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Chapter 1
Energy Efficient Servers and Cloud

Huanhuan Xiong, Christos Filelis-Papadopoulos, Dapeng Dong, Gabriel G.
Castañé, Stefan Meyer, John P. Morrison

Abstract For clouds to be successful they need to continue to provide affordable,
reliable, computing and storage services. They must continue to adapt to an ever
growing user community whose service needs are unpredictable and are rapidly
changing. They must embrace heterogeneous hardware as they endeavour to provide
specialist services. Furthermore, as they struggle to come to grips with energy usage,
they must enact strategies to minimise energy consumption per unit of service.

1.1 Introduction

As the sizes of cloud infrastructures continue to grow, the complexity of the cloud
is becoming more and more difficult to manage. Currently, centralised management
schemes dominate and there are already signs that these are no longer fit for pur-
pose. Elasticity, for example, (the ability of the cloud to respond to rapidly changing
demands for resources) is currently being supported by over-provisioning. Over-
provisioning is a strategy of effectively under-utilising hardware so that some is
always available to absorb unpredictable peaks in demand. This strategy is not sus-
tainable, since the infrastructure costs and the energy it consumes, even when idle,
are significant. In 2010 Gartner Research [14] reported that the average server utili-
sation in large data-centres is 18%, while the utilisation of x86 servers is even lower
at 12%. These results confirmed earlier estimations that the average server utilisa-
tion is in the range of 10% - 30% [8]. Subsequent studies have not contradicted these
finding [19, 16].
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4 1 Energy Efficient Servers and Cloud

Cloud computing is evolving from it homogeneous roots and is being seriously
regarded by once highly specialised application domains like High Performance
Computing (HPC).

To support this trend, heterogeneity is a must [11]. HPC technology trends in
coprocessors are on the increase and NVIDIA GPGPUs and Intel Xeon Phi are
gaining increased traction. Low power processors are beginning to find their place
in the HPC ecosystem and HPC public cloud revenue could range from $1.56 billion
(low forecast) to $3.7 billion (high forecast) by 2017 and for HPC public custom
cloud computing, worldwide revenue could range from $0.87 billion (low forecast)
to $1.5 billion (high forecast) in the same period.

Incorporating energy efficient heterogeneous resources help to address power
consumption in the cloud. However, their inclusion also adds to the complexity of
the already overburdened cloud management scheme and this must be explicitly
addressed. Energy efficiency in cloud computing can be considered as a complex
optimisation problem, which attempts to minimise power consumption while sat-
isfy Quality-of-Service (QoS) or service level agreement (SLA) requirements spec-
ified by users. Energy-aware resource provisioning and allocation is a way to im-
prove energy efficiency without violating the negotiated SLAs or application per-
formance [3, 4, 15]. Research shows that the objective of energy efficiency is not an
independent or stand-alone issue from other cloud resource management objectives,
such as QoS/SLA, resource utilisation, and workload performance (e.g., execution
time, intensity), for example, and, unfortunately, there would appear to be no sin-
gle equation capable of expressing all the inter-dependences between the multiple
objectives.

The CloudLightning Project takes a novel route, making use of self-organisation
techniques to address the problems emerging from the confluence of issues in the
emerging cloud: rising complexity and energy costs, problems of management and
efficiency of use, the need to efficiently deploy services to a growing community
of non-specialist users and the need to facilitate solutions based on heterogeneous
components. Thus, this approach attempts to address:

• Energy efficiency.
Self-organisation is a powerful tool for addressing complexity of large- to
hyper-scale cloud resource management. It has proven itself time and time
again in nature and has been applied successfully in complex engineering
projects [12]. Of self-organisation, Alan Turing once observed that global order
arises from local interactions. We contend that when self-organisation is applied
to self-management, local interactions can give rise to scalable global manage-
ment. Moreover, given the appropriate evolutionary stimuli, the resultant global
management can be optimised for specific characteristics. CloudLightning pro-
poses a self-organised self-managed (SOSM) framework for providing energy-
efficient cloud resource provisioning and allocation (see Section 1.3).
• Improved accessibility to cloud.

