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Abstract 
 

Nonresponse is a major source of estimation error in sample surveys. The 

response rate is widely used to measure survey quality associated with nonresponse, 

but is inadequate as an indicator because of its limited relation with nonresponse bias. 

Schouten, Cobben and Bethlehem (2009) proposed an alternative indicator, which 

they refer to as an indicator of representativeness or R-indicator. This indicator 

measures the variability of the probabilities of response for units in the population. 

This paper develops methods for the estimation of this R-indicator assuming that 

values of a set of auxiliary variables are observed for both respondents and 

nonrespondents.  We propose bias adjustments to the point estimator proposed by 

Schouten et al.  (2009) and demonstrate the effectiveness of this adjustment in a 

simulation study where it is shown that the method is valid, especially for smaller 

sample sizes.  We also propose linearization variance estimators which avoid the need 

for computer-intensive replication methods and show good coverage in the simulation 

study even when models are not fully specified. The use of the proposed procedures is 

also illustrated in an application to two business surveys at Statistics Netherlands. 
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1. Introduction  
 

One of the most important sources of estimation error in surveys is nonresponse. 

Survey organisations need indicators of such error for a variety of purposes, for example to 

compare different surveys, to monitor changes in a repeated survey over time or to monitor 

changes during the fieldwork of a single survey, perhaps to inform decisions such as when to 

end fieldwork.  An indicator which is widely used for such purposes is the response rate, 

where a higher response rate is taken to indicate higher quality.   However, there has been 

much recent empirical research (see e.g. Groves (2006), Groves and Peytcheva (2008), 

Heerwegh, et al. (2007) and references therein) which concludes that the response rate is 

insufficient as an indicator to measure the potential error arising from nonresponse. Since 

sample sizes are usually large in surveys, the squared bias component of mean squared error 

will typically dominate the variance component and hence it is desirable that the indicator 

reflect nonresponse bias. However, the empirical evidence suggests that the response rate is 

only a weak predictor of nonresponse bias. There is therefore much interest in survey 

organisations in the development of alternative indicators (Groves et al., 2008).  

In this paper, we consider an indicator proposed by Schouten, Cobben and Bethlemem 

(2009, referred to hereafter as SCB). The basic idea is that nonresponse bias depends 

critically on the contrast between the characteristics of respondents and nonrespondents. This 

contrast can be assessed in terms of the probability of a unit responding to the survey. If all 

units in the population share the same probability of responding then no nonresponse bias will 

result and the response mechanism may be viewed as ‘representative’.  The indicator 

proposed by SCB, termed the R-indicator (‘R’ for representativeness), measures the extent to 

which the response probabilities vary.  An advantage of this indicator (shared by the response 

rate) for various practical applications is that it provides a single measure for the whole 

survey. It should be recognized that nonresponse bias is defined in relation to a specific 

population parameter (and hence one or more survey variables). Thus, for any one 

(multipurpose) survey there may be a very large number of nonresponse biases. It would be 
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feasible to construct indicators which are parameter-specific (Groves et al., 2008, Wagner, 

2008), but here we suppose the requirement is for a single indicator for the whole survey.  

 Further discussion of the rationale and applications of the R-indicator is provided by 

Cobben and Schouten (2007)  and Schouten and Cobben (2007) in addition to the paper by 

SCB. The purpose of this paper is to consider in more detail some of the estimation issues 

associated with the R-indicator. The R-indicator proposed by SCB is subject to bias arising 

from  the estimation of the response propensities. The bias is particularly problematic for 

small sample sizes,  and a bias adjustment is developed.  In addition, we develop linearization 

variance estimators as an alternative to the   method of bootstrapping proposed in SCB. We 

evaluate these procedures in a simulation study and demonstrate the application of these 

procedures to a  real business survey. 

 We introduce the theoretical framework and define response propensities in Section 2. 

The R-indicator is defined at the population level in Section 3. The relation of the R-indicator 

to non-response bias is discussed in Section 4. Point estimation of the R-indicator using 

sample data is considered in Section 5. The bias of the point estimator and bias adjustment, 

variance estimation and confidence intervals are considered in Section 6.  A simulation study 

and results of that study are described in Section 7 and results from a real dataset are 

demonstrated in Section 8. Finally, we conclude and discuss future work in Section 9. 

 

2. Preliminaries and Response Propensities 

We suppose that a sample survey is undertaken, where a sample s is selected 

from a finite population U . The units in U  are labelled 1,2, ,i N= K , with the sizes 

of s  and U  denoted n  and N , respectively.  A probability sampling design is 

employed, where s  is selected with probability ( )p s . The first order inclusion 

probability of unit i  is denoted iπ  and 1−= iid π  is the design weight.   
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The survey is subject to unit nonresponse, with the set of responding units 

denoted r , so r s U⊂ ⊂ . We denote summation over the respondents, sample and 

population by rΣ , sΣ  and UΣ , respectively.  Let  iR  be the response indicator 

variable so that 1iR =  if unit i responds and 0iR = , otherwise. Hence, 

{ ; 1}ir i s R= ∈ = . Let X be a vector of auxiliary variables which may influence 

nonreponse, e.g. a vector consisting of age, gender, degree of urbanization of 

residence area and the observed status of the dwelling for a household survey or the 

type of business and the number of employees for a business survey. 

We define the response propensity iρ  as the conditional expectation (under a 

model) of iR  given the values of specified variables, such as the auxiliary variables 

above,  and survey conditions (Little, 1986, 1988). If it is necessary to clarify that the 

conditioning is on a vector of variablesX , for example, then we write:   

( ) ( | )i i r i i iE Rρ ρ= = =X x X x  to denote the conditional expectation of iR  given that 

the vector of variables iX  for unit i takes the value ix . Here (.)rE  denotes 

expectation with respect to the model underlying the response mechanism. We 

assume that iR  is defined for each population unit Ui ∈  , so that nonresponse is what 

Rubin (pp. 30-31, 1987) refers to as ‘stable’, and  iρ  is also defined for all Ui ∈ .  We 

also assume that the iR  for different units are independent, conditional on the 

specified variables and survey conditions.  We shall further assume that the sampling 

design and the nonresponse process are ‘unconfounded’ (pp. 35-36, 1987) so that the 

probability of selecting s remains ( )p s , whatever the values of the UiRi ∈, . Thus, 

it is assumed that nonresponse does not depend on the configuration of the sample.  

