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Estimation of an Indicator of the Representativeness of Survey
Response

Natalie Shlom& Chris Skinner, Barry Schouten

! Southampton Statistical Sciences Research Irestitlidniversity of Southampton,

Southampton SO17 1BJ, United Kingdom

2 Statistics Netherlands, Henri Faasdreef 312, 2#9Ren Haag, The Netherlands

Abstract

Nonresponse is a major source of estimation emosample surveys. The
response rate is widely used to measure surveytyjaasociated with nonresponse,
but is inadequate as an indicator because ofitisedd relation with nonresponse bias.
Schouten, Cobben and Bethlehem (2009) proposedt@mmadive indicator, which
they refer to as an indicator of representativerms$R-indicator. This indicator
measures the variability of the probabilities o$pense for units in the population.
This paper develops methods for the estimationh R-indicator assuming that
values of a set of auxiliary variables are obseryed both respondents and
nonrespondents. We propose bias adjustments tpdim¢ estimator proposed by
Schouten et al. (2009) and demonstrate the effawtss of this adjustment in a
simulation study where it is shown that the meti®dalid, especially for smaller
sample sizes. We also propose linearization veei@stimators which avoid the need
for computer-intensive replication methods and slgoad coverage in the simulation
study even when models are not fully specified. iie of the proposed procedures is

also illustrated in an application to two businggsreys at Statistics Netherlands.
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1. Introduction

One of the most important sources of estimatiomreim surveys is nonresponse.
Survey organisations need indicators of such dooa variety of purposes, for example to
compare different surveys, to monitor changes iepgated survey over time or to monitor
changes during the fieldwork of a single surveyhpps to inform decisions such as when to
end fieldwork. An indicator which is widely usedrfsuch purposes is the response rate,
where a higher response rate is taken to indicigteeh quality. However, there has been
much recent empirical research (see e.g. Grove86§20Groves and Peytcheva (2008),
Heerwegh, et al. (2007) and references thereinthlwbbncludes that the response rate is
insufficient as an indicator to measure the po#tréiror arising from nonresponse. Since
sample sizes are usually large in surveys, thereduaias component of mean squared error
will typically dominate the variance component drehce it is desirable that the indicator
reflect nonresponse bias. However, the empiricalezice suggests that the response rate is
only a weak predictor of nonresponse bias. Ther¢héefore much interest in survey
organisations in the development of alternativéciairs (Groves et al., 2008).

In this paper, we consider an indicator propose&dlyouten, Cobben and Bethlemem
(2009, referred to hereafter as SCB). The basia idethat nonresponse bias depends
critically on the contrast between the charactesssf respondents and nonrespondents. This
contrast can be assessed in terms of the prolyabilié unit responding to the survey. If all
units in the population share the same probalhiyesponding then no nonresponse bias will
result and the response mechanism may be viewetlepsesentative’. The indicator
proposed by SCB, termed the R-indicator (‘R’ fopressentativeness), measures the extent to
which the response probabilities vary. An advaataigthis indicator (shared by the response
rate) for various practical applications is thatpibvides a single measure for the whole
survey. It should be recognized that nonresponas isi defined in relation to a specific
population parameter (and hence one or more sumaiables). Thus, for any one

(multipurpose) survey there may be a very large memof nonresponse biases. It would be



feasible to construct indicators which are paramgpecific (Groves et al., 2008, Wagner,
2008), but here we suppose the requirement is $orgle indicator for the whole survey.

Further discussion of the rationale and applicatiof the R-indicator is provided by
Cobben and Schouten (2007) and Schouten and C@BbB6r) in addition to the paper by
SCB. The purpose of this paper is to consider imenttetail some of the estimation issues
associated with the R-indicator. The R-indicatarpased by SCB is subject to bias arising
from the estimation of the response propensifié®e bias is particularly problematic for
small sample sizes, and a bias adjustment is oleedl In addition, we develop linearization
variance estimators as an alternative to the odetf bootstrapping proposed in SCB. We
evaluate these procedures in a simulation study demdonstrate the application of these
procedures to a real business survey.

We introduce the theoretical framework and defgsponse propensities in Section 2.
The R-indicator is defined at the population leweSection 3. The relation of the R-indicator
to non-response bias is discussed in Section 4t Rstimation of the R-indicator using
sample data is considered in Section 5. The bidkeopoint estimator and bias adjustment,
variance estimation and confidence intervals aresidered in Section 6. A simulation study
and results of that study are described in Secfioand results from a real dataset are

demonstrated in Section 8. Finally, we concludediaduss future work in Section 9.

2. Preliminaries and Response Propensities

We suppose that a sample survey is undertakenewheamples is selected
from a finite populatiorJ . The units inU are labelled =1,2,... N, with the sizes
of s andU denotedn and N , respectively. A probability sampling design is

employed, wheres is selected with probabilityp(s) . The first order inclusion

probability of uniti is denotedz andd;, =7 is the design weight.



