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Assessing Identification Risk in Survey Microdata

using Log-linear Models

CHRIS SKINNER and NATALIE SHLOMO∗

ABSTRACT. This article considers the assessment of the risk of identification of re-

spondents in survey microdata, in the context of applications at the United Kingdom

(UK) Office for National Statistics (ONS). The threat comes from the matching of cat-

egorical ’key’ variables between microdata records and external data sources and from

the use of log-linear models to facilitate matching. While the potential use of such

statistical models is well-established in the literature, little consideration has been

given to model specification nor to the sensitivity of risk assessment to this specifica-

tion. In numerical work not reported here, we have found that standard techniques for

selecting log-linear models, such as chi-squared goodness of fit tests, provide little guid-

ance regarding the accuracy of risk estimation for the very sparse tables generated by

typical applications at ONS, for example tables with millions of cells formed by cross-

classifying six key variables, with sample sizes of 10 or 100 thousand. In this article we

develop new criteria for assessing the specification of a log-linear model in relation to
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the accuracy of risk estimates. We find that, within a class of ’reasonable’ models, risk

estimates tend to decrease as the complexity of the model increases. We develop crite-

ria which detect ’underfitting’ (associated with overestimation of the risk). The criteria

may also reveal ’overfitting’ (associated with underestimation) although not so clearly,

so we suggest employing a forward model selection approach. Our criteria turn out

to be related to established methods of testing for overdispersion in Poisson log-linear

models. We show how our approach may be used for both file-level and record-level

measures of risk. We evaluate the proposed procedures using samples drawn from the

2001 UK Census where the true risks can be determined and show that a forward

selection approach leads to good risk estimates. There are several ‘good’ models be-

tween which our approach provides little discrimination. The risk estimates are found

to be stable across these models, implying a form of robustness. We also apply our

approach to a large survey dataset. There is no indication that increasing the sample

size necessarily leads to the selection of a more complex model. The risk estimates for

this application display more variation but suggest a suitable upper bound.

KEY WORDS: Confidentiality; Disclosure; Key variable; Matching; Model specifica-

tion.

1 INTRODUCTION

Statistical agencies often wish to provide researchers with access to survey microdata,

but must balance this aim against the need to protect the confidentiality of the respon-

dents. In particular, many agencies have policies which require them to control the

risk of identification. For example, the key ‘confidentiality guarantee’ in the United

Kingdom (UK) National Statistics Code of Practice (National Statistics, 2004, p.7) is

that ‘no statistics will be produced that are likely to identify an individual’.
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The developing field of statistical disclosure limitation methodology provides agencies

with many methods to protect confidentiality and, in particular, to assess identification

risk (Willenborg and de Waal, 2001; Doyle, Lane, Theeuws and Zayatz, 2001). Tradi-

tional methods to assess identification risk include the use of rules and check lists based

on institutional experience, simple data-based summary measures and re-identification

experiments (Federal Committee on Statistical Methodology, 1994). Such methods can

be somewhat ad hoc, however, and number of authors (e.g. Paass, 1988; Duncan and

Lambert, 1989; Fuller, 1993; Trottini and Fienberg, 2002) have proposed statistical

modelling frameworks which permit identification risk to be assessed following clear

statistical principles. Identification may be treated as a form of statistical inference by

a potential ‘intruder’, who is assumed to make efficient use of available information to

facilitate identification through specified models. There have been some applications

of such modelling approaches to assessing risk. Reiter (2005) applied the approach of

Duncan and Lambert (1989) to the Current Population Survey. Paass (1988) applied

discriminant analysis to two microdata files from the German Federal Statistical Office.

Bethlehem, Keller and Pannekoek (1990) applied a Poisson-Gamma model to Dutch

data. Nevertheless, more research on issues arising in applications is needed if mod-

elling methods are to become part of the standard risk assessment ‘toolkit’ of statistical

agencies. In particular, more understanding is needed of how to specify models and of

how sensitive risk assessment approaches are to specification.