 

3. Representativeness Indicator 
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The variation in the response propensities may be viewed as reflecting the 

‘representativeness’ of the nonresponse. In SCB response is defined to be (strongly) 

representative if the response propensities are the same for all units in the population, 

corresponding to the notion of missing completely at random (MCAR) (Little and 

Rubin, p. 12, 2002) given the variables which are conditioned upon when definingiρ . 

They define a representativeness indicator, termed the R-indicator and denoted Rρ , in 

terms of the population standard deviation of the response propensities: 

1 2( 1) ( )i UU
S Nρ ρ ρ−= − −∑ , where /U iU

Nρ ρ=∑ . In order to facilitate the 

interpretation of the indicator, they define it in terms of Sρ  as follows: 

   1 2R Sρ ρ= −  ,      (3.1) 

where this transformation of Sρ  ensures that 0 1Rρ≤ ≤  since it may be shown that 

(1 ) 0.5U USρ ρ ρ≤ − ≤ .  The value 1Rρ =  indicates the most representative response, 

where the iρ  display no variation, and the value 0 indicates the least representative 

response, where the iρ  display maximum variation. 

 

4. Relation of R-Indicator to Non-response Bias 

The R-indicator may also be motivated in terms of nonresponse bias. Suppose 

that the target of inference is a population mean 1
iU

N yθ −= ∑  of a survey variable, 

taking value iy  for unit i  and observed only for i r∈ . A standard design-weighted 

estimator of θ  is ˆ /i i i i is s
d R y d Rθ =∑ ∑ . The bias of ̂θ  as an estimator of θ  may be 

evaluated by taking expectations with respect to both the random sampling 

mechanism, denoted sE ,  and the response mechanism, denoted rE  as in Section 2. 
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We assume, for now, that the specified variables include iy  so that it may be treated 

as fixed. We then have: 

ˆ( ) / /r s r s i i i i i i i i
i s i s i U i U

E E E E d R y d R yθ ρ ρ
∈ ∈ ∈ ∈

 = ≈ 
 
∑ ∑ ∑ ∑ ,         (4.1) 

where in this case ),( iiYXi xyρρ =  is conditional on both Y and X and the 

approximation is for large samples so that we take the first term only in the Taylor 

expansion. In addition, we have used the assumption that the sampling and response 

mechanisms are unconfounded. Hence the bias depends on nonresponse only viaiρ . It 

follows  that  

ˆ( ) ( ) /i i i
i U i U

Bias yθ ρ θ ρ
∈ ∈

≈ −∑ ∑  

       /y y Ucorr S Sρ ρ ρ= ,      (4.2) 

where 1( 1) ( )( ) /y i U i y
i U

corr N y S Sρ ρρ ρ θ−

∈
= − − −∑  and 2 1 2( 1) ( )y i

i U

S N y θ−

∈
= − −∑ .  

Expression (4.2) is also obtained in Bethlehem (1988) and Särndal and 

Lundström (p.92, 2005). An upper bound for the absolute bias can thus be expressed 

in terms of the R-indicator by 

(1 )ˆ| ( ) | /
2

y
y U

U

R S
Bias S S ρ

ρθ ρ
ρ

−
≤ =    .               (4.3) 

A standardized measure, which is free of y  is given by: 

(1 )

2 U

R
B ρ

ρ
−

=  .       (4.4) 

 

5. Estimation of R-indicator 

We suppose that the data available for estimation purposes consists first of the 

values };{ riyi ∈ of the survey variable (or, more generally, a vector of survey 
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variables), observed only for respondents. Secondly, we suppose that information is 

available on the values 1, 2, ,( , , , )Ti i i K ix x x=x K  of a vector iX of auxiliary variables for 

all sample units, i.e. for both respondents and non-respondents. We refer to this as 

sample-based auxiliary information. This is a key assumption and is natural if, for 

example, the variables making up ix  are available on a register. Other possible 

assumptions about the availability of auxiliary information are discussed in Section 9. 

 Since iy  is only observed for respondents, the response propensity conditional 

on iy  is generally inestimable without further assumptions.  Instead, we propose to 

take iρ  in the definition of Rρ  in (3.1) as conditional on ix , i.e. to set 

( ) ( | )i X i r i i iE Rρ ρ= = =x X x .   

Nonresponse is missing at random, denoted MAR (Little and Rubin, p.12, 

2002), if iR  is conditionally independent of iy  given ix . In this case, we have 

( | , ) ( | )r i i i r i iE R y E R=x x  and ( ) ( , )i i Y i iyρ ρ ρ= =X Xx x  and so iy  may implicitly be 

included in the conditioning set.  Hence the argument used to obtain the bias bound in 

(4.3) still applies if MAR holds. The bias bound and the R-indicator itself may, 

however, be too conservative.  If MAR holds then  ( ) [ ( ) | ]Y i r i iy E yρ ρ= X x  and: 

var( ) var[ ( )] var{ [ ( ) | ]} {var[ ( ) | ]}i i i i i iE y E yρ ρ ρ ρ= = +X X Xx x x    

           var[ ( )] {var[ ( ) | ]}Y i i iy E yρ ρ= + X x      (5.1) 

The first term on the right hand side of (5.1) represents the variation of the 

conditional probabilities )( iY yρ , which we should ideally like to use in the R-indicator 

if we are only concerned about nonresponse bias for a target parameter defined in 

terms of  iy  alone. The second term represents additional variation which is unrelated 

to nonresponse bias for such target parameters and may be viewed as redundant 
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variability, i.e. noise, in the iρ   for that purpose. Kreuter et al. (2010) present 

examples of auxiliary variables which are predictive of nonresponse but only weakly 

predictive of relevant iy   variables. In such cases, the second term in (5.1) may be 

relatively large and the R-indicator and its associated bias bound may be viewed as 

too conservative. It is therefore desirable to select only those auxiliary variables 

which are reasonably predictive of at least one of the  iy  variables of key interest in 

the survey. 