The CloudLightning SOSM system provides cloud service consumers with a
user-friendly service level interface to explicitly declare their requirements for
service delivery. Through the assembly of dynamic resource coalitions, the
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SOSM system automatically and intelligently locates the required resources
and chooses the most appropriate configuration to deliver that service, while
respecting both the user-level SLA and the business objectives of the cloud ser-
vice providers (CSP). CSPs are thus enabled to provide energy-efficient, scal-
able management of their cloud infrastructures and better overall utilisation of
service.

• Supporting heterogeneity.
To support heterogeneity, CloudLightning brings various coprocessors into ex-
isting homogeneous cloud environments. These include Graphic Processing
Units - GPUs, Many Integrated Cores - MICs, Field Programmable Gate Ar-
rays - FPGAs. The availability of different resource types can alter the way
that solutions are designed. Mapping a problem onto an architecture specifi-
cally designed with that problem in mind can greatly improve efficiency and
simplify implementation. Secondary benefits are often obtained, such as speed,
improved precision of solution and reduced power consumption. These are im-
portant drivers for both the cloud provider and for the end-user. CloudLightning
also provides a plug-in mechanism for incorporating heterogeneous resources
into the self-organising cloud. Pertinent characteristics of these resources are
surfaced, through the plug-in mechanism, to the end-user via the service de-
scription language; making these resources easier to consume.

The three objectives listed above are tightly coupled aspects of the CloudLight-
ning system. A complete description of the CloudLightning system is necessary to
express the subtle interplay between the objectives and the architecture of the solu-
tion needed to address them. However, here the CloudLightning system is described
predominantly from the energy efficiency perspective and the advantages that flow
from exploiting hardware accelerators and the challenges associated with balancing
energy consumption with improved service delivery.

The remainder of this chapter is organised as follows. Section 1.2 presents
the CloudLightning hierarchical architecture and its main components. The self-
organised, self-managed, framework with respect to energy efficient resource man-
agement is described in Section 1.3. Finally, Section 1.4 presents the evaluation of
our proposed approach and Section 1.5 concludes with some final thoughts.

1.2 CloudLightning Architecture

Large-scale data-centers typically make use of a hierarchical model for organis-
ing the compute, storage and network infrastructures. The Warehouse Scale Com-
puter (WSC) [2] is a typical hierarchical architecture widely used by companies like
Google, Yahoo, Amazon, Facebook, Microsoft and Apple [1, 9, 17] for this purpose.

The CloudLightning architecture is also a hierarchical organisation of physical
infrastructure but unlike traditional organisations it makes use of a resource manage-
ment framework that is locically hierarchical. The bottom layer of this framework
hierarchy consists of many resource managers. These managers are autonomous
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and, in contrast to traditional systems, each manages a relatively small number of
physical resources. Since the number of physical resources is restricted, each man-
ager can efficiently control the collection - allocating tasks and, where appropri-
ate, virtualising resources in response to service requests. This arrangement is self-
limiting in the sense that an increase in the number of physical resources attached
to such a manager spontaneously results in a new manager being brought into exis-
tence to assume the control over the extra resources should the increase in physical
resources exceed a specific cost management threshold. In this way, a first step is
taken to tackle the problem of scalability in resource allocation. However, this en-
hancement to the topology of the hierarchy forms only a partial solution, since no
mechanism is yet provided to identifying an appropriate resource manager, from
many potential candidates, that will make the final resource allocation decision.

The CloudLightning architecture is depicted in Figure 1.1.

Fig. 1.1: A Representation of the CloudLightning Architecture

1.2.1 Cell

At the top of the hierarchy, a Cell represents the entire set of physical resources.
These are partitioned into different hardware types (including CPUs, CPU-GPU
pairs, CPU-MIC pairs, and CPU-FPGA pairs) and each partition is accessed via a
dedicated pRouter.
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1.2.2 pRouter

Each pRouter provides access to hardware resources of the same type which, in turn,
is managed by a specific resource abstraction method (such as OpenStack Nova 1 to
manage virtual machines on commodity servers, Kubernetes 2, Mesos 3 [10], and/or
Docker Swarm 4 to manage containers on GPUs and MICs, and OpenStack Ironic 5

to manage bare metal servers using DFEs).
Some examples of the constitution of the pRouters in CloudLightning architec-

ture include:

• OpenStack-CPUs-VMs: Commodity machines (CPUs) pre-installed with Open-
Stack services.