The purpose of this article is to investigate the use of log-linear modelling methods

in some risk assessment problems which have arisen at the UK Office for National

Statistics (ONS) when releasing microdata from social surveys. In addition to con-

sidering here one particular survey application, we draw samples from the 2001 UK

Census to mimic social survey data in a setting where population values are avail-

able for validation. In line with the Code of Practice mentioned above, the aim is to
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protect against identification which could arise from an intruder matching a micro-

data record to a known population individual using the values of variables which are

both available in the microdata and traceable or visible externally. These variables are

called key variables (Bethlehem et al., 1990). For the kinds of social survey applica-

tions considered by ONS, these key variables are invariably categorical, e.g. sex, age,

ethnicity, religion, place of residence or occupation. Previous work has shown that,

when multivariate categorical key variables are available, an intruder might be able to

use log-linear modelling to improve their chances of identifying records (Skinner and

Holmes, 1998; Fienberg and Makov, 1998; Dobra, Fienberg and Trottini, 2003; Fien-

berg and Slavkovic, 2005; Elamir and Skinner, 2006). However, this work has given

little attention to the important practical issue of how to specify these models or to

the sensitivity of risk assessment to model specification.

The main aim of this paper is to develop and investigate approaches to specifying log-

linear models, which are suitable for use in practice by a statistical agency for the very

large and sparse cross-classified tables arising in the kinds of application considered

here and which directly address the risk assessment objectives. We shall argue that

these objectives can be represented as certain prediction problems and thus differ from

the standard kinds of objectives of log-linear modelling (e.g. Bishop, Fienberg and

Holland, 1975). Our approach will be to develop diagnostic criteria of model adequacy

for such prediction purposes, which we shall refer to as minimum error tests. Thus, in

practice, our proposed approach involves (i) specifying the key variables, (ii) selecting

one or more log-linear models which fit well according to these criteria and (iii) using

the well-fitting models to obtain risk estimates.

The kinds of risk measures considered here, based on log-linear modelling, may be

used to assess the impact of recoding the key variables, which is the primary method

of disclosure limitation used at present by ONS in the release of social survey microdata,
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alongside the use of restrictions on access arrangements, such as via licenses or on-site

laboratories.

The article is organised as follows. The framework for identification risk assessment

is set out in Section 2, with the associated log-linear models discussed in Section 3.

Section 4 describes possible criteria for assessing the model and Section 5 describes

how these might be used to specify a model. Section 6 extends the methodology of

Sections 2-5 to complex sampling schemes. Applications to census samples and to a

social survey are presented in Sections 7 and 8 respectively. Finally, Section 9 contains

a discussion and areas for future research.

2 IDENTIFICATION RISK ASSESSMENT

Following several authors (e.g. Paass, 1988; Duncan and Lambert; 1989; Bethlehem et

al., 1990), we consider a microdata file consisting of records for a sample of individuals

from a finite population. We imagine an intruder with access to the file as well as to

auxiliary information on the values of the key variables for some known individuals in

the population. The intruder matches the two data sources in order to identify one

or more records in the microdata. We suppose the intruder assesses whether there is

a microdata record and a known individual for which the probability that the former

belongs to the latter is high (Paass, 1988; Duncan and Lambert, 1989). Our basic

definition of identification risk is the value of this probability when the microdata

record does indeed belong to the known individual.

We conceive of this probability as conditional on data, which might reasonably be

assumed available to the intruder, and defined with respect to a model and assumptions,

which are justifiable from analysis of the data and from knowledge of the processes

(sample selection, measurement error etc.) generating the data. We treat the key
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variables as given by a specified scenario, as in Paass (1988). In the kinds of census

and social survey applications of concern here, we may assume that the key variables

are categorical. A stronger assumption that we shall make is that the key variables are

measured in the same way in the two sources, so there is no measurement error to create

discrepancies. Ignoring such discrepancies may be expected to lead to overestimation

of risk and the risk estimates reported in this article may therefore be considered to

be conservative. The treatment of measurement error would be a key extension of our

approach but is beyond the scope of this paper.