One special case occurs when nonresponse is missing completely at random 

(MCAR) so that it is independent of both ix and iy . In this case, both ( )iρX x  

and ( )Y iyρ  are constant so that both terms on the right hand side of (5.1) are zero. 

Hence, there is no variability in the iρ  and this does, albeit in a degenerate way, 

capture the fact that there is nothing in the nonresponse process that will lead to 

nonresponse bias for estimation related to iy . 

If nonresponse is not MAR then (5.1) no longer holds. Instead, ( )i iρ ρ= X x  will 

represent a smoothed version of ( , )Y i iyρ X x  and it is not necessarily the case that 

var( )iρ  will be at least as large as var[ ( )]Y iyρ . Thus, we may fail to capture relevant 

features of the nonresponse process in theiρ . In particular, if iR  is conditionally 

independent of ix  given iy  then var[ ( )]Y iyρ  will necessarily be at least as large 

asvar( )iρ , i.e. var[ ( )]iρX x  (following a parallel argument to the MAR case).  It may 

be argued therefore that it is desirable to select the auxiliary variables constituting ix  

in such a way that the MAR assumption holds as closely as possible.  In any case, it 

must be emphasized that our definition of  ( )i iρ ρ= X x   relates to a specific choice of 

auxiliary variables ix . A different choice would generally result in a different iρ . 
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We noted in Section 2 that we define the response propensity conditional on the 

survey conditions that apply when the data are collected. We do not make this 

conditioning explicit in our notation, but it is crucial to recognize this conditioning 

since, as we noted in Section 1, one of the objectives of constructing R-indicators is to 

be able to compare the representativeness of different surveys and such comparisons 

becomes challenging when the definition of the response propensity for any one 

survey is dependent on the conditions with which that survey has been implemented, 

for example upon the modes of data collection, the choice of interviewers, the way 

these interviewers were trained and work and  the contact strategy. Even for a single 

survey repeated at different points in time, such conditions may well not remain 

constant.  

 

5.1  Nonresponse models 

In order to estimate the R-indicator, we first estimate the response 

propensities, ( | )i i iE Rρ = x . To do this, we assume that iρ  depends on ix  in a 

parametric way via:  

g( ) 'i iρ = x β ,       (5.2) 

where g(.)  is a specified link function, β  is a vector of unknown parameters and ix  

may involve the transformation of the original auxiliary variables for the purpose of 

model specification.  In particular, we shall consider the logit link function 

( ) log[ /(1 )]g ρ ρ ρ= −  leading to the logistic regression model. 

We propose to estimate β  by pseudo maximum likelihood (Skinner, pp. 80-83, 

1989) i.e. β  is estimated by ̂β , which solves: 
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1[ ( ' )] 0i i i is
d R g−− =∑ x β x       (5.3) 

where 1(.)g− is the inverse of the link function. One reason for using the design 

weights here is because the objective is to estimate an R-indicator which provides a 

descriptive measure for the population.   

The response propensityiρ  is then estimated by: 

1 ˆˆ ( ' )i igρ −= x β .       (5.4) 

 

5.2 Estimation of R-indicator 

As in SCB, we propose to estimate Rρ  by: 

                                  ˆˆ 1 2R Sρ ρ= −  ,                                       (5.5) 

where 2 1 2ˆ ˆˆ( 1) ( )i i Us
S N dρ ρ ρ−= − −∑ , iρ̂  is defined in (5.4), ̂ ˆ( ) /U i is

d Nρ ρ= ∑  and 

N  may be replaced by is
d∑  if it is unknown. We refer to the estimator in (5.5) as 

the SCB estimator.   

 
 
6. Bias and Confidence Intervals 

 
 
6.1 Bias and Bias Adjustment  
 

We now consider the bias properties of the SCB estimator R̂ρ  defined in (5.5).  

We shall assume that the vector of auxiliary variables ix  is given so that no bias can 

arise from specifying the ‘wrong’ set of auxiliary variables. We note, nevertheless, 

that the choice of auxiliary variables is a critical decision in practice and we shall 

illustrate empirically in Section 7 how the R-indicator can depend on this choice.  

We first consider defining the bias with respect to the sampling mechanism, 

holding the iR  fixed. Under this source of random variation, the pseudo maximum 
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likelihood estimate ̂β  is approximately unbiased for the ‘census’ parameter Uβ which 

solves: 

   1[ ( ' )] 0i i iU
R g−− =∑ x β x      (6.1) 

 (Skinner, p. 82, 2003). The approximation here is with respect to an asymptotic 

framework, with a sequence of samples and populations with n  and N  increasing. 

This census parameter implies a corresponding response propensity 1( ' )iU i Ugρ −= x β  

and R-indicator URρ , defined in terms of  these propensities. We then have 

ˆ( )s UE R Rρ ρ≈ . The difference UR Rρ ρ−  may be viewed as the bias arising from model 

misspecification.  

Instead of defining the bias with respect to just sampling variation we could also 

consider the response mechanism.  In a parallel way, we may write 0
ˆ( )r s UE E R Rρ ρ≈ , 

where 0URρ  is the R-indicator defined in terms of the response propensities 

1
0 0( ' )iU i Ugρ −= x β  and 0Uβ  is the solution of: 

1
0[ ( ' )] 0i i iU

gρ −− =∑ x β x .      (6.2) 

where 0 ( | )i r i iE Rρ = x  is the true response propensity given ix  and we suppose that 

0( )ig ρ is not necessarily linear in ix , as in (5.2), i.e. the latter model may be 

misspecified. Thus, 0UR Rρ ρ−  may be viewed as the bias (with respect to both 

sampling variation and the response mechanism) arising from model misspecification. 

We may expect that 0.5
0 ( )U U pR R O Nρ ρ

−− =  so that there will usually be negligible 

difference in practice between the two measures UR Rρ ρ−  or 0UR Rρ ρ−  of bias. 

