrics. But MMR does this at the cost
of lower precision whereas SPAD and RSPAD increase precision in comparison
with the baseline. It is surprising in the case of SPAD and RSPAD, since we
have argued that they are at a disadvantage using these diversity metrics.
xQuAD and its variations increase the diversity compared with the baseline
with respect to all but the EILD metric.

The results for the LastFM dataset are in Tables 9 and 10. Recall that
c-pLSA is missing from these results because we were unable to run it to
completion on a dataset with so many explicit features (tags). Consider preci-
sion and α-nDCG first, which are shown in Table 9. Here, RSPAD and SPAD
achieve the highest and second highest precision scores. Again, despite mak-
ing no use of explicit features, SPAD and RSPAD increase diversity measured
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Table 10 Diversity metrics except α-nDCG for different re-ranking algorithms on the
LastFM dataset using MF as the baseline. The best result for each metric is highlighted
in bold for each block. The values of λ that we use are the ones in Table 9. All of the results
are statistically significant with respect to their baseline (Wilcoxon signed rank with p <
0.05) except those shown in italics.

% change
Metrics over baseline

ERRIA Srecall EILD ILD ERRIA Srecall EILD ILD
MF 0.2012 6.39E-4 0.3671 0.7638

MMR 0.2013 7.06E-4 0.378 0.8094 0.06 10.37 2.99 5.97
xQuAD 0.2067 6.61E-4 0.3779 0.778 2.74 3.4 2.94 1.87
RxQuAD 0.21 6.34E-4 0.3661 0.7652 4.38 -0.89 -0.25 0.19
SxQuAD 0.2067 6.26E-4 0.3666 0.7552 2.75 2.05 -0.12 -1.12
SRxQuAD 0.211 6.37E-4 0.3689 0.7682 4.91 -0.38 0.49 0.58

SPAD 0.2036 6.36E-4 0.3734 0.762 1.22 -0.53 1.872 -0.23
RSPAD 0.2041 6.35E-4 0.3743 0.7624 1.48 -0.71 1.97 -0.18

Table 11 Precision and α-nDCG for different re-ranking algorithms on the LibraryThing
dataset using MF as the baseline. The best result for each metric is highlighted in bold for
each block. The value of λ that optimizes α-nDCG for this baseline and each re-ranking
strategy is given. All of the results are statistically significant with respect to their baseline
(Wilcoxon signed rank with p < 0.05) except those shown in italics.

% change
Metrics over baseline

λ Precision @10 α-nDCG Precision @10 α-nDCG
MF 0.1733 0.2412

MMR 0.1 0.1724 0.2415 -0.53 0.1
xQuAD 0.5 0.1866 0.264 7.7 9.44

RxQuAD 0.7 0.1801 0.2503 3.91 3.76
SxQuAD 0.6 0.185 0.2521 6.75 4.5

SRxQuAD 0.6 0.1819 0.2537 4.97 5.15
SPAD 0.4 0.1896 0.2588 9.4 7.28

RSPAD 0.4 0.1899 0.2576 9.59 6.77

by α-nDCG. xQuAD achieves the highest α-nDCG. Interestingly, all the re-
ranking methods, except MMR, increase precision (albeit only slightly in the
case of RxQuAD) as well as increasing α-nDCG. None increase precision as
much as SPAD and RSPAD, which arguably achieve the best balance between
increased precision and increased α-nDCG.

Next, consider the other diversity metrics, which are in Table 10. The
diversity with respect to ERRIA is increased by all of the re-ranking ap-
proaches compared with the baseline. With respect to Srecall, only MMR
and xQuAD out-performed the baseline. For EILD, all except RxQuAD and
SxQuAD improve the diversity compared with the baseline. For ILD, MMR
achieves the best and xQuAD the second best improvement compared with the
baseline; RxQuAD and SRxQuAD show a slight increase; but SPAD, RSPAD
and SxQuAD show a decrease.

The results for the LibraryThing dataset are in Tables 11 and 12. c-pLSA
is missing from these results for the same reason we explained above for the
LastFM dataset. First, consider the results shown in Table 11. They are very
similar to the ones for the LastFM dataset. RSPAD and SPAD achieve the
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Table 12 Diversity metrics except α-nDCG for different re-ranking algorithms on the Li-
braryThing dataset using MF as the baseline. The best result for each metric is highlighted
in bold for each block. The values of λ that we use are the ones in Table 11. All of the
results are statistically significant with respect to their baseline (Wilcoxon signed rank with
p < 0.05) except those shown in italics.