• OpenStack-FPGAs-accelerators: FPGAs configured as compute accelerators
using the OpenStack Nova service.

• Mesos-GPUs-accelerators: GPUs configured as compute accelerators using the
Mesos framework and Docker Engine.

• Marathon-MICs-accelerators: Marathon as the Resource Manager managing a
cluster of Xeon servers with attached MICs.

Each pRouter is connected to one or more pSwitches.

1.2.3 pSwitch

pSwitches are used to further partition the resource space into smaller and more
manageable domains composed of multiple virtual Rack Managers (vRMs). How-
ever, the number of pSwitches per pRouter is not fixed and can change over time.
Similarly, the number of vRMs, being managed by each pSwitch, can also change
over time in response to dynamic grow and shrinkage of the resource fabric.

pSwitches and vRMs can self-organise by exchanging constituent members.
Thus, two of more, pSwitches may exchange control over a subset of their respec-
tive vRMs and , similarly, twowithin groups, which will be called Cooperatives, to
emphasise their self-organising nature. To prohibit the creation of Cooperatives with
different resource types, pSwitch Cooperatives cannot span pRouters. Similarly, to
minimise administrative overhead, vRM Cooperatives cannot span pSwitches.

As the CloudLightning system evolves, it is anticipated that the number of
pSwitches connected to a pRouter will change and will converge to some optimal
number with respect to some global goal set by the cloud service provider. This goal

1 OpenStack Nova: http://docs.openstack.org/developer/nova/
2 Kubernetes: http://kubernetes.io/
3 Apache Mesos: http://mesos.apache.org/
4 Docker Swarm: https://github.com/docker/swarm/
5 OpenStack Ironic: http://docs.openstack.org/developer/ironic/deploy/user-guide.html
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is expressed as a vector of weights that are propoagated down through the manage-
ment hierarchy and alter the perceived importance of the underlying behaviours. As
part of the self-organisation process, pSwitches and vRMs can be created, destroyed,
merged and split.

1.2.4 vRack Manager

At the bottom of the hierarchy are a collection of resource managers knows as the
virtual Rack Managers (vRMs). These are responsible for the efficient manage-
ment of collection of resources directly under their control. vRMs also commu-
nicate weighted status information pertaining to theese resources upwards through
the hierarchy.

It is anticipated that the number of vRMs connected to a pSwitch and the number
of pSwitches connected to a pRouter will change and will converge to some optimal
number; derived from the weights coming from the pRouter and from the vRMs and
pSwitch’s efforts to convergy to a local goal state. As part of the self-organisation
process, vRMs and pSwitches can be created, destroyed, merged and split. Further-
more, they may exchange control over resources in an effort to maximise resource
utilisation, to minimise energy consumption and to optimise management utility.

1.3 Hyperscale Resource Management for Energy Efficiency

In the CloudLightning system, the process of identifying an appropriate resource
manager to affect the next resource allocation decision is distributed throughout the
entire logical hierarchy. It begins at the vRM level, where information relating to the
functional capabilities, and the nonfunctional behaviors, of its constituent resources
forms a view of these resources, which is then propagated upwards through the hier-
archy. In this upwards propagation, and at each intermediate level in the hierarchy,
this information may be combined into a higher-level view, in many different ways,
with similar information emerging from different elements from the lower-level of
the hierarchy. These views are called Perceptions and are used to guide resource al-
location requests entering the system at the top of the hierarchy. The contention
is that the most appropriate resource allocation is to be found by following the
path exhibiting the greatest perception, since this path simultaneously maximises
the chances of locating the requisite resources and of optimising the non-functional
behaviours.