In principle, one might consider ways of assessing either of these measures of 

bias, perhaps by comparing the results of using the parametric model in (5.2) with 
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those for some kind of non-parametric regression. We do not pursue this approach 

further here, however. Instead we consider the finite sample bias ˆ( ) UE R Rρ ρ− , treating 

URρ  as the parameter of interest, which is equivalent to assuming that the 

nonresponse model in (5.2) is correctly specified. We might anticipate that the finite 

sample bias of ̂Rρ  will be non-negligible, since ̂Rρ  is defined via the variance of 

the iρ̂ and we might expect sampling variation in these quantities to inflate this 

variance. We approximate this finite sample bias of R̂ρ  by first considering the bias 

of 2Ŝρ  defined below (5.5).   

We use the decomposition: 

ˆ ˆˆ ˆ( ) ( ) ( ) ( )i U i i i U U s s Uρ ρ ρ ρ ρ ρ ρ ρ ρ ρ− = − + − + − + − , 

where 1
s i is

N dρ ρ−= ∑  and use the approximation ˆ( )r i iE ρ ρ≈  to obtain ˆ( )r U sE ρ ρ≈  

and: 

2 2 2

2 2

ˆ ˆˆ ˆ[( ) ] ( ) ( ) ( ) ( )

ˆˆ2 ( , ) 2( )( )

ˆˆ( ) ( ) ( ) 2( )( )

r i U r i i U s U r U

i U i U s Ur

i U r i U s U i U s U

E V V

Cov

V

ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

− ≈ + − + − +

− − − −

= − + − + − − − −

 

It follows that  

2 1 2

2

ˆ ˆˆ( ) ( 1) { ( ) ( )

ˆ ˆ( ) 2( )( )}

r i i U i r i Us s

s s U s U s s U

E S N d d V

N N N

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

−≈ − − + −

+ − − − −

∑ ∑    

where ˆ
s is

N d=∑ .  

Taking expectation also with respect to the sampling design, we obtain: 

2 2
1 2

ˆ( )s rE E S S A Aρ ρ≈ + +                    (6.3) 

where         1
1

ˆˆ{( 1) ( )}s i r i Us
A E N d V ρ ρ−= − −∑       

1 2
2

ˆ ˆ{( 1) [ ( ) 2( )( )]}s s U s U s s UA E N N N Nρ ρ ρ ρ ρ ρ−= − − − − −  
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Both 1A  and 2A are terms of (1/ )O n  and, following standard linearization arguments, 

we simplify these expressions by removing terms of lower order. First, 1A  is 

asymptotically equivalent to: 

1
1 ˆ{ ( )}s i r is

E N d Vλ ρ−= ∑ . 

Turning to the term 2A , we may write  

2 2ˆ ˆ ˆ ˆ( ) 2( )( ) { 2 }( ) 2( )( )s s U s U s s U s s U s s U UN N N N N N Nρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ− − − − = − − + − −  

and, ignoring terms of lower order, 2A  is asymptotically equivalent to  

2 1
2

ˆ{( ) } 2 {( 1)( )}s s U U s s s UE E N Nλ ρ ρ ρ ρ ρ−≈ − − + − −  

     1 ˆvar ( ) 2 cov ( , )s s U s s sN Nρ ρ ρ−= − + . 

Replacing 1A  and 2A  in (6.3) by 1λ  and 2λ  respectively, we obtain 1 2λ λ+  as the 

approximate bias of 2Ŝρ . We thus propose as a bias-corrected SCB estimator of Rρ : 

1 2R Sρ ρ= − %% .        (6.4) 

where 2 2
1 2

ˆ ˆ ˆS Sρ ρ λ λ= − −%  and 1̂λ  and 2̂λ  are estimators of 1λ  and 2λ  respectively.    

An estimator of  1λ  is 1
1̂

ˆ ˆ( )i r is
N d Vλ ρ−= ∑ , where ˆ ˆ( )r iV ρ  is an estimator of 

ˆ( )r iV ρ  and  N  may be replaced by ̂sN  if it is unknown. We propose to use the 

estimator ˆ ˆ( )r iV ρ  given in the Annex. In the case of constant weights /id N n=  this 

gives: 

1 2 1
1̂

ˆ ˆ( ' ) '[ ( ' ) ']i i j j j i
i s j s

n h hλ − −

∈ ∈
= ∇ ∇∑ ∑x β x x β x x x , 

where 2ˆ ˆ ˆ( ' ) exp( ' ) /[1 exp( ' )]i i ih∇ = +x β x β x β .  

The second term 2λ  may, in general, be estimated using design-based variance 

estimation methods. In the case of constant weights the term ˆ sN  is constant so 2λ  
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reduces to 2 ( )s sVλ ρ= − . Under simple random sampling, we may write 

1 1 2
2 ( )n N Sρλ − −= − − . It follows that a bias corrected estimator of 2Sρ  in the case of 

simple random sampling is:  

2 2 1 1 2 1 2 1
1 2

ˆ ˆ ˆ ˆ ˆ ˆ(1 ) ( ' ) '[ ( ' ) ']i i j j j i
i s j s

S S n N S n h hρ ρ ρλ λ − − − −

∈ ∈
= − − = + − − ∇ ∇∑ ∑x β x x β x x x% .    (6.5) 

 

6.2 Standard Errors and Confidence Intervals 

A linearization variance estimator for the SCB estimator R̂ρ  is now derived in 

terms of a variance estimator 2ˆ( )v Sρ  of 2Ŝρ , assuming that a logistic regression model 

is fitted and holds.  From (5.5) and using linearization we have 

2 2ˆˆvar[ ] var( )R S Sρ ρ ρ
−≈  .                 (6.6) 

To approximate 2ˆvar( )Sρ  we shall decompose the distribution of 2Ŝρ  into the part 

induced by the sampling design for a fixed value of β̂  and the part induced by the 

distribution of ̂β .  We take the latter to be ˆ ( , )Nβ β Σ� , where:  

1 1( ) var{ [ ( ' )] } ( )i i i is
d R h− −= −∑Σ J β x β x J β                 (6.7) 

and ( ) { ( )}E=J β I β  is the expected information rather than the observed information 

in (6.7). These two choices of information are asymptotically equivalent (to first order) 

but the expected information has the advantage that Σ  does not depend on s. 