The survey is subject to unit nonresponse, with 4Bk of responding units
denotedr, sor sOU. We denote summation over the respondents, saamule
population bys, , £, and £, , respectively. Let R be the response indicator
variable so thatR =1 if unit i responds andR =0 , otherwise. Hence,
r={i0s R =1} . Let X be a vector of auxiliary variables which may infice

nonreponse, e.g. a vector consisting of age, gemdigree of urbanization of
residence area and the observed status of theidgvédr a household survey or the
type of business and the number of employees busaess survey.

We define theresponse propensity. as the conditional expectation (under a

model) of R given the values of specified variables, suchhasauxiliary variables
above, and survey conditions (Little, 1986, 1988it.is necessary to clarify that the
conditioning is on a vector of variables , for example, then we write:
p=p,(x)=E(R|X =x) to denote the conditional expectationRfgiven that
the vector of variablesX; for uniti takes the valuex, . HereE (.) denotes
expectation with respect to the model underlying tiesponse mechanism. We
assume thaR is defined for each population unitJU , so that nonresponse is what
Rubin (pp. 30-31, 1987) refers to as ‘stable’, andis also defined for all U . We
also assume that thB for different units are independent, conditional the

specified variables and survey conditions. Weldhaher assume that the sampling
design and the nonresponse process are ‘unconfdufpge 35-36, 1987) so that the

probability of selectings remaingp(s), whatever the values of the, iU . Thus,

it is assumed that nonresponse does not deperteaonfiguration of the sample.

3. Representativeness I ndicator



The variation in the response propensities may ibavad as reflecting the
‘representativeness’ of the nonresponse. In SCBorese is defined to be (strongly)
representativef the response propensities are the same famak in the population,
corresponding to the notion of missing completalyamdom (MCAR) (Little and

Rubin, p. 12, 2002) given the variables which aredttioned upon when defining.
They define a representativeness indicator, tetfmeR-indicatorand denotedR_, in

terms of the population standard deviation of thesponse propensities:

S, :\/(N—l)‘lzU (0-m,)°, where g, =>,p /N . In order to facilitate the
interpretation of the indicator, they define itérms of S, as follows:

R,=1-2S, , (3.1)
where this transformation @, ensures thab< R, <1 since it may be shown that
S, < JB,1-p,)<05. The valueR, =1 indicates the most representative response,

where thep display no variation, and the value O indicates l#mst representative

response, where the display maximum variation.

4. Relation of R-Indicator to Non-response Bias

The R-indicator may also be motivated in terms afiresponse bias. Suppose

that the target of inference is a population mé?amN‘lZU y of a survey variable,

taking valuey, for uniti and observed only farlr . A standard design-weighted

estimator ofé is 6 = >..dRYy/> _dR. The bias ofd as an estimator of may be

evaluated by taking expectations with respect tdhbthe random sampling

mechanism, denotel,, and the response mechanism, den&eds in Section 2.



We assume, for now, that the specified variableBigde y, so that it may be treated

as fixed. We then have:

EE@=EE[TdRYT dR=TR YT 4. @

i0s iOs (mV]
where in this caseo, = o, (Y, % Js conditional on bothY and X and the

approximation is for large samples so that we tdleefirst term only in the Taylor
expansion. In addition, we have used the assumphi@ainthe sampling and response

mechanisms are unconfounded. Hence the bias depanmsresponse only vi&. It

follows that
Bias(d) =Y. p(y-6)/ X
iy ity

=corr,,S,S /P, (4.2)

wherecorr, =(N —1)‘1_2 (0 -2,y -6)S S andS; =( N—l)‘lz (y-6)>.

Expression (4.2) is also obtained in Bethlehem §98nd Sarndal and
Lundstrom (p.92, 2005). An upper bound for the alisdbias can thus be expressed

in terms of the R-indicator by

Biasd)k S /A, =P @3)
2P,

A standardized measure, which is freeyofs given by:

(4.4)

5. Estimation of R-indicator
We suppose that the data available for estimatiopgses consists first of the

values{y,; i0r }of the survey variable (or, more generally, a vead survey



variables), observed only for respondents. Secomnalysuppose that information is

available on the values = (x;, %, ..., %)’ of a vectorX; of auxiliary variables for

all sample units, i.e. for both respondents and-nespondents. We refer to this as
sample-based auxiliary informatiohis is a key assumption and is natural if, for

example, the variables making wp are available on a register. Other possible
assumptions about the availability of auxiliaryamhation are discussed in Section 9.

Sincey, is only observed for respondents, the responsgepsity conditional
on Yy, is generally inestimable without further assumpmio Instead, we propose to
take p in the definition of R, in (3.1) as conditional o , ie. to set
p =P () =E(RIX =x).