To introduce our basic measure of identification risk, let Fk be the population count

in cell k of the multi-way contingency table formed by cross-classifying the key vari-

ables (with cells labelled k = 1, · · · , K). Under the above assumptions, together with

weak exchangeability assumptions about the selection of records and known popula-

tion individuals, and the assumption that Fk is known to the intruder, the definition

of identification risk above, i.e. the probability that a microdata record may be identi-

fied, takes the form 1/Fk , where k is the cell to which the record belongs (Duncan and

Lambert, 1989). The risk is maximum when the record is population unique, i.e. Fk

= 1. In practice, the agency should ensure that key variables are not released where

intruders are able to determine small values of Fk using, for example, population lists

(Skinner, Marsh, Openshaw and Wymer, 1994). A more realistic measure is therefore

given by E(1/Fk) =
∑

r P (Fk = r)/r, where P (Fk = r) denotes the probability that

Fk = r under the model (r=1, 2, · · · ), given data available to the intruder (Skinner

and Holmes, 1998). Given the particular concern about population uniqueness (e.g.

Bethlehem et al., 1990), a related risk measure of interest is P (Fk = 1), the probability

of population uniqueness. This is the first term in the sum
∑

r P (Fk = r)/r and so

is a less conservative measure than E(1/Fk). We shall treat the data available to the

intruder as the sample counts fk and we shall express the two risk measures of interest
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as E(1/Fk | fk) and P (Fk = 1 | fk). Under a “working model” that the pairs (Fk, fk)

are independent, these measures will be the conditional expectation of 1/Fk and the

conditional probability that Fk = 1, respectively, given the data f1, · · · , fK . For sim-

plicity, we shall retain E(1/Fk | fk) and P (Fk = 1 | fk) as definitions of our measures

of interest, even under possible departures from this assumption. The first risk mea-

sure will generally be highest when fk = 1, i.e. in sample unique cells. Moreover,

the probability of population uniqueness is only non-zero when fk = 1. Consideration

of worst cases thus leads to a focus on the measures r1k = P (Fk = 1 | fk = 1) and

r2k = E[1/Fk | fk = 1].

These are referred to as record-level or per record measures (Willenborg and de Waal,

2001, p.52) since they vary between records. More generally, we write rk = E[g(Fk) |
fk = 1], where g(F ) = I(F = 1) or 1/F in the case of r1k or r2k, respectively. Estima-

tion of such record-level measures may help the agency identify and target ‘high risk’

records for the application of ‘local’ disclosure limitation methods. Nevertheless, agen-

cies often also need measures of risk at the file level in their decision making processes,

such as in the assessment of recoding options, and this leads to consideration of aggre-

gating such record-level measures (Lambert, 1993; Fienberg and Makov, 1998). Here,

we consider simply summing the record-level measures across sample unique records,

to give τ ∗ =
∑
SU

rk and, in particular:

τ ∗1 =
∑
SU

r1k =
∑
SU

P (Fk = 1 | fk = 1), (1)

the expected number of sample uniques that are population unique, and

τ ∗2 =
∑
SU

r2k =
∑
SU

E(1/Fk | fk = 1), (2)

the expected number of correct matches for sample uniques, where SU = {k : fk = 1}
denotes sample unique cells. Our focus will be on situations where K is large (and the
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(Fk, fk) may be treated as independent) so that a law of large numbers implies that

τ ∗ will closely approximate τ =
∑

k I(fk = 1)g(Fk), which takes the particular forms

τ1 =
∑

k I(fk = 1, Fk = 1) or τ2 =
∑

k I(fk = 1)/Fk . Such measures may be more

appealing to some statistical agencies since they have a model-free interpretation.

For any of the measures above, the problem of risk assessment becomes one of statistical

inference if the fk are observed but the Fk are not. In the case of τ , we may view this

as a problem of finite population prediction.

3 LOG-LINEAR MODELS

Models are required not only for the explicit definition of most of the risk measures

in the previous section, but also for inference about these measures. Following stan-

dard methods for contingency tables (e.g. Bishop et al., 1975) and previous work on

disclosure control (e.g. Bethlehem et al., 1990), we consider models where the Fk are

realisations of independent Poisson random variables with means λk (k = 1, · · · , K).