We write 

2 2 2
ˆ ˆ

ˆ ˆ ˆvar( ) [var ( )] var [ ( )]s sS E S E Sρ ρ ρ= +
β β

,                (6.8) 

where the subscript β̂  denotes the distribution induced by ˆ ( , )Nβ β Σ� , which may be 

interpreted as arising from the response process. Following usual linearization 

arguments we obtain: 
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2 1 2

ˆ

ˆvar ( ) var [ ( ) ]s s i i U
i s

S N dρ ρ ρ−

∈
≈ −∑

β=β

 

and, given the consistency of β̂  for β  (and for standard kinds of sampling designs), 

we have approximately: 

2 1 2
ˆ

ˆ[var ( )] var [ ( ) ]s s i i U
i s

E S N dρ ρ ρ−

∈
≈ −∑β

.                (6.9) 

Turning to the second component in (6.8), we may write: 

2 1 2

ˆ

ˆ( ) ( )s i U
i U

E S Nρ ρ ρ−

∈
≈ −∑

β=β

. 

As a linear approximation we have ˆˆ ( )i i iρ ρ ′≈ + z β -β  where ( ' )i ih= ∇ iz x β x . Hence 

2 2

ˆ

ˆ( ) ( ) 2 ( )( ) ( )

ˆ ˆ( ) ( )( ) ( )

i U i U i U i U
i U i U i U

i U i U
i U

ρ ρ ρ ρ ρ ρ
∈ ∈ ∈

∈

′− ≈ − + − −∑ ∑ ∑

′ ′+ − − − −∑

β=β

z z β -β

z z β β β β z z
 

where 1
U iU

N−= ∑z z . 

In large samples, we assume that β̂  is normally distributed so that ̂( )−β β  is 

uncorrelated with ˆ ˆ( )( ) '− −β β β β . Hence, we have 

2
ˆ ˆ

ˆ ˆ ˆvar [ ( )] 4 var { [ ( )( ) ]}sE S trρ ′ ′≈ +
β β

A ΣA B β -β β -β ,                     (6.10) 

where 1 ( )( )i U i U
i U

N ρ ρ−

∈
= − −∑A z z ,  1 ( )( ) 'i U i U

i U

N−

∈
= −∑B z - z z z and Σ  is defined 

in (6.7). The second term involves the fourth moments of β̂  which may also be 

expressed in terms of Σ  since ̂β  is assumed normally distributed. 

The variance of 2Ŝρ  may be estimated by the sum of the estimated components of 

(6.8). The first of these appears in (6.9) and may be estimated by a standard design-

based estimator of 2var [ ( ) ]s i i U
i s

d ρ ρ
∈

−∑ , where this is treated as the variance of a 
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linear statistic var [ ]s i
i s

u
∈
∑  and iu  is replaced by 2ˆˆ( )i i Ud ρ ρ−  in the expression for the 

variance estimator. The second component of the variance appears in (6.10). To 

estimate this term requires estimating A , B  and Σ . First, iz  may be estimated by 

ˆˆ ( ' )i i ih= ∇z x β x . Then A  may be estimated by 1ˆ ˆ ˆˆ ˆ( )( )i i U i U
i s

N d ρ ρ−

∈
= − −∑A z z , B  

may be estimated by 1ˆ ˆ ˆˆ ˆ( )( ) 'i i U i U
i s

N d−

∈
= − −∑B z z z z , where 1ˆ ˆU i is

N d−= ∑z z , and Σ  

may be estimated by a standard estimator of the covariance matrix of ̂β . 

Finally, the variance of the SCB estimator R̂ρ  may be estimated by plugging the 

estimated variance of  2Ŝρ  into (6.6) and replacing 2Sρ  by 2Ŝρ . 

A confidence interval for Rρ  with level 1 α−  is given by   

2 2 0.5
/ 2

ˆ1 2 ( )S z v Sρ α ρ− ±% . 

 

7.    Simulation Study of the Properties of the estimated R-indicators  
 
7.1  Design of Simulation Study 
 

In this Section, we carry out a simulation study to assess the sampling properties 

of the   estimation procedures described in Section 6. The study is based on repeated 

samples drawn from a file (representing itself a 20% sample) from the 1995 Israel 

Census. The file contains 753,711 individuals aged 15 and over in 322,411 

households. The samples are drawn using designs intended to be similar to some 

standard household and individual surveys carried out at national statistics institutes. 

We use the following sample designs in the simulations:   

• Household Survey – the sample units are households and all persons over the age 

of 15 in the sampled households are interviewed. Typically a proxy questionnaire 
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is used and therefore there is no individual non-response within the household. In 

addition, we assume that every household has an equal probability to be included 

in the sample.  

• Individual Survey -  the sample units are individuals over the age of 15. We 

assume equal inclusion probabilities.  

For each type of survey, we carried out a two-step design to define response 

probabilities in the population (census) file. In the first step, we determined 

probabilities of response based on explanatory variables that typically lead to 

differential non- response based on our experiences of working with survey data 

collection. A response indicator was then generated for each unit in the population file. 

In the second step, we fit a logistic regression model and generate a ‘true’ response 

propensity for each unit in the population as predicted by the model. The dependent 

variable for the logistic model is the response indicator and the independent variables 

of the model the explanatory variables used in the first step (described below). This 

two-step design ensures that we have a known model generating the response 

propensities in the population and therefore can assess model misspecification besides 

the sampling properties of the indicators.   

The explanatory variables used to generate the response probabilities are the 

following:  

• Household Survey – Type of locality (3 categories),   number of persons in 

household (1,2,3,4,5,6+),  children in the household indicator (yes, no).  