% change
Metrics over baseline

ERRIA Srecall EILD ILD ERRIA Srecall EILD ILD
MF 0.1143 0.0097 0.1137 0.7577

MMR 0.1143 0.0099 0.115 0.7687 - 2.44 1.11 1.46
xQuAD 0.1213 0.0104 0.1314 0.7884 6.19 7.17 15.53 4.05
RxQuAD 0.1197 0.0097 0.1209 0.7721 4.82 0.51 6.29 1.9
SxQuAD 0.1195 0.0092 0.1223 0.7441 4.58 -4.9 7.52 -1.79
SRxQuAD 0.1212 0.0098 0.1257 0.7802 6.1 1.3 10.58 2.97

SPAD 0.1183 0.0099 0.1302 0.7726 3.57 2.18 14.48 1.97
RSPAD 0.1178 0.0097 0.128 0.7655 3.07 0.22 12.56 1.03

highest precision and they both increase α-nDCG along with precision. xQuAD
achieves the highest α-nDCG. Again, all of the re-ranking approaches, except
MMR, increase precision along with α-nDCG. SPAD, RSPAD and xQuAD
give the best balance between increased precision and increased α-nDCG.

Finally, the results for the other diversity metrics are presented in Table 12.
With a few exceptions, all the re-ranking approaches increase all the diversity
metrics. Specifically, MMR does not improve diversity in terms of ERRIA, and
SxQuAD does not improve diversity in terms of ILD and Srecall.

6.3.2 Results for different values of λ

Here we look at the effect of parameter λ, which controls the balance between
relevance and diversity in Equation 1. The results we have shown so far use
whichever values for λ give highest α-nDCG. Here, instead, we plot precision
and α-nDCG on the test set for different values of λ, for all datasets and all
three baselines.

For the MovieLens dataset (Figure 3 for precision and Figure 4 for α-nDCG),
SPAD and RSPAD achieve higher precision than all the other re-ranking ap-
proaches and for all values of λ. Indeed, SPAD and RSPAD re-ranking of the
pLSA baseline always has higher precision than the baseline itself. SPAD and
RSPAD drop below the baseline in the case of the MF and FMBPR baselines,
but they do this only in the case of high values for λ. SPAD and RSPAD
applied to the pLSA and MF recommendation lists achieve higher α-nDCG
than the baselines for all values of λ. When the baseline is FMBPR, SPAD and
RSPAD become worse than the baseline only for high values of λ. xQuAD and
its variations have higher α-nDCG than SPAD and RSPAD for many values
of λ but they soon suffer from decreases in precision. c-pLSA and MMR, on
the other hand, suffer from decreases in α-nDCG for values of λ of about 0.5
and higher.

The results for LastFM can be found in Figures 5 and 6. Again, for pre-
cision, for all values of λ, SPAD and RSPAD perform better than all other
re-ranking approaches, and they only become worse than the baseline for high
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Fig. 3 MovieLens dataset. Precision @10 for varying λ using pLSA, MF and FMBPR base-
lines. Precision for each baselines is shown by the dotted line.
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Fig. 4 MovieLens dataset. α-nDCG for varying λ using pLSA, MF and FMBPR baselines.
α-nDCG for each baseline is shown by the dotted line.

values of λ and only in the case of the MF baseline. MMR always decreases the
precision. xQuAD and its variations increase the precision for smaller values
of λ, but then, with one exception, suffer from decreases. The exception is
RxQuAD: for all values of λ it has higher precision than the baseline in the
case where pLSA is the baseline. For α-nDCG, for all values of λ, SPAD and
RSPAD outperform all other re-ranking approaches where pLSA and FMBPR
are the baselines. Only xQuAD and MMR achieve higher α-nDCG values than
SPAD and RSPAD for some small values of λ, where MF is the baseline. For
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Fig. 5 LastFM dataset. Precision @10 for varying λ using pLSA, MF and FMBPR baselines.
Precision for each baseline is shown by the dotted line.
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Fig. 6 LastFM dataset. α-nDCG for varying λ using pLSA, MF and FMBPR baselines.
α-nDCG for each baseline is shown by the dotted line.

the LastFM dataset, SPAD and RSPAD gives the best balance between in-
creased precision and α-nDCG for almost all values of λ.

LibraryThing results are in Figures 7 and 8. Precision results for SPAD
and RSPAD are similar to those for LastFM. One small difference is, where
MF is the baseline: for larger values of λ, xQuAD and its variations slightly
outperform SPAD and RSPAD. For α-nDCG, for almost all values of λ, SPAD
and RSPAD perform better than all the other re-ranking approaches where
pLSA and FMBPR are the baselines. But where MF is the baseline, xQuAD
has higher α-nDCG for almost all values of λ.
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Fig. 7 LibraryThing dataset. Precision @10 for varying λ using pLSA, MF and FMBPR
baselines. Precision for each baseline is shown by the dotted line.
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Fig. 8 LibraryThing dataset. α-nDCG for varying λ using pLSA, MF and FMBPR base-
lines. α-nDCG for each baseline is shown by the dotted line.