We write Fk ∼ P (λk). In order to develop relatively simple procedures, we shall first

assume that the sample is drawn by Bernoulli sampling where individuals in cell k have

the same known inclusion probability πk so that the sample counts fk are also inde-

pendent Poisson random variables fk ∼ P (πkλk). We extend our approach to complex

sampling schemes in Section 6. Under the Bernoulli sampling assumption, we have

Fk | fk ∼ P [λk(1 − πk)] + fk so that the record level measures may be expressed as

r1k = exp[−(1−πk)λk] = h1(λk), say, and, r2k = {1− exp[−(1−πk)λk]}/[(1−πk)λk] =

h2(λk) say, or, more generally, rk = E[g(Fk) | fk = 1] = h(λk) , say, where h(λ) is a

monotonic decreasing function of λ. We write the aggregated risk measures as:

τ ∗ =
∑

k

I(fk = 1)h(λk). (3)

8



The modelling assumptions so far are generally insufficient to make precise inference

about these risk measures since the measures depend on unknown λk values for cells

where the observed counts fk are just one. Following principles of small domain esti-

mation, we therefore “borrow strength” (Rao, 2003; p.2) between cells by supposing

the λk are related via the log-linear model:

log λk = xxx′kβββ, (4)

where xxxk is a qx1 design vector, depending on the values of the key variables in cell

k, and βββ is a qx1 parameter vector. Typically, we shall specify xxxk to include main

effects and low order interactions of the categorical key variables (Bishop et al., 1975).

Since the fk are the outcomes of independent P (πkλk) random variables, the maximum

likelihood (ML) estimator β̂̂β̂β may be obtained by solving the score equations:

∑

k

[fk − πk exp(xxx′kβββ)]xxxk = 0, (5)

using numerical techniques. The risk measures in Section 2 may then be estimated by

replacing λk by λ̂k = exp(xxx′kβ̂̂β̂β) in the expressions above, for example τ̂ =
∑

k I(fk =

1)h(λ̂k). Such an approach has been described in Skinner and Holmes (1998) and

Elamir and Skinner (2006), who have shown how it may generate useful risk measures.

See also Fienberg and Makov (1998), Dobra et al. (2003). The problem addressed in

this paper is that inference may be sensitive to the specification of (4). We propose

an approach in the next section to check the adequacy of this specification. We shall

assume that, given a specified model of form (4), inference proceeds in the simple

manner above, i.e. by plugging λ̂k in for λk in the risk measure expressions. Other

more sophisticated approaches are possible, for example averaging over alternative

models (Fienberg and Makov, 1998), but will not be considered here.
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4 CRITERIA FOR MODEL ASSESSMENT

4.1 Rationale

We seek criteria for assessing whether the vector xxxk in the log-linear model in (4) may

be expected to lead to accurate estimated risk measures. One approach would be to use

goodness-of-fit criteria such as Pearson or likelihood-ratio tests. These are not designed

for finite population prediction problems, however. Moreover, the usual conditions on

the average cell size n/K required for their validity (e.g. at least 1 or 5) do not hold

for the large and sparse tables typical of the kinds of applications considered here.

For example, the survey that is assessed in Section 7 has 127,200 records in 2,366,000

cells defined by six identifying key variables, and the average cell size is 0.05. Some

work on sparse tables (Koehler, 1986) suggests that the Pearson test is preferable

to the likelihood ratio test in such circumstances. Nevertheless, our empirical work

has suggested that neither of these criteria, nor other standard approaches such as

Akaike’s Information Criterion, are very successful in deciding whether the disclosure

risk measures will be well estimated and we shall not consider them further here.

Instead, we consider an approach motivated directly by our aim to estimate the risk

measures accurately. Specifically, we seek a criterion for choosing a specification of

model (4) which minimises the error (in a sense to be defined) of τ̂ =
∑

k I(fk = 1)h(λ̂k)

as an estimator of τ ∗ =
∑

k I(fk = 1)h(λk) or as a predictor of τ =
∑

k I(fk = 1)g(Fk).