• Individual Survey – Type of locality (3 categories),    number of persons in 

household (1,2,3,4,5,6+),  children in the household indicator (yes, no), income 

group (15 groups), sex (male, female)  and age group (9 groups).  
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500 samples of size n  were drawn from the Census population of size N at 

different sampling fractions 1:50, 1:100, and 1:200. For each sample drawn, a sample 

response indicator was generated from the ‘true’ population response probability. The 

overall response rate was 82% for the household survey and 78% for the individual 

survey. Response propensities and the R-indicator were then estimated from the 

sample. Two choices of auxiliary variables were considered, first the ‘true’ variables 

employed to generate the response propensities and, second, a simpler set of variables, 

intended to represent a possible misspecified model.  

 

7.2 Results 

Simulation means of the SCB estimatorR̂ρ , defined in (5.5), and its proposed 

bias corrected version Rρ
% , defined in (6.4), obtained from the 500 repeated samples 

drawn for the Household Survey at different sampling rates and for two different 

models are reported in Table 1. Corresponding results for the Individual Survey are 

presented in Table 2. Also included in the tables is the percentage of Relative Bias 

calculated from the simulation study as: }500/]/)ˆ({[100
500

1 ρρρ RRR
B B∑ =

−  where BRρ
ˆ  

is the value of ρR̂  computed for the Bth simulation sample and similarly for Rρ
% .  

[PLACE TABLE 1 HERE] 

[PLACE TABLE 2 HERE] 

 

       The results for the ‘true’ model provide evidence of downward bias in the SCB 

estimator, with the (absolute) size of the bias increasing as the sample size decreases. 

This is as expected. Sampling error tends to lead to overestimation of the variability 

of the estimated response propensities and this leads to underestimation of the R-
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indicator.  We observe that the bias correction reduces the (absolute) bias of the SCB 

estimator when the true model holds (although there is some evidence of over-

correction in Table 2 which does not disappear as the sample size increases).  The bias 

correction decreases (in absolute value) with the increase in sample sizes and tends to 

stabilize the SCB estimator.  

           Using a less complex logistic model to estimate response probabilities results 

in a ‘smoothing’ of the probabilities and hence an increase in the value of the R-

indicator. We include in Tables 1 and 2 values of0URρ , which is the R-indicator for 

the logistic model for the reduced set of auxiliary variables which best fits the 

response propensities generated by the ‘true’ model (for the complete set of auxiliary 

variables) in the population. Treating  0URρ  as the parameter of interest, we observe 

that the bias adjustment does reduce the (absolute) bias for the household survey but 

not necessarily for the individual survey, where the bias correction can lead to 

overestimation. The instability of the bias correction for the less complex set of 

auxiliary variables is likely caused by the  misspecification of the model. Since the 

bias correction depends on the correct specification of the logistic model, it may not 

perform quite so well in these cases.  

           The Relative Root Mean Square Errors (RRMSE)  were also calculated from 

the simulation study as: ]}500/)ˆ([{100
500

1

21 ∑ =
− −

B B RRR ρρρ  but not presented in the 

tables. There was no systematic evidence of the bias adjustment leading to larger 

RRMSEs. For the Household Survey, the RRMSE was stable across the SCB and 

proposed estimators for both types of models. For the Individual Survey, there was 

more variability in the RRMSEs due to the fluctuating bias corrections across the 
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types of models. This result is reflected by the Relative Bias that is presented in the 

tables.     

 Simulation means of the linearization variance estimator (see Section 6.2) are 

compared in Tables 3 and 4 with the simulation variances (calculated across the 

replicated samples) of  the SCB estimator for the household and individual surveys, 

respectively. The tables also include the Coverage Rate defined as the percentage of 

times that the true ρR  is included in the confidence interval calculated  by the 

linearization variance estimator: }500/)])ˆ(var2ˆ({[100
500

1∑ =
±∈

B BBB RRRI ρρρ  where 

)ˆ(var BB Rρ  is the estimated linearization variance for the  Bth simulation sample and  I 

is the indicator function. 

 

[PLACE TABLE 3 HERE] 

[PLACE TABLE 4 HERE] 

 

The linearization variance estimator is seen to be approximately unbiased across the 

range of conditions represented in these tables under the different sample sizes  with   

good coverage as seen by the coverage rate in the tables.  

Figures 1 and 2 present box plots comparing the SCB estimator and its proposed 

bias adjusted version for the Household and Individual Survey simulation respectively 

when fitting the ‘true’ logistic regression model. The gains from the bias adjustment 

are evident.  

[PLACE FIGURE 1 HERE] 

[PLACE FIGURE 2 HERE] 
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8.   Application to Real Surveys 

 
We demonstrate the use of R-indicators on business surveys undertaken for the 

2007 Dutch Short Term Statistics (STS) for retail and industry. Table 5 provides a 

brief description of the two surveys.  

   [PLACE TABLE 5 HERE] 

 

In the table, the survey response rates are given for 15, 30, 45 and 60 days of 

fieldwork. After 30 days STS needs to provide data for monthly statistics.  We 

examine both a complete set of auxiliary variables consisting of (i) business size class 

(based on number of employees), (ii) business sub-type and (iii) VAT 2006 as 

collected by the Tax Board and a reduced set consisting of just (i) and (ii).  Table 6 

provides the results of the unadjusted and bias adjusted R-indicators, 95% confidence 

intervals and the standardized maximal bias (obtained by plugging estimated response 

propensities into (4.4)) after 15, 30, 45 and 60 days of fieldwork for each of the 

business surveys. Because of the large sample size, the bias adjustment had a small 

impact.   

[PLACE TABLE 6 HERE] 

 

The samples for the business surveys are large and hence the confidence 

intervals are reduced with widths between 1% and 1.5%. The R-indicator for STS 

retail after 30 days fieldwork drops almost 7% when VAT is added to the auxiliary 

information. For STS industry the decrease is much reduced. Apparently, the size of 

VAT in the previous year does not relate to response very strongly. Without the VAT 

information the retail respondents have a higher R-indicator than the industry 

respondents. When VAT is added this picture changes and the retail respondents score 
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worse. STS retail shows a reduction in the R-indicator as the response rates increase 

for the reduced set of auxiliary variables. The main survey item of the STS surveys is 

monthly turnover (subdivided over different activities). As VAT in a previous year 

can be expected to correlate strongly to turnover in the running year, it is important 

that representativeness is good with respect to VAT. The main conclusion is that for 

Industry, the R-indicator goes up after 30 days, suggesting response 

representativeness is still improving and one would ideally wait longer than 30 days 

before producing statistics. For Retail, the R-indicator is lower, suggesting that 

response is less representative than for Industry, but there is very little change when 

data collection is prolonged. Hence, it does not pay off to wait longer 

than 30 days considering the composition of the response. The only reason to do so 

would be that the risk of nonresponse bias as reflected by the maximal bias is still 

decreasing as responses are coming in. 