CloudLightning develops a strategic self-organised self-managed framework to
support distributed resource allocation decisions and that can be dynamically pop-
ulated with strategies to reflect the ever-growing number of diverse objectives as
they become evident in the evolving cloud infrastructure. In the CLoudLightning
approach, cloud service providers can define various strategies by which cloud re-
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sources are allocated, and system/cloud objectives (from energy efficiency perspec-
tive) are attained.

In the CloudLightning approach, these objectives can be expressed as assessment
functions (see Section 1.3.1). This outputs of assessment functions are aggregated
as they pass upwrds through the hierarchy, the components in each layer of the
hierarchy (i.e., Cell manager, pRouters, pSwitchs and vRMs layers) then use various
strategies to calculate a value known as the Suitability Index (SI) (see Section 1.3.2).
This index indicates the suitability of the the underlying region to host the next
service request. Thus, a pathway guiding a service request to the place where it is
most likely to find resources to host it is determined by always choosing to enter a
region having the greatest SI. This is illustrated in Figure 1.2.

Fig. 1.2: An example of resource allocation path based on SI

1.3.1 Assessment functions

In CloudLightning, assessment functions output metrics that are used for monitor-
ing and reflecting the state of the cloud infrastructure, including functional and non-
functional behaviors, such as computation performance, power consumption, and
management cost. Achieving energy efficiency in the cloud is not simpy a matter
of reducing power consumption in isolation. Power reduction must be done in the
context of guaranteeing workload computation performance; maximising the com-
putation performance within a particular power consumption budget. Therefore, it
makes sense to express the various aspects being captured by the CloudLightning
assessment functions in terms of energy efficiency.

Performance per watt is a measure of the energy efficiency of a particular com-
puter architecture or computer hardware.
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fhw =
Per f ormance

Power
(1.1)

Computational performance could be evaluated in measurable, technical terms,
using one or more metrics, such as CPU/memory utilisation, throughput, floating
point operations per second (FLOPS), millions of instruction per second (MIPS),
and bandwidth.

Usually, the performance of a hardware configuration can be measured by any
appropriate benchmark (such as SPECpower 6 and EEMBC 7). Power models vary
for different hardware types and hardware usage. For example, a commonly used
linear power model [4] for CPU based servers is:

P(u) = Pmin +(Pmax−Pmin)u (1.2)

where u ∈ [0,1] is the CPU utilisation, Pmin is the idle power consumption, Pmax is
the maximum power consumption.

1.3.2 Suitability index

In CloudLIghtning, the concept of Suitability Index (SI) is created for measuring
how close a component is to its desired state, and hence how suitable its operating
characteristics are for contributing to the global goal.

argmax
w`,m`∈IRN

η

(
w`,m`

)
(1.3)

where w` is an N-dimensional vector of weights corresponding to the Impetus in
the `-th level and m` is an N-dimensional vector of metrics corresponding to the
Perception in the `-th level. General speaking, w` presents the influence factor from
the upper level indicating the perspectives from application characteristics, system
objectives, service level agreement, etc., and m` is the perception value (i.e., mean
and/or maximum) of the lower level giving the average and/or the best performance
view over the underlying system.

Overall, in terms of different characteristics of assessment functions, SI can be
used to indicate the most suitable location to host incoming service requests. Thus,
when the assessment functions are chosen to reflect the energy consumption with re-
spect to different aspects of computation performance, the SI will indicate the most
energy efficient location in the cloud resource fabric for hosting the next incoming
service request. Similarly, if the assessment functions are chosen to reflect the man-
agement costs associated with different cloud configurations, the SI will indicate to
the most efficient place to host the next incoming service request, with respect to
that management cost.

6 SPECpower: https://www.spec.org/power ssj2008/
7 EEMBC: http://www.eembc.org/
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Figure 1.3 depicts the various applications of using the Suitability Index to
achieve different goals.