See Rao and Wu (2001) for a general discussion of the use of prediction criteria in

model selection. Empirical work suggests that, within a neighbourhood of ‘reasonable’

models, τ̂ tends to decline as the model becomes more complex. To provide some

heuristic theoretical reasoning for this phenomenon, let β̃̃β̃β be the solution of

∑

k

[λk − exp(xxx′kβββ)]xxxk = 0, (6)
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interpreted as an ‘average’ value of β̂̂β̂β across its sampling distribution and let λ̃k =

exp(xxx′kβ̃̃β̃β) be a corresponding ‘average’ value of λ̂k. We can think of the estimation error

λ̂k − λk as composed of the sum of a ‘sampling error’ λ̂k − λ̃k and a ‘misspecification

error’ λ̃k − λk and, via these components, consider two problems.

Overfitting: this is the case where the model is ‘too complex’ in the sense that the

sampling error is positively associated with fk (in the extreme case of a saturated

model λ̂k = fk/πk) and where this sampling error is the dominant component of

estimation error. We consider applications where the expected sample size per

cell is less than one so that I(fk = 1) tends to be positively associated with fk.

Since h is a monotonic decreasing function, we may expect that, in the presence of

overfitting, I(fk = 1) tends to be positively associated with λ̂k−λk and negatively

associated with h(λ̂k)−h(λk) and thus for τ̂ to underestimate τ ∗. Another reason

to expect this outcome is that overfitting may produce too many fitted marginal

zero counts where sample marginal counts are random zeros, leading to fitted cell

counts being too high for the non-zero cells of the table and risk measures being

underestimated.

Underfitting: this is the case where λ̃k is ‘oversmoothed’, so that there is negative

association between λ̃k − λk and λk, and misspecification error is the dominant

component of estimation error. It follows that λ̂k−λk is also negatively associated

with λk. Now, we expect fk to be positively associated with λk and thus (when

the expected sample size per cell is less than one) for I(fk = 1) to be negatively

associated with λ̂k−λk and positively associated with h(λ̂k)−h(λk) and thus for

τ̂ to overestimate τ ∗. Another reason to expect this outcome is that structural

zero counts in tables may fail to be fitted correctly in the presence of underfitting,

leading to expected cell counts tending to be too low for the non-zero cells of the

table and risk measures being overestimated.

11



Our empirical experience (as will be illustrated in Sections 6 and 7) is that it is harder

to detect the impact of overfitting than underfitting. Our development of a data-based

criterion for minimising estimation error is therefore led by consideration of the impact

of the latter.

4.2 Development of Criterion

We represent the impact of underfitting by the component of the bias of τ̂ as an

estimator of τ ∗ or predictor of τ arising from misspecification of the model, that is

from the difference between λ̃k and λk, i.e:

B =
∑

k

E[I(fk = 1)][h(λ̃k)− h(λk)] =
∑

k

πkλk exp(−πkλk)[h(λ̃k)− h(λk)]. (7)

We approximate the term h(λ̃k) in this expression by

h(λ̃k)
.
= h(λk) + h′(λk)(λ̃k − λk) + h′′(λk)(λ̃k − λk)

2/2, (8)

using a quadratic expansion of h(λ̃k) around λk. For example, when h(λ) = h1(λ),

we obtain h′(λk) = −(1 − πk)h1(λk) and h′′(λk) = (1 − πk)
2h1(λk). To illustrate the

quality of the approximation, consider the value λk = 1 which might be taken to be the

value of most concern, being the value when Fk = 1 is most likely. Figure 1 plots h(λ̃)

and its approximation in (8) against λ̃ for πk=0.05 and the two choices of h function

considered above equation (3). The approximation works well for the range of λ̃ values

plotted and potential problems with the approximation at the extremes are mitigated

by the lower bound λk > 0 and the damping effect of exp(−πkλk) in (7) for large values

of λk.

Substituting approximation (8) into (7) gives:

B
.
=

∑

k

πkλk exp(−πkλk)[h
′(λk)(λ̃k − λk) + h′′(λk)(λ̃k − λk)

2/2]. (9)
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Since E(fk) = µk = πkλk and E[(fk − πkλ̃k)
2 − fk] = π2

k(λk − λ̃k)
2, it follows that, for

a large number of cells, expression (9) may be approximated by

B̃ =
∑

k

λk exp(−µk){−h′(λk)(fk − πkλ̃k) + h′′(λk)[(fk − πkλ̃k)
2 − fk]/(2πk)}. (10)