To summarize, the results in this subsection and the previous one indicate
that SPAD and RSPAD perform the best, i.e. they are always the most accu-
rate systems across all three datasets evaluated in this paper, and they suffer
least from the relevance/diversity trade-off. They increase relevance as well
as the diversity for even more configurations than the other approaches do.
We repeat the observation too that SPAD and RSPAD are at a disadvantage
in the results for diversity and this may explain why the other approaches
sometimes have higher diversity than SPAD and RSPAD.
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7 Conclusions and Future Work

We have presented a new form of intent-aware diversification called Subprofile-
Aware Diversification (SPAD) and its variant, Relevance-based SPAD (RSPAD).
In both, the aspects to be covered by the re-ranked recommendations are sub-
profiles of the user’s profile, each representing a distinct user taste or interest,
instead of item features.

We have presented and compared eight different ways to extract subpro-
files from a user’s profile. We grouped them into three: methods that use the
nearest-neighbours of liked items; methods that use the explanations of top-n
recommendations; and methods that consider profile coverage. The methods
that use the nearest-neighbours of liked items have several advantages over the
others, and the empirical comparison on three datasets shows that one of these
methods (designated NN-1) also most often performs better than the others
in terms of recommendation accuracy and diversity. We have analyzed the
subprofiles extracted by NN-1 for each of the three datasets with descriptive
statistics and distribution graphs to better understand how extracted subpro-
files differ from dataset to dataset.

Using subprofiles detected by NN-1, we have compared SPAD and RSPAD
against several existing intent-aware diversification methods, ones that use
item features (such as genres) as aspects. Empirical results on three datasets
show that SPAD and RSPAD always result in the highest precision; they
increase both precision and diversity in almost all settings; and they suffer
even less from the relevance/diversity trade-off. These are noteworthy results
because all existing intent-aware methods may have an advantage with respect
to our measures of diversity since both the methods and the metrics uses item
features.

In the future, we would like to apply SPAD to new domains. One challenge
arises in domains where the temporal ordering of the items in a user’s profile
is important, such as e-commerce shopping and tourism. We have already ap-
plied SPAD to one such domain, i.e. the completion of music playlists (Kaya
and Bridge, 2018b), but, when doing so, we ignored the temporal ordering.
We would also like to explore the interpretability of SPAD’s recommendations
in terms of subprofiles. Since subprofiles are just sets of items, we can take
inspiration from the work on item-based explanations (as used, for example, in
amazon.com), which has been proven to produce effective explanations (Bridge
and Dunleavy, 2014; Bilgic and Mooney, 2005). We also hope to use subpro-
files directly in the cost function that is optimized by a recommender system,
instead of using them for re-ranking. Finally, we will adapt diversity evalua-
tion metrics so that they use subprofiles instead of item features, allowing a
comparison in which SPAD and RSPAD are not so much at a disadvantage.

Acknowledgements This paper emanates from research supported by a grant from Sci-
ence Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289 which is co-funded
under the European Regional Development Fund.
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A Hyper-parameters Values

First, we will show the hyper-parameter values for the baseline recommender systems.
For pLSA, MF and FMBPR, we choose the number of latent factors (d) from V =

{10, 30, 50, . . . , 290, 310}. FMBPR’s learning rate (lr) and regularization parameters (regW
and regM ) are chosen from {0.01, 0.001}, and MF’s confidence level (α) is chosen from
{1, 2, . . . , 10}. The values that get selected are as follows:

– pLSA: d = 50 for MovieLens; d = 30 for LastFM ; d = 270 for LibraryThing.
– MF: d = 30, α = 1.0 for MovieLens; d = 30, α = 1.0 for LastFM; d = 330, α = 1.0 for

LibraryThing.
– FMBPR: d = 190, lr = 0.01, regM = 0.01, regW = 0.001 for MovieLens; d = 10,
lr = 0.01, regW = 0.01, regM = 0.001 for LastFM; d = 270, lr = 0.01, regM = 0.01,
regW = 0.01 for LibraryThing.

Second, we show the hyper-parameter values for the re-ranking and the subprofile de-
tection methods.

All of the re-ranking approaches have hyper-parameter λ, which controls the balance
between relevance and diversity (Eq. 1), whose value we select from [0.1, 0.2, . . . , 1.0].

For the subprofile detection methods, we select the values of kind , knn and kIB from V ,
and we select the value of cp from the set [0.5, 0.6, . . . , 1.0].

Table 13 shows the values that get selected.
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