Fig. 1.3: Suitability Index Use Cases

1.3.2.1 SI strategy on CM

In the CloudLightning system, the Cell Manager needs to decide on which resource
type is the most appropriate for hosting the next incoming service request. When
user SLA objectives are satisfied, a choice can be made from the remaining types
which maximises system objective (e.g., maximising energy efficiency).

The energy consumption for a specific service is often modelled as the integral of
the power consumption function over the execution time for completing the applica-
tion (mostly for batch and HPC workloads, not for the long-run web applications):

E =
∫ t1

t0
P(u(t))dt, (1.4)

where u(t)is the CPU utilization function of time, which may change over time due
to the workload variability. t1− t0 denotes the application execution time.

The SI strategy on Cell Manager is to find the most suitable pRouter (that it, a
specific resource type) for a specific service workload with the respect to energy effi-
ciency. Therefore, the Cell Manager has to calculate/predict the energy consumption
for each possible hardware type which might run that application workload based on
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their current state and with knowledge of the service characteristics and hardware
characteristics.

In some cloud simulators [6, 13, 18], service workloads can be modelled with
three parameters: (i) input size, (ii) processing length, measured in Millions of In-
structions (MI) and (iii) output size. The number of instructions can be calculated by
the computational capacity (capability) of the processors (can be virtual machines or
accelerators) multiplied by the service workload execution time. The service execu-
tion time can be computed from profiling the application with respect to parameters
such as input size. Thus, the estimated execution time of the application workload
running on a specified hardware resource (represented by a pRouter i) is:

t =
NMI

NMIPS
i

(1.5)

where NMI is the number of instructions in that service, and NMIPS
i (MAX) is the

maximum number of instructions per second (MIPS) from pRouter i.
The total computational capacity of pRouter i hosting Nservers number of servers,

Nacc number of accelerators per server, with Cproc the combined computational ca-
pacity (in MIPS) of all processors (CPUs) of a server and Cacc the computational
capacity (in MIPS) of an accelerator, can be defined as follows:

Cpr
i =CprocNservers +CaccNaccNservers (MIPS). (1.6)

The computational capacity (in MIPS) of the i-th pRouter (Cpr
i ) can be defined

in term of servers executing a task:

Cpr
i =Cproc

Nu
proc

Nproc
+CaccNu

acc (MIPS). (1.7)

where Nproc is the number of processing units per server, Nu
proc ∈ [0,NprocNservers] is

the number of utilized processing units with respect to all servers under a pRouter
and Nu

acc ∈ [0,NaccNservers] is the number of utilized accelerators with respect to all
servers under a pRouter. The result of eq. (1.7) would be similar for all resources
at the beginning since no task has entered the system. Thus, in order to distinguish
between resources, a random number can be added on the SI.

In order to compute the power consumption per pRouter we can utilize the model
of Eq. (1.2). The power consumption for the accelerators is considered to be binary,
since accelerators are either used or not and cannot be shared between virtual ma-
chines. The power consumption of the pRouter i can be estimated as follows:

Ppr
i = (Pmin +Pacc

minNacc)Nservers +(Pmax−Pmin)
Nu

proc

Nproc
+(Pacc

max−Pacc
min)Nu

acc (W )

(1.8)
where Nproc is the number of processing units per server, Nu

proc ∈ [0,NprocNservers] is
the number of utilized processing units with respect to all servers under a pRouter
and Nu

acc ∈ [0,NaccNservers] is the number of utilized accelerators with respect to all
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servers under a pRouter. The quantities Pacc
min and Pacc

max are the idle and the maximum
power consumptions of an accelerator, respectively.

Therefore, the computation of the Suitability Index (SI) of each pRouter, at the
Cell Manager, can be performed as follows:

SIpr
i =Cpr

i /Ppr
i (MIPS/W ). (1.9)

This metric can be used in conjunction with availability (status) information to
guide a task to the most efficient resource in terms of higher MIPS/W . The afore-
mentioned equations can be reformed to take into account the overcommitment of
resources. Guiding the task below the pRouter level can be performed using the
same definition for the SI or the definition given in [5].