Nonresponse isnissing at randomdenoted MAR (Little and Rubin, p.12,
2002), if R is conditionally independent of, givenx, . In this case, we have
E(RIY.x)=E(RIx ) and g =p,(x)=2x(¥,%) and soy, may implicitly be
included in the conditioning set. Hence the argunused to obtain the bias bound in
(4.3) still applies if MAR holds. The bias bounddathe R-indicator itself may,
however, be too conservative. If MAR holds then(y,) = E[o.(x)]| y¥] and:

var(g, )= varlp, & )]= varE[o, (x ) | y I} + Bvar p(x)| Vi}

=var[p, (y;)I+ Evar[ o (x) | 1} (5.1)
The first term on the right hand side of (5.1) ememts the variation of the

conditional probabilitie, (y, )which we should ideally like to use in the R-icator

if we are only concerned about nonresponse bias farget parameter defined in

terms of y, alone. The second term represents additionalti@riavhich is unrelated

to nonresponse bias for such target parametersnadbe viewed as redundant



variability, i.e. noise, in theo for that purpose. Kreuter et al. (2010) present

examples of auxiliary variables which are predietof nonresponse but only weakly

predictive of relevanty, variables. In such cases, the second term ir) (Bely be

relatively large and the R-indicator and its asst®d bias bound may be viewed as
too conservative. It is therefore desirable to tetenly those auxiliary variables

which are reasonably predictive of at least onéhef y, variables of key interest in

the survey.

One special case occurs when nonresponse is missmgletely at random

(MCAR) so that it is independent of bothandy . In this case, bothp, (X,)
andp, (y,) are constant so that both terms on the right Isael of (5.1) are zero.
Hence, there is no variability in the and this does, albeit in a degenerate way,

capture the fact that there is nothing in the ngomoase process that will lead to

nonresponse bias for estimation relateg;to

If nonresponse is not MAR then (5.1) no longer Boldstead,p. = p, (x,) will
represent a smoothed version @f (y,,x;) and it is not necessarily the case that
var(p, ) will be at least as large agr[o, (y;)]. Thus, we may fail to capture relevant
features of the nonresponse process inpthdn particular, if R is conditionally
independent ok, given y, then var[p, (y,)] will necessarily be at least as large
asvar(p, ), i.e. var[p, (x;)] (following a parallel argument to the MAR caséf.may
be argued therefore that it is desirable to selectuxiliary variables constituting

in such a way that the MAR assumption holds asetyoas possible. In any case, it

must be emphasized that our definition pf= p, (x,) relates to a specific choice of

auxiliary variablesx; . A different choice would generally result in &elient o .



We noted in Section 2 that we define the responggensity conditional on the
survey conditions that apply when the data areectdd. We do not make this
conditioning explicit in our notation, but it isumal to recognize this conditioning
since, as we noted in Section 1, one of the obes®f constructing R-indicators is to
be able to compare the representativeness of eliffesurveys and such comparisons
becomes challenging when the definition of the eesp propensity for any one
survey is dependent on the conditions with whict 8urvey has been implemented,
for example upon the modes of data collection,dheice of interviewers, the way
these interviewers were trained and work and tract strategy. Even for a single
survey repeated at different points in time, suohditions may well not remain

constant.

5.1 Nonresponse models
In order to estimate the R-indicator, we first mstie the response
propensitiesp =E(R |x ). To do this, we assume thal depends orx, in a
parametric way via:
9(0)=x B, (5.2)
whereg(.) is a specified link function§ is a vector of unknown parameters and

may involve the transformation of the original diaxy variables for the purpose of
model specification. In particular, we shall calesi the logit link function

g(p) =log[p/(1- p)] leading to the logistic regression model.

We propose to estimage by pseudo maximum likelihood (Skinner, pp. 80-83,

1989) i.e.p is estimated b)ﬁ , Which solves:



Y AR - g'(x 'B)x =0 (5.3)
where g7'(.) is the inverse of the link function. One reason fsing the design

weights here is because the objective is to estimatR-indicator which provides a
descriptive measure for the population.

The response propenspyis then estimated by:

b= g_l(xi 'ﬁ) (5.4)

5.2 Estimation of R-indicator
As in SCB, we propose to estima®g by:
R,=1-2S , (5.5)
where S2=(N-1)"Y_d(® -, )?, 4, is defined in (5.4), =(3.d2)/N and
N may be replaced by’ d, if it is unknown. We refer to the estimator ingpas

the SCB estimator.

6. Bias and Confidence Intervals

6.1 Bias and Bias Adjustment

We now consider the bias properties of the SCBnegtr Iip defined in (5.5).

We shall assume that the vector of auxiliary vdesh; is given so that no bias can
arise from specifying the ‘wrong’ set of auxiliamariables. We note, nevertheless,
that the choice of auxiliary variables is a criticcision in practice and we shall
illustrate empirically in Section 7 how the R-indior can depend on this choice.

We first consider defining the bias with respecttiie sampling mechanism,

holding theR fixed. Under this source of random variation, frseudo maximum

10



likelihood estimatef} is approximately unbiased for the ‘census’ paramg} which

solves:
>R =g (x'B)lx =0 (6.1)
(Skinner, p. 82, 2003). The approximation herevith respect to an asymptotic

framework, with a sequence of samples and populsatigith n and N increasing.
This census parameter implies a corresponding nsgppropensityo,, =g~ (x, 'B, )

and R-indicatorR,, , defined in terms of these propensities. We thewe
ES(IEQP) = R,, . The differenceR,, — R, may be viewed as the bias arising from model

misspecification.