 

9. Discussion 

In this paper we have considered a new indicator, called the R-indicator, 

designed to reflect the potential estimation error arising from nonresponse. The 

indicator is defined at the population level and we have developed methods for its 

estimation using sample data, including methods of bias adjustment and variance 

estimation. The approximate validity of these methods has been demonstrated via 

simulation. We have also demonstrated how the indicator may be used in real 

business surveys as well as social surveys. The bias adjustment is   particularly 

effective for small sample sizes. In addition, the variance estimation provides good 

coverage and avoids the need for computer-intensive resampling methods.  
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          The indicator is defined with respect to a set of auxiliary variables. An R-

indicator cannot be viewed separately from the auxiliary vector X  that was used to 

define it. As such, indicator values should always be reported with reference to the 

auxiliary variables. Consequently, when comparing multiple surveys within one 

survey institute, over survey institutes or even over countries, one needs to fix the set 

of auxiliary variables used for each of the surveys. There are two conflicting aims that 

need to be balanced when selecting auxiliary variables in the comparison of different 

surveys. On the one hand, it is desirable to choose auxiliary variables that are 

maximally correlated with the variables of analytic interest in each survey. On the 

other hand, the choice is constrained to the set of auxiliary variables that is available 

for each of the surveys. The wider the scope of the comparison, the more restrictive 

the availability of variables will be. Within one survey institute one is likely to use 

one sampling frame, have access to the same register data and collect similar paradata 

for surveys. Multiple countries, however, may have completely different traditions 

and legislation, which will limit the set of auxiliary variables that is shared. More 

discussion on the selection of auxiliary variables is in Schouten, Shlomo and Skinner 

(2011).  

A key assumption has been that these variables are measured on both 

respondents and nonrespondents. This assumption may be reasonable in some survey 

settings. For example, rich auxiliary information is available at Statistics Netherlands 

from a population register. However, in other survey settings, the availability of unit-

level auxiliary information on nonrespondents may be very limited. Instead, aggregate 

information on the population totals of auxiliary variables may be available. We are 

addressing the estimation of R-indicators using such information in subsequent work. 

 



 24

 
Acknowledgements 
 
This research was undertaken as part of the RISQ (Representativity Indicators for 

Survey Quality) project, funded by the European 7th Framework Programme (FP7),  

as a joint effort of the national statistical institutes of Norway, the Netherlands and 

Slovenia and the Universities of Leuven and Southampton. We should like to thank 

Li-Chun Zhang, Jelke Bethlehem, Mattijn Morren and Ana Marujo for their 

contributions.   

 

 
 



 25

Annex. Variance of ˆ
iρ  for logistic regression model 

 

For the logistic regression model, write 1( ) ( ) exp( ) /[1 exp( )]h gη η η η−= = + . The 

estimating equations in (5.3) may then be expressed as: 

[ ( ' )] 0i i i is
d R h− =∑ x β x .              (A1) 

Let β̂  solve (A1). Then in large samples we may approximate the distribution of ̂β  

with respect to the sampling design (c.f. Skinner, pp. 80-83, 1989) by the distribution 

of : 

1ˆ ( ) [ ( ) ]U U i i i U is
d R h− ′≈ + −∑β β I β x β x ,               (A2) 

where Uβ  is defined in (6.1), ( ) ( ' ) 'i i i is
d h= ∇∑I β x β x x  is the information matrix and 

( ) ( ) / ( )[1 ( )]h h h hη η η η η∇ = ∂ ∂ = − . In particular, the variance of β̂  with respect to 

the sampling design is in large samples 

1 1ˆ( ) ( ) { [ ( )] } ( )s U s i i i U i Us
V V d R h− −′≈ −∑β I β x β x I β               (A3) 

and, since  ˆˆ ( ' )i ihρ = x β  from (5.4), we have  

2 2 1 1ˆˆ( ) ( ) ( ) ( ) ( ) { [ ( )] } ( )s i i U i s i i U i U s j j j U j U i
j s

V h V h V d R hρ − −

∈
′ ′ ′ ′ ′≈ ∇ = ∇ −∑x β x β x x β x I β x β x I β x

                      (A4) 

This expression treats the response indicators jR  as fixed. To account for the 

response mechanism also, we may write 0 ( | )i r i iE Rρ = x  and 

ˆ ˆ ˆvar( ) [ ( )] [ ( )]i r s i r s iE V V Eρ ρ ρ= +                 (A5) 

In large samples, we may write ˆ( ) ( ' )s i i UE hρ ≈ x β . Assuming 0 ( | )i r i iE Rρ = x , we 

may write 0.5
0 ( )U U pO N−= +β β  and 1ˆ[ ( )] ( )r s iV E O Nρ −= . The first term in (A5) is 

generally of 1( )O N−  and so the second term may be treated as negligible if the 
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sampling fraction /n N  may be treated as negligible. In this case an expression for 

ˆvar( )iρ  may be obtained by replacing Uβ  in (A4) by 0Uβ . 
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Table 1:  Household Survey  -  Simulation Means   of R̂ρ   and  its bias-corrected 

version, Rρ
%  and their percent relative bias  (across 500 simulated samples)       

 
Sampling 
Fraction 
(Sample 
Size) 
  

‘True’ Logistic Model 
(Number of Persons, Locality Type, 
Child Indicator)  0.8780Rρ =  