Similarly, the computation of the SI of each pSwtich (at a pRouter), and the
computation of the SI of each vRM (at a pSwitch), will follow the same pattern as
described in Eq.(1.7), (1.8) and (1.9).

1.3.2.2 SI strategy on vRM

The SI strategy on vRMs is quite different from the Cell Manager, pRouters and
pSwitches, since the vRMs have up-to-date state information for all the resources
under their control. vRMs can make accurate and timely decisions about the re-
source allocations with the respect to energy efficiency locally.

In CloudLightning, three strategies are applied to achieve energy efficient re-
source allocation.

(1) Best energy efficient node
The simplest strategy for a vRM to achieve energy efficiency is to deploy the

virtual machine (VM) onto the most power efficient node (i.e., server). This strategy
would appear to prioritize server utilization, however, success in selection depends
on there being sufficient resources available from that server to satisfy the VM’s
requirement.

(2) Bin-packing
The objective of this approach is to minimize the energy consumption by placing

VMs onto the minimum number of hosts. The model can be described as follows [7]:
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min ∑
i∈V

∑
j∈H

pi jvi j + ∑
j∈H

Pjh j

s.t. ∑
i∈V

rivi j 6 Ch j ∀ j ∈ H

∑
j∈H

vi j = 1 ∀i ∈V

vi j 6 h j ∀i ∈V, j ∈ H

vi j ∈ {0,1} ∀i ∈V, j ∈ H

h j ∈ {0,1} ∀ j ∈ H (1.10)

where H is the set of hosts, V is the set of VMs in the cloud fabric, the objective
is to decide how to rearrange V on H such that the total power consumption in the
system is minimized. All v ∈ V requirements ri, such as CPU, memory, storage,
must be satisfied by the targeting host; each h has a resource capacity limit C. The
total power consumption is the sum of power pi j consumed by CPUs of each VM
i on host j, plus a fixed power Pj consumed by the other components of host j,
such as memory and I/O. Let h j = 1 represent choosing host j to be switched on,
and 0 otherwise. Also, let vi j = 1 represent the assignment of VM i to host j, and 0
otherwise. The first constraint enforces the capacity limit on each host. The second
constraint ensures that each VM is assigned to exactly one host. The third constraint
guarantees a host to be switched on if and only if a VM has been assigned to that
host. The last two constraints indicate the state of a VM or host is either to be on or
off.

However, this approach does not take the service workload characteristics and
overcommitment into account, the next strategy applies the bin-packing with over-
commitment ratio to further optimize the energy efficiency within a vRM.

(3) Bin-packing with overcommitment
There are three basic types of scheduling execution for VMs residing on a server:

space-sharing, time-sharing and hybrid (time-space) policies.

• Space-sharing policies divide the system into partitions of processors so that
more than one task can run on the system simultaneously; each on its own group
of processors.
• In a time-sharing model, computer resources are committed and tasks are ex-

ecuted at the same time among many users. Time-sharing policies adopts pre-
emption to alternate processors among a number of tasks that is usually deter-
mined by the multiprogramming level.
• Hybrid models (space-time sharing) combines the benefits of the two aforemen-

tioned types of policies. In a hybrid model, the system is divided in multiple
processor groups and each group adopts a time shared policy by a distinct set of
application tasks.

The time-sharing and hybrid model are commonly used in overcommitment
of CPU and memory resources, which can increase server utilization. However,
for compute-intensive workloads, overcommitment of resources can reduce perfor-
mance and subsequently increase energy consumption, since the tasks are compet-
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ing for resources. While for the communication-intensive workloads, the overcom-
mitment of CPU and memory resources can be less harmful with respect to perfor-
mance.

Thus, each vRM can customize its own overcommitment ratio with respect to
the available physical resources (i.e., CPU, memory and network) and the workload
characteristics, dynamically adjusting the overcommitment ratio of its associated
resources to maximize the energy efficiency without violating the service perfor-
mance.