In the case of underfitting, when fk − πkλ̃k may be reasonably approximated by fk −
πkλ̂k, a natural estimator of B̃ and hence of B is

B̂ =
∑

k

λ̂k exp(−µ̂k){−h′(λ̂k)(fk − µ̂k) + h′′(λ̂k)[(fk − µ̂k)
2 − fk]/(2πk)}. (11)

We write B̂ as B̂1 or B̂2 when h(λ) = h1(λ) or h(λ) = h2(λ) respectively, for example

B̂1 =
∑

k

λ̂k exp(−λ̂k)(1− πk){(fk − µ̂k) + (1− πk)[(fk − µ̂k)
2 − fk]/(2πk)}. (12)

We have argued that B̂ may be viewed as an estimator of the bias of τ̂ in the presence

of underfitting, when this bias may be expected to be positive. The properties of B̂ in

the case of overfitting are more difficult to assess. As will be discussed further below,

we expect the first part of expression (11) involving (fk − µ̂k) to contribute less than

the second component involving [(fk− µ̂k)
2− fk]. In the second component, we expect

that overfitting will lead to (fk− µ̂k)
2 tending to be less than (fk−µk)

2 and thus, since

E[(fk − µk)
2] = E(fk), we may expect the second component to tend to be negative

and hence for B̂ to be negative. We thus conclude that B̂ will tend to be negative in

the presence of overfitting, although we do not suggest that it will estimate the bias

of τ̂ in this case. We refer to B̂ as a minimum error criterion, since it is constructed

with the aim of minimising the error of τ̂ as an estimator of τ ∗ or predictor of τ .
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4.3 Test Statistics

We propose to use the closeness of B̂ to zero as evidence of an absence of underfitting.

We emphasise that this criterion is designed to assess the quality of the risk estimates

arising from the model, not whether the model is correct, i.e. the purpose is estimation

not testing. Nevertheless, we need to quantify ‘closeness’ to zero since B̂ will differ

from zero because of sampling error, even in the absence of underfitting, and thus we

consider estimating the variance of B̂. We assume that it is reasonable to approximate

the distribution of B̂ by the distribution of B̃. This approximation may be justified

by standard asymptotic theory for contingency tables where the cells (and K) are

fixed and the population and sample sizes per cell increase. Alternatively, it may be

justified in an asymptotic framework (Haberman, 1977) in which K increases alongside

the population and sample sizes and where the contribution of the sampling error in β̂̂β̂β

via the λ̂k to the variance of B̂ becomes negligible relative to the contribution of the

terms involving fk in (11). This framework seems more realistic for our applications,

where K is large and the cell sizes may be small, but the two-way and three-way

marginal counts upon which β̂̂β̂β is based tend to increase with sample size.

If the model is correctly specified, so that λ̃k = λk and fk ∼ P (µk), then B̃ has

zero expectation and, using standard results for the first four moments of a Poisson

random variable, var(B̃)=
∑

k a2
kµk+2b2

kµ
2
k, where ak = −λk exp(−πkλk)h

′(λk) and bk =

λk exp(−πkλk)h
′′(λk)/(2πk). For h(λ) = h1(λ), we have ak = (1− πk)λk exp(−λk) and

bk = (1− πk)
2λk exp(−λk)/(2πk) and for h(λ) = h2(λ), we have ak = exp(−πkλk)r2k −

exp(−λk) and bk = {exp(−πkλk)r2k− exp(−λk)[1+ (1−πk)λk/2]}/[πkλk], where r2k is

given above (3).
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A natural estimator of var(B̃) is given by

ν =
∑

k

â2
kµ̂k + 2b̂2

kµ̂
2
k, (13)

where µ̂k = πkλ̂k, and

âk = −λ̂k exp(−µ̂k)h
′(λ̂k), (14)

and

b̂k = λ̂k exp(−µ̂k)h
′′(λ̂k)/(2πk). (15)

An alternative variance estimator is obtained by assuming just that λ̃k = λk and the

fk are independent with mean and variance equal to µk but without assuming that

the third and fourth moments follow those of a Poisson distribution. In this case, we

obtain var(B̃)=
∑

k E{ak(fk −µk) + bk[(fk −µk)
2− fk]}2 and an alternative estimator

of var(B̃) is given by

νR =
∑

k

{âk(fk − µ̂k) + b̂k[(fk − µ̂k)
2 − fk]}2, (16)

where the subscript R denotes robust.