Instead of defining the bias with respect to jashpling variation we could also
consider the response mechanism. In a paralle] waynay writeE, ES(R]) = Ryos
where R,,, is the R-indicator defined in terms of the resgornsopensities
LPuo =097 (% 'B,,) andp,, is the solution of:

>uloe—97(x B)x =0. (6.2)
where p, = E (R |%) is the true response propensity giverand we suppose that
9(p,) is not necessarily linear i®,, as in (5.2), i.e. the latter model may be
misspecified. ThusR,,,— R, may be viewed as the bias (with respect to both
sampling variation and the response mechanismhgrigom model misspecification.
We may expect thaR,, — R, = Q( N°°) so that there will usually be negligible

difference in practice between the two measiRgs- R, or R,,, - R, of bias.

In principle, one might consider ways of assesgitiger of these measures of

bias, perhaps by comparing the results of usingprametric model in (5.2) with

11



those for some kind of non-parametric regressioe. 8 not pursue this approach
further here, however. Instead we consider théefisample biaE(FAQp)— R, , treating
R, as the parameter of interest, which is equivalemtassuming that the
nonresponse model in (5.2) is correctly specifiéd might anticipate that the finite

sample bias oﬁp will be non-negligible, sinceép is defined via the variance of
the p, and we might expect sampling variation in thesengties to inflate this

variance. We approximate this finite sample biasé,pfoy first considering the bias

of S? defined below (5.5).
We use the decomposition:
A=A =R-A+R-R)+(@A -R)* (B -A).
wherep, =N™>" d.o and use the approximatidg (9) = g to obtainE, (ﬁJ ) =D,
and:

ElA-a)1=V(R) +Hr-R)"+HA-7)"+V(a)
—2Cov, (3.08,)- 21 -@, )@, -B,)
=0 -A)V+V (@2 -a)+@-a)-20-7)0-5,)

It follows that

E(S)=(N-D{Y. da-8)°+Y. dM2 -7)
+N,(Ds— Py)? - 2(Ps— Pu)INB .~ Np )}

where N, = >..d.
Taking expectation also with respect to the sangpdi@sign, we obtain:

EE(S)= $+ A 4 (6.3)
where A =E{(N-)7Y dV(5 -7}

A, = E((N-D) N(p,- P > -2(P,~ P)( No .~ Np )}

12



Both A and A, are terms ofO(1/n) and, following standard linearization arguments,
we simplify these expressions by removing termslafer order. First,A is
asymptotically equivalent to:

A=E{NTY dV(A)} -
Turning to the ternd,, we may write
N(B, = Bu)* =2(B,= P)ND~ NBY={N-2N(P 5 ) +2( N7 NP 7 )P |
and, ignoring terms of lower ordef, is asymptotically equivalent to

A =~E{(D,-P) 3} 2 PE{ N"NA)( 2o
= ~var, (p,)+ 20,N " cov, N, 0.}

ReplacingA and A, in (6.3) by A, and A, respectively, we obtaid, + A, as the
approximate bias oéﬁ. We thus propose as a bias-corrected SCB estinaRy:
R,=1-2§. (6.4)
where Sj = A% —jl —/iz and /il and /Tz are estimators ofl, and A, respectively.
An estimator of A is A =N7Y_dV(3), whereV.(2) is an estimator of
V.(2) and N may be replaced bj)ilS if it is unknown. We propose to use the

estimator\7r (©) given in the Annex. In the case of constant weight= N/ n this
gives:

A =0 Oh B T O B)x % 17X

iOs j0s
where Oh(x 'B) = expf B)/[1+ expg B )].
The second terml, may, in general, be estimated using design-baagdnce

estimation methods. In the case of constant weitftesterm NS is constant sol,

13



reduces toA,=-V.(p,) . Under simple random sampling, we may write
A, =—(n"-N")S. It follows that a bias corrected estimator $ff in the case of
simple random sampling is:

S; = ’\S;—jl—/’]; =(1+ n*- Nl)AS_ hlZD . 'ﬁ)%(i '[ZD (Ixj 'ﬁ)xj X; ']_l)g . (6.5)

ils j0s

6.2 Standard Errorsand Confidence Intervals
A linearization variance estimator for the SCB rastior f{p is now derived in
terms of a variance estimatoféﬁ) of S, assuming that a logistic regression model
is fitted and holds. From (5.5) and using lineatian we have
var[R,]= S2var(S) . (6.6)
To approximatevar(éf,) we shall decompose the distribution éj into the part

induced by the sampling design for a fixed valueﬁ and the part induced by the
distribution ofﬁ. We take the latter to t{em N(B,X), where:

Z=J(B) " var(} d[R — X 'BIx}I B ™ (6.7)
and J(B) = E{I(B)} is the expected information rather than the olesimformation

in (6.7). These two choices of information are agtgtically equivalent (to first order)
but the expected information has the advantageXhdoes not depend as.