1.4 Evaluation

In this Section, the scheme for computing the SI, in the Cell Manager level, is evalu-
ated. Without loss of generality a Cell is considered as having two types of hardware.
The characteristics of these resources are given in Table 1.1. For simplicity tasks are
considered to fully utilize underlying resources and implementations exist for both
tasks. The length of the task queue at each time-step was computed as a rounded
random value, obtained the uniform random distribution, in the interval [0,0.85].
Thus, the total number of tasks that entered the system was 35629. The tasks re-
quired 2,4,8,16 virtual cores and 1,2,3,4 accelerators, respectively, following uni-
form random distribution. The number of instructions for a task was computed in
the interval [100,5000] MI using a uniform random distribution. The simulated time
was 172800 seconds. Tasks enter the system with respect to the aforementioned pa-
rameters for the first 86400 seconds, while for the last 86400 the system is left to
finish execution without incoming tasks. The energy consumption is computed as
the integral of power consumption over time. The integral is computed numerically
using the rectangle method.

Table 1.1: Characteristics of the resources
Resource Cproc Cacc Nproc Nacc Nservers Pmin Pmax Pacc

min Pacc
max

1 160000 0 16 0 500 100 500 0 0
2 160000 480000 16 4 500 100 500 50 250

The first experiment concerns the computation of the SI using Eq. (1.6), (1.8)
and (1.9). In Fig. 1.4 the Suitability Indices (MIPS/W ) computed with Eq. (1.6),
(1.8) and (1.9) for the two types of hardware are given. In the beginning, and up to
time-step 1841, tasks flow to the hardware of Type 2, since its SI has the highest
value. When the value of the SI of hardware Type 2 reaches the value of the SI of
hardware Type 1, tasks start to flow to the resources of Type 1. From time-step 1842
to time-step 2350, the two pRouters are competing for the incoming tasks, since
the SIs are almost similar in value. From the time-step 2351 to time-step 86000
the pRouter hosting hardware of Type 2 is almost completely utilized, thus most of
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the tasks flow to the pRouter hosting hardware of Type 1. This process leads to an
overall power consumption of 25.5129 MWh.

Fig. 1.4: Suitability Indices (MIPS/W ) computed with eq. (1.6), (1.8) and (1.9) for the two types
of hardware.

The second experiment concerns the computation of the SI using Eq. (1.7), (1.8)
and (1.9). In Fig. 1.5 the Suitability Indices (MIPS/W ) computed with Eq. (1.7),
(1.8) and (1.9) for the two types of hardware are given (first task arriving to pRouter
hosting hardware of Type 1). In this experiment the initial value of both SIs is 0, thus
the first task flows to the first available pRouter (e.g. Type 1). The following tasks
also flow to pRouter hosting hardware of type 1 until it is almost completely utilized.
Then, tasks start to flow to the pRouter hosting hardware of Type 2. Due to the
large value of the SI of the pRouter hosting hardware of Type 2 the majority of the
tasks continue to flow there, while a small fraction of the tasks flow to the pRouter
hosting hardware of Type 1. This process leads to an overall power consumption of
26.2064 MWh.

The initial hardware choice dictates the first task flows and impacts the direction
taken by the following tasks. In Fig. 1.6 the Suitability Indices (MIPS/W ) computed
with Eq. (1.7), (1.8) and (1.9) for the two types of hardware are given (first task
arriving to pRouter hosting hardware of Type 2). This process leads to an overall
power consumption of 25.6172 MWh. Choosing the fastest hardware type first leads
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Fig. 1.5: Suitability Indices (MIPS/W ) computed with eq. (1.7), (1.8) and (1.9) for the two types
of hardware (first task arriving to pRouter hosting hardware of Type 1).

to improved energy consumption, since the CPU-Accelerator pair executes tasks
faster.

The energy consumption using Eq. (1.6), (1.8) and (1.9) is slightly reduced com-
pared to the other two approaches.