Given our assumptions above, B̂/
√

ν or B̂/
√

νR have an approximate standard normal

distribution under the hypothesis that the expected value of B̂ is zero. We shall refer

to the associated tests as minimum error tests. They are diagnostic tests, designed to

assess whether a model displays evidence of underfitting or overfitting for estimation

purposes and not to test whether a given model is correct.

4.4 Relation to Existing Tests of Overdispersion

The expression for B̂ in (11) or (12) may be considered as the sums of two components

B̂ = B̂a + B̂b. The first component, B̂a =
∑

k âk(fk − µ̂k), is of the same form as the
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estimating function appearing in (5) so that if βββ is estimated using ML and the vector

of weights âk is in the linear space spanned by xxxk then this component will be zero. In

general, this argument suggests that the first component may be less important than

the second component, B̂b =
∑

k bk[(fk − µ̂k)
2− fk]. We shall consider this empirically

in Section 6. The component B̂b may be interpreted as an estimator of the degree of

overdispersion or underdispersion, since fk and (fk−µ̂k)
2 are unbiased estimators of the

conditional mean and variance of fk respectively, again ignoring differences between

β̂̂β̂β and βββ and assuming µk = exp(xxx′kβββ). Hence, an average of [(fk − µ̂k)
2 − fk] is a

measure of overdispersion or underdispersion. This reveals a close connection between

the proposed test procedure above and existing tests of overdispersion. In particular,

Cameron and Trivedi (1998, p.78) construct zk = [(fk−µ̂k)
2−fk]/µ̂k and test whether it

has zero expectation by referring the test statistic κ̂/
√

νκ in the usual way to a standard

normal distribution, where κ̂ = K−1
K∑

k=1

zk, and νk =
K∑

k=1

(zk − κ̂)2/[K(K − 1)]. This is

a score test of H0 : κ = 0 for a model with a conditional variance of the form (1+κ)µk.

It can also test for underdispersion.

5 USE OF MODEL ASSESSMENT CRITERIA

We propose to use the criteria developed in the previous section to select a specification

of the log-linear model in (4) via a search algorithm. The criteria might also be used

as a diagnostic approach to assess whether a given specified model may be expected to

provide adequate risk measures.

Since the criterion B̂ in (11) and the associated minimum error tests were derived

primarily as a means to detect underfitting (and numerical work we have undertaken

suggests that indeed they are more effective for this purpose than for detecting overfit-
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ting) we suggest a forward search algorithm, starting from simpler models and adding

terms until the specification is judged to be adequate.

In many empirical experiments that we have undertaken, we have found that the in-

dependence log-linear model tends to underfit and leads to overestimation of the dis-

closure risk measures. At the other extreme, the all 3-way interactions model tends

to overfit and leads to underestimation of the risk measures. Thus we expect a rea-

sonable solution to lie between these extremes and indeed the all 2-way interactions

log-linear model often leads to good estimates of the risk measures for the types of

datasets and size of keys that are used in practice. As a practical approach, we suggest

first computing the criteria of Section 4 for the independence model and the all 2-way

interactions model. If the latter model shows no sign of underfitting then we propose

starting with the independence model and adding the 2-way interaction terms for dif-

ferent pairs of key variables, chosen sequentially in order to reduce B̂, until a model is

identified which is judged to show no evidence of underfitting. On the other hand, if

the all 2-way interactions model is found to exhibit underfitting, then we propose to

start a similar forward model search algorithm from this model as the initial model,

adding 3-way interaction terms for different triples of key variables. As in any model

search algorithm for a hierarchical log-linear model, the inclusion of a higher order term

containing an interaction implies that all subsidiary lower order effects should also be

included.

Given the alternative choices of test procedures, as well as the alternative measures of

overdispersion mentioned in Section 4.4, there are alternative possible stopping rules

for the search algorithm. We shall discuss these in the context of the real applications

in the next sections. There will, of course, be no single ‘correct