Less Complex Logistic Model 
(Number of Persons)  0 0.8842URρ =  

SCBR̂ρ  ProposedRρ
%  SCBR̂ρ  ProposedRρ

%  

Mean Relative 
Bias  
(%) 

Mean Relative 
Bias 
 (%) 

Mean Relative 
Bias 
(%) 

Mean Relative 
Bias 
(%) 

1:200 
(n=1,612) 

0.8700 -0.91 0.8813 0.38 0.8755 -0.98 0.8830 -0.14 

1:100 
(n=3,224) 

0.8735 -0.51 0.8786 0.07 0.8801 -0.46 0.8834 -0.09 

1:50 
(n=6,448) 

0.8749 -0.35 0.8765 -0.17 0.8807 -0.40 0.8814 -0.32 

 
 
 
 
 

Table 2:  Individual Survey - Simulation Means of R̂ρ   and its bias-corrected version, 

Rρ
%  and their percent relative bias (across 500 simulated samples) 

      
Sampling 
Fraction 
(Sample 
Size) 
 

‘True’ Logistic Model 
(Number of Persons, Sex,  Age 
Groups, Income Groups, Locality 
Type, Child Indicator) 0.8767Rρ =  

Less Complex Logistic Model 
(Number of Persons, Sex and Age 
Groups) 0 0.9023URρ =  

SCBR̂ρ   Proposed Rρ
%  SCB R̂ρ  Proposed Rρ

%  

Mean Relative 
Bias  
(%) 

Mean Relative 
Bias 
 (%) 

Mean Relative 
Bias 
(%) 

Mean Relative 
Bias 
(%) 

1:200 
(n=3,769) 

0.8587 -2.05 0.8809 0.48 0.8941 -0.91 0.9073 0.55 

1:100 
(n=7,537) 

0.8686 -0.92 0.8796 0.33 0.9008 -0.17 0.9072 0.54 

1:50 
(n=15,074) 

0.8748 -0.22 0.8795 0.32 0.9029 0.07 0.9054 0.34 
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Table 3:  Household Survey  - Simulation mean of linearization estimator of variance 

of  R̂ρ  with coverage rate and, simulation variance (across  500 simulated samples)  

(10-3)        
 
Sampling 
Fraction 
(Sample 
Size) 
  

‘True’ Logistic Model 
(Number of Persons, Locality Type, 
Child Indicator) 

Less Complex Logistic Model 
(Number of Persons) 

Simulation 
Mean of 

Linearization 
Estimator  

Coverage 
Rate 

Simulation 
Variance 

Simulation 
Mean of 

Linearization 
Estimator  

Coverage 
Rate 

Simulation 
Variance 

1:200 
(n=1,612) 

0.40 94.1% 0.43 0.40 93.6% 0.45 

1:100 
(n=3,224) 

0.20 95.6% 0.19 0.20 95.8% 0.20 

1:50 
(n=6,448) 

0.10 94.4% 0.10 0.10 92.6% 0.11 

 
 
 
 
 
Table 4:  Individual  Survey  - Simulation mean of linearization estimator of variance 

of  R̂ρ  with coverage rate  and simulation variance (across  500 simulated samples) 

(10-3)      
 
Sampling 
Fraction 
(Sample 
Size) 
  

‘True’ Logistic Model 
 (Number of Persons, Sex,  Age 
Groups, Income Groups, Locality 
Type, Child Indicator) 

Less Complex Logistic Model 
(Number of Persons, Sex and Age 
Groups) 

Simulation 
Mean of 

Linearization 
Estimator 

Coverage 
Rate 

Simulation 
Variance 

Simulation 
Mean of 

Linearization 
Estimator 

Coverage 
Rate 

Simulation 
Variance 

1:200 
(n=3,769) 

0.21 94.4% 0.23 0.19 94.8% 0.19 

1:100 
(n=7,537) 

0.10 93.4% 0.11 0.09 92.4% 0.11 

1:50 
(n=15,074) 

0.05 93.8% 0.05 0.04 92.1% 0.05 
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Table 5: Description of 2007 Dutch Business Surveys  

STS retail 2007 STS industry 2007 

n=93,799 n=64,413 

Response=49.5% (15days) 

Response=78.0% (30days) 

Response=85.8% (45days) 

Response=88.2% (60days) 

Response=48.8% (15days) 

Response=78.7% (30days) 

Response=85.7% (45days) 

Response=88.3% (60days) 

All businesses retail All businesses industry 

Stratified design on size class 

and business type  

Stratified design on size class and 

business type  

unequal design weights unequal design weights 

Fieldwork 90 days Fieldwork 90 days 

Paper + web Paper + web 

 

 
 
 
Table 6: Unadjusted (top) and Bias-adjusted (bottom) R-indicators, 95% Confidence 
Intervals and Standardized Maximal Bias (formula 4.4) for Dutch Business Surveys 
using Reduced and Complete Sets of Auxiliary Variables   
 
 

Survey 

 Reduced Set Complete Set 

15d 30d 45d 60d 15d 30d 45d 60d 

 

 

Industry 

R 91.9% 

92.1% 

93.2% 

93.3% 

93.9% 

94.0% 

94.1% 

94.2% 

90.2% 

90.5% 

91.6% 

91.8% 

92.9% 

93.1% 

93.2% 

93.3% 

CI 91.3-

92.8 

92.7-

94.0 

93.5-

94.4 

93.8-

94.6 

89.7-

91.3 

91.3-

92.2 

92.6-

93.5 

92.8-

93.8 

B 16.2% 8.5% 7.0% 6.6% 19.5% 10.4% 8.1% 7.6% 
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Figure 1:  Household Survey Box plots for SCB R̂ρ   and its Bias-Corrected Version, 

Rρ
%  for 500 simulated samples with 1:200, 1:100 and 1:50 sampling fractions  -  

‘True’ R-Indicator = 0.8780 

 
 
 
 
 
 
 

Figure 2:  Individual Survey Box plots for SCB R̂ρ   and  its Bias-Corrected Version, 

Rρ
%  for 500 simulated samples with 1:200, 1:100 and 1:50 sampling fractions  -    

‘True’ R-Indicator = 0.8767 
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