The last experiment concerns the computation of the SI following the initial ap-
proach given in [5], with:

f1(Nu
proc) =C

Ntotal
proc −Nu

proc

Ntotal
proc

, (1.11)

f2(Nu
proc) =

Pi(Ntotal
proc −Nu

proc)

PNu
proc +Pi(Ntotal

proc −Nu
proc)

, (1.12)

and the vector of weights w = [1 1]. The Suitability Index is computed as SI =
w1 f1 +w2 f2, [5]. For the two types of hardware (1 and 2) the values of the relative
computational capability C were 1.0 and 3.0, respectively, [5]. The values for the
relative power consumption P and the relative idle power consumption Pi for hard-
ware Type 1 were 1.0 and 0.2, respectively, while for hardware Type 2 were 1.5 and
0.2, [5]. For hardware Type 2, Eq. (1.11) and (1.12) are computed with respect to
the total number of accelerators as well as the number of utilized accelerators. In
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Fig. 1.6: Suitability Indices (MIPS/W ) computed with Eq. (1.7), (1.8) and (1.9) for the two types
of hardware (first task arriving to pRouter hosting hardware of Type 2).

Fig. 1.7 the Suitability Indices computed with respect to the original design given
in [5], are presented. In this approach the two pRouters continuously compete for
acquiring tasks from time-step 0 to 86400. The pRouter hosting hardware of Type 2
is the first receiving tasks until the point where its SI becomes comparable to the SI
of the pRouter hosting hardware of type 1. The energy consumption of the system
was 27.1687 MWh.
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Fig. 1.7: Suitability Indices computed with respect to the original design given in [5].

The proposed approaches for computing the SI lead to an overall improvement
between approximately 3.54%− 6.1% for the energy consumption. The computa-
tion of the SI based on Eq. (1.6), (1.8) and (1.9) leads to the greater improvement,
followed up closely by the approach using eq. (1.7), (1.8) and (1.9) with first task
arriving to pRouter hosting hardware of Type 2.

1.5 Conclusion

The CloudLightning project attempts to address resource management issues asso-
ciated with hyper-scale cloud deployments. The complexity of these deployments
makes the selection of the most suitable resource to host the next service request a
very challenging task. Decentralising the decision process is, itself, not sufficient to
adequately address this problem, since any distributed collection of resource man-
agers still have to share relevant information and have to together decide on that
resource that meets both the service requirements and the business objectives of the
cloud service provider. These business objectives can be many and varied and in
the CloudLightning project, they are captured through the use of Weighted Assess-
ment Functions. These functions are used to measure various aspects of the status
of the system and this information is subsequently used to determine how close the
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system is to achieving the business object associated with each respective function.
By dynamically weighting Assessment Functions, the cloud service provider can
steer the evolution of the system in the direction of those objects that reflect the
providers immediate needs. As status information is propagated upwards through
the CloudLightning hierarchy, it is combined into a view of the underlying levels.
This view reflects how well those parts of the system are performing with respect to
the business objectives and, by extension, how suitable those levels are to respond
to imminent resource requests. The suitability is reflected in a measure known as
the Suitability Index.

An important business object for cloud providers is to minimise energy consump-
tion. The CloudLightning architecture embodies many heterogeneous resources,
each with its own energy consumption and exploitation characterises. The work de-
scribed here illustrates how the Suitability Index can be specifically tailored in such
a complex environment in support of globally minimising energy consumption. This
specially tailored form of the Suitability Index was evaluated empirically and the re-
sults were presented, showing and improvement of about 6% over the unspecialised
Suitability Index calculation.

The CloudLightning architecture is designed so that it can be easily extended
with a multiplicity of heterogeneous resource types. This achieved using a Plug and
Play mechanism. When a new resource is added to the system using this mechanism,
it is assigned to an appropriate resource manager so that it can be effectively man-
aged. Decision on the most appropriate resource manager to manage a resource is
an analogous process to deciding on the most appropriate resource to host a service.
Thus, the descriptor, representing a new addition to the resource fabric, follows the
path of lowest (as apposed to the highest) Suitability Indices until it becomes associ-
ated with an appropriate resource Manager. This ensures that the resource is placed
into the system so as to maximise its utility in meeting the business objectives and
in balancing the values of the Suitability Indices across the cloud.
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