We write
var($)) = E [vat ($)]+ vap [ E($)], (6.8)

where the subscripﬁ denotes the distribution induced ﬁﬁ N(B,X), which may be

interpreted as arising from the response procesHioviing usual linearization

arguments we obtain:

14



var &)= vat [N"Y d (0,-7, F]
iOs B=p

and, given the consistency ﬁffor B (and for standard kinds of sampling designs),

we have approximately:

E;[var, ()] = var,[N*Y. d(o,~5,)°]. (6.9)

iOs
Turning to the second component in (6.8), we matewr

E(S)= N'Y(0-5)] -
i B=p

As a linear approximation we haye = g +z' (ﬁ-[i) wherez, =h(x, 'B)x, . Hence

S(p-A)| =2(-A)+25(@-A)Z-Z)6-P)

B=p

+X(2 =% ) (B-PEB-P)z -Z)
wherez, =N*Y 7.
In large samples, we assume tlfatis normally distributed so tha@ﬁ—ﬁ) is
uncorrelated Witr(ﬁ —B)(ﬁ -B)'. Hence, we have
var [E,(S)] = 4A'EA + vat {t[B(B - B)(B-B) ]} (6.10)

where A=N">(p-2,)(z -%,), B=N">(z-Z)(z -3%,) and X is defined
ity ity

in (6.7). The second term involves the fourth motsemff} which may also be
expressed in terms & sincefi is assumed normally distributed.
The variance oféj may be estimated by the sum of the estimated coere of

(6.8). The first of these appears in (6.9) and tayestimated by a standard design-

based estimator ofar[>.d, (o, -2, )’], where this is treated as the variance of a
iCs

15



linear statisticvar,[>_u,] andu, is replaced byd (2 —,Z}J )? in the expression for the
i0s

variance estimator. The second component of thenee appears in (6.10). To

estimate this term requires estimatiaAg B and X . First, z, may be estimated by

2, =0h(x, 'B)x . Then A may be estimated bA=N7'>d(p-2,)(% -% ), B
iOs

may be estimated bB=N">d (2, -7, )( -%,)', wherez, =N*Y_dZ , andx
ils

may be estimated by a standard estimator of thar@nce matrix of5 .
Finally, the variance of the SCB estimai%; may be estimated by plugging the
estimated variance of§§ into (6.6) and replacing, by é;.

A confidence interval for R, with level 1-a is given by

1- 2\/§;2) * 7. \'(s)o.s .

7. Simulation Study of the Properties of the estimated R-indicators
7.1 Design of Simulation Study

In this Section, we carry out a simulation studwps$sess the sampling properties
of the estimation procedures described in Sediohhe study is based on repeated
samples drawn from a file (representing itself &2€ample) from the 1995 Israel
Census. The file contains 753,711 individuals adéd and over in 322,411
households. The samples are drawn using desigeeded to be similar to some
standard household and individual surveys carrigidab national statistics institutes.
We use the following sample designs in the simouhest
* Household Survey — the sample units are houselaoidsll persons over the age

of 15 in the sampled households are interviewe@iCByly a proxy questionnaire

16



is used and therefore there is no individual n@poase within the household. In
addition, we assume that every household has aa poubability to be included
in the sample.

* Individual Survey - the sample units are individuaver the age of 15. We
assume equal inclusion probabilities.

For each type of survey, we carried out a two-stepign to define response
probabilities in the population (census) file. Ihetfirst step, we determined
probabilities of response based on explanatoryales that typically lead to
differential non- response based on our experiemtesorking with survey data
collection. A response indicator was then generiedach unit in the population file.
In the second step, we fit a logistic regressiordeh@nd generate a ‘true’ response
propensity for each unit in the population as predi by the model. The dependent
variable for the logistic model is the responseadatbr and the independent variables
of the model the explanatory variables used infitlsé step (described below). This
two-step design ensures that we have a known mgeekrating the response
propensities in the population and therefore caessmodel misspecification besides
the sampling properties of the indicators.

The explanatory variables used to generate theomsgpprobabilities are the
following:

. Household Survey — Type of locality (3 categoriesjumber of persons in
household (1,2,3,4,5,6+), children in the housghadliicator (yes, no).

. Individual Survey — Type of locality (3 categories) number of persons in
household (1,2,3,4,5,6+), children in the housgladicator (yes, no), income

group (15 groups), sex (male, female) and agep@yroups).

17



500 samples of siza were drawn from the Census population of ditat
different sampling fractions 1:50, 1:100, and 1:2B6r each sample drawn, a sample
response indicator was generated from the ‘trupufadion response probability. The
overall response rate was 82% for the householkeguaind 78% for the individual
survey. Response propensities and the R-indicatre then estimated from the
sample. Two choices of auxiliary variables weresidered, first the ‘true’ variables
employed to generate the response propensitiessaodnd, a simpler set of variables,

intended to represent a possible misspecified model

7.2 Results

Simulation means of the SCB estima?ﬁgr defined in (5.5), and its proposed

bias corrected versioﬁp, defined in (6.4), obtained from the 500 repeatachples

drawn for the Household Survey at different sanpliates and for two different
models are reported in Table 1. Corresponding te$ai the Individual Survey are

presented in Table 2. Also included in the tabiethe percentage of Relative Bias

calculated from the simulation study 49d] ZSBO:(i(épB -R,)/R,1/50G where IipB

is the value oR, computed for the Bth simulation sample and siryiltor R, .

[PLACE TABLE 1 HERE]

[PLACE TABLE 2 HERE]

The results for the ‘true’ model provide aamce of downward bias in the SCB
estimator, with the (absolute) size of the biagseasing as the sample size decreases.
This is as expected. Sampling error tends to leaalverestimation of the variability

of the estimated response propensities and this léa underestimation of the R-
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indicator. We observe that the bias correctiouced the (absolute) bias of the SCB
estimator when the true model holds (although thersome evidence of over-
correction in Table 2 which does not disappeahasample size increases). The bias
correction decreases (in absolute value) with nicesiase in sample sizes and tends to
stabilize the SCB estimator.

Using a less complex logistic model stiraate response probabilities results
in a ‘smoothing’ of the probabilities and hence iacrease in the value of the R-

indicator. We include in Tables 1 and 2 value®gf, which is the R-indicator for

the logistic model for the reduced set of auxiliargriables which best fits the
response propensities generated by the ‘true’ m@dethe complete set of auxiliary

variables) in the population. Treatin,,, as the parameter of interest, we observe

that the bias adjustment does reduce the (absdiige)for the household survey but
not necessarily for the individual survey, where thias correction can lead to
overestimation. The instability of the bias coriectfor the less complex set of
auxiliary variables is likely caused by the misgpeation of the model. Since the
bias correction depends on the correct specifinadiothe logistic model, it may not
perform quite so well in these cases.

The Relative Root Mean Square ErrorsNISE) were also calculated from

the simulation study ad:0q R;l[\/zz(li(lim - R,)?/500]} but not presented in the

tables. There was no systematic evidence of the &ustment leading to larger
RRMSEs. For the Household Survey, the RRMSE wadslestacross the SCB and
proposed estimators for both types of models. Rerlhdividual Survey, there was

more variability in the RRMSEs due to the fluctagtibias corrections across the
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types of models. This result is reflected by théaiee Bias that is presented in the
tables.

Simulation means of the linearization variancenestior (see Section 6.2) are
compared in Tables 3 and 4 with the simulation ararés (calculated across the
replicated samples) of the SCB estimator for tbeskhold and individual surveys,
respectively. The tables also include the CoveRagie defined as the percentage of

times that the tru®, is included in the confidence interval calculatedy the

500

P 1(R, DRy +2,var, (R,))]1/50G where

varB(FAkpB) Is the estimated linearization variance for thin 8mulation sample andt

linearization variance estimatdrOC{[z

is the indicator function.

[PLACE TABLE 3 HERE]

[PLACE TABLE 4 HERE]

The linearization variance estimator is seen t@jyeroximately unbiased across the
range of conditions represented in these tablesruhg different sample sizes with
good coverage as seen by the coverage rate ialhest
Figures 1 and 2 present box plots comparing the &iBhatorand its proposed
bias adjusted version for the Household and IndizicSurvey simulation respectively
when fitting the ‘true’ logistic regression mod&he gains from the bias adjustment
are evident.
[PLACE FIGURE 1 HERE]

[PLACE FIGURE 2 HERE]
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8. Application to Real Surveys

We demonstrate the use of R-indicators on busisesseys undertaken for the
2007 Dutch Short Term Statistics (STS) for retaidl andustry. Table 5 provides a
brief description of the two surveys.

[PLACE TABLE 5 HERE]

In the table, the survey response rates are givenl%, 30, 45 and 60 days of
fieldwork. After 30 days STS needs to provide dfia monthly statistics. We
examine both a complete set of auxiliary varialsl@ssisting of (i) business size class
(based on number of employees), (i) business wob-tand (iii) VAT 2006 as
collected by the Tax Board and a reduced set dimgisf just (i) and (ii). Table 6
provides the results of the unadjusted and biasssel] R-indicators, 95% confidence
intervals and the standardized maximal bias (obthly plugging estimated response
propensities into (4.4)) after 15, 30, 45 and 6@sdaf fieldwork for each of the
business surveys. Because of the large sampletezdyias adjustment had a small
impact.

[PLACE TABLE 6 HERE]

The samples for the business surveys are largehande the confidence
intervals are reduced with widths between 1% ai®d0l.The R-indicator for STS
retail after 30 days fieldwork drops almost 7% wWREKT is added to the auxiliary
information. For STS industry the decrease is nmecluced. Apparently, the size of
VAT in the previous year does not relate to resporesy strongly. Without the VAT
information the retail respondents have a highend®cator than the industry

respondents. When VAT is added this picture chaageshe retail respondents score
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worse. STS retail shows a reduction in the R-indicas the response rates increase
for the reduced set of auxiliary variables. Themmirvey item of the STS surveys is
monthly turnover (subdivided over different acties). As VAT in a previous year
can be expected to correlate strongly to turnomeahe running year, it is important
that representativeness is good with respect to .VAfie main conclusion is that for
Industry, the R-indicator goes up after 30 days,ggssting response
representativeness is still improving and one wodéhlly wait longer than 30 days
before producing statistics. For Retail, the R-zadlr is lower, suggesting that
response is less representative than for Indulstrythere is very little change when
data collection is prolonged. Hence, it does noty paff to wait longer
than 30 days considering the composition of thearse. The only reason to do so
would be that the risk of nonresponse bias asatefleby the maximal bias is still

decreasing as responses are coming in.

9. Discussion

In this paper we have considered a new indicatalled the R-indicator,
designed to reflect the potential estimation ermosing from nonresponse. The
indicator is defined at the population level and meve developed methods for its
estimation using sample data, including methoddiaé adjustment and variance
estimation. The approximate validity of these mdthdas been demonstrated via
simulation. We have also demonstrated how the adicmay be used in real
business surveys as well as social surveys. The dulgustment is  particularly
effective for small sample sizes. In addition, tfeiance estimation provides good

coverage and avoids the need for computer-intemesampling methods.
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The indicator is defined with respectacset of auxiliary variables. An R-
indicator cannot be viewed separately from the lauyivector X that was used to
define it. As such, indicator values should alwlgsreported with reference to the
auxiliary variables. Consequently, when comparingltiple surveys within one
survey institute, over survey institutes or everrasountries, one needs to fix the set
of auxiliary variables used for each of the surv@yeere are two conflicting aims that
need to be balanced when selecting auxiliary viegin the comparison of different
surveys. On the one hand, it is desirable to chauosedliary variables that are
maximally correlated with the variables of analyititerest in each survey. On the
other hand, the choice is constrained to the saugriliary variables that is available
for each of the surveys. The wider the scope ofctiraparison, the more restrictive
the availability of variables will be. Within oneirsey institute one is likely to use
one sampling frame, have access to the same nedeteand collect similar paradata
for surveys. Multiple countries, however, may haampletely different traditions
and legislation, which will limit the set of awsaly variables that is shared. More
discussion on the selection of auxiliary variabges Schouten, Shlomo and Skinner
(2011).

A key assumption has been that these variables nsasured on both
respondents and nonrespondents. This assumptiorbenegasonable in some survey
settings. For example, rich auxiliary informati@navailable at Statistics Netherlands
from a population register. However, in other syrgettings, the availability of unit-
level auxiliary information on nonrespondents maywbry limited. Instead, aggregate
information on the population totals of auxiliargnables may be available. We are

addressing the estimation of R-indicators usindnsoformation in subsequent work.
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Annex. Varianceof g for logistic regression model

For the logistic regression model, wrhéy) = g™ (7) =exp@)/[1+ expf )]. The

estimating equations in (5.3) may then be expreased
2 GIR - Hx "B)I% =0. (A1)
Letf} solve (Al). Then in large samples we may approtentie distribution of}

with respect to the sampling design (c.f. Skinpgr, 80-83, 1989) by the distribution

of :
B=By, +1(B,) "2, dIR - HxB,)x], (A2)
wheref,, is defined in (6.1)) (B) =>__d.Oh(x; 'B)xx ' is the information matrix and

Oh(n) =0oh(n)/on = Wn)[L- Hp)]. In particular, the variance cfi‘ with respect to

the sampling design is in large samples
V.(B)=1(B,) VLY, dl R- tixiB)lx} ([ B) (A3)
and, since g =h(x 'ﬁ) from (5.4), we have

Vo(£) = Oh(xiBy )XV, (B)x, = O HxiBy )1 (B, )_1\4{%15 d R- 6xB)Ix} (R %
(A4)

This expression treats the response indicaf®rsas fixed. To account for the
response mechanism also, we may wpaie=E (R |x ) and

var(p)=E [V, (2)]+ V[ E(D)] (A5)
In large samples, we may writg(0,) = h(x,'B,) . Assumingp,=E (R|x), we
may write B, =By, +O,(N°) andV,[E(p)] = Q N™) . The first term in (A5) is

generally ofO(N™) and so the second term may be treated as negligfilthe
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sampling fractiorn/ N may be treated as negligible. In this case anemson for

var(p, ) may be obtained by replacifly in (A4) by B, -
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Table 1: Household Survey - Simulation Mearfslipo and its bias-corrected

version, R, and their percent relative bias (across 500 sated samples)

Sampling | ‘True’ Logistic Model Less Complex Logistic Model
Fraction | (Number of Persons, Locality Type, | (Number of PersonstUO =0.8842
(SSample Child Indicator)R, = 0.878(
ize = = = =
) SCBRp ProposedRp SCBRp ProposedRp
Mean | Relative] Mean | Relative] Mean | Relative] Mean | Relative
Bias Bias Bias Bias
(%) (%) (%) (%)
1:200 0.8700 -0.91 0.8813 0.38 0.8755 -0.98 0.8830 -0.14
(n=1,612)
1:100 0.8735 -0.51 0.8786 0.07 0.8801 -0.46 0.8834 -0)09
(n=3,224)
1:50 0.8749 -0.35 0.876% -0.17 0.8807 -0.40 0.8814 -0.32
(n=6,448)

Table 2: Individual Survey - Simulation Meansli;f and its bias-corrected version,

Iip and their percent relative bias (across 500 sintedasamples)

Sampling ‘True’ Logistic Model Less Complex Logistic Model
Fraction (Number of Persons, Sex, Age (Number of Persons, Sex and Age
(Sample Groups, Income Groups, Locality | Groups) RpUO =0.902=
Size) Type, Child Indicator)R, =0.8767
SCBR, ProposedR, SCBR, ProposedR,
Mean | Relative Mean | Relative Mean | Relative Mean | Relative
Bias Bias Bias Bias
(%) (%) (%) (%)
1:200 0.8587| -2.05 | 0.8809 0.48, 0.8941 -0.91 0.9073 0.55
(n=3,769)
1:100 0.8686| -0.92 | 0.8796 0.33] 0.9008 -0.17 0.9072 0.54
(n=7,537)
1:50 0.8748| -0.22 | 0.8795 0.32 0.9029 0.0y 0.9054 0.34
(n=15,074)
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Table 3: Household Survey - Simulation meanngfdrization estimator of variance
of R, with coverage rate and, simulation variance (asrds00 simulated samples)

(10°)
Sampling | ‘True’ Logistic Model Less Complex Logistic Model
Fraction | (Number of Persons, Locality Type, | (Number of Persons)
(Sample | Child Indicator)
Size) Simulation | Coverage| Simulation| Simulation | Coverage Simulation
Mean of Rate Variance Mean of Rate Variance
Linearization Linearization
Estimator Estimator
1:200 0.40 94.1% 0.43 0.40 93.6% 0.45
(n=1,612)
1:100 0.20 95.6% 0.19 0.20 95.8% 0.20
(n=3,224)
1:50 0.10 94.4% 0.10 0.10 92.6% 0.11
(n=6,448)

Table 4: Individual Survey - Simulation meatirméarization estimator of variance
of R, with coverage rate and simulation variance (asrds00 simulated samples)

(10°)
Sampling | ‘True’ Logistic Model Less Complex Logistic Model
Fraction (Number of Persons, Sex, Age (Number of Persons, Sex and Age
(Sample Groups, Income Groups, Locality Groups)
Size) Type, Child Indicator)
Simulation | Coveragel Simulation| Simulation | Coverage Simulation
Mean of Rate Variance Mean of Rate Variance
Linearization Linearization
Estimator Estimator
1:200 0.21 94.4% 0.23 0.19 94.8% 0.19
(n=3,769)
1:100 0.10 93.4% 0.11 0.09 92.4% 0.11
(n=7,537)
1:50 0.05 93.8% 0.05 0.04 92.1% 0.05
(n=15,074)
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Table 5: Description of 2007 Dutch Business Surveys

STS retail 2007

STS industry 2007

n=93,799
Response=49.5% (15days)
Response=78.0% (30days)
Response=85.8% (45days)
Response=88.2% (60days)

All businesses retail

n=64,413
Response=48.8% (15days)
Response=78.7% (30days)
Response=85.7% (45days)
Response=88.3% (60days)

All businesses industry

Stratified design on size class Stratified design on size class and

and business type
unequal design weights
Fieldwork 90 days

Paper + web

business type
unequal design weights
Fieldwork 90 days

Paper + web

Table 6: Unadjusted (top) and Bias-adjusted (bojt&¥indicators, 95% Confidence
Intervals and Standardized Maximal Bias (formuld)4&or Dutch Business Surveys
using Reduced and Complete Sets of Auxiliary Veagab

Reduced Set

Complete Set

Survey 15d 30d 45d 60d 15d 30d 45d 60d
R 91.9% 93.2% 93.9% 94.1% 90.2% 91.6% 92.9% 93.2%
92.1% 93.3% 94.0% 94.2% 90.5% 91.8% 93.1% 93.3%
Industry ClI 91.3- 92.7- 93.5- 93.8- 89.7- 91.3- 92.6- 92.8-
92.8 94.0 94.4 94.6 91.3 92.2 93.5 93.8
B 16.2% 8.5% 7.0% 6.6% 19.5% 104% 8.1% 7.6%
R 959% 945% 93.9% 94.0% 87.9% 87.8% 88.2% 88.9%
96.1% 94.6% 94.0% 94.1% 88.1% 87.9% 88.3% 89.0%
Retall Cl 95.4- 94.0- 93.5- 93.6- 87.3- 87.3- 87.6- 88.3-
96.7 95.2 94.5 94.6 88.8 88.6 88.9 89.6
B 7.9% 6.9% 7.0% 6.7% 24.0% 155% 13.6% 12.5%
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Figure 1: Household Survey Box plots for Sé/B and its Bias-Corrected Version,

Iip for 500 simulated samples with 1:200, 1:100 areDlsampling fractions -
‘True’ R-Indicator = 0.8780
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Figure 2: Individual Survey Box plots for 803!; and its Bias-Corrected Version,

Iip for 500 simulated samples with 1:200, 1:100 arieDIlsampling fractions -
‘True’ R-Indicator = 0.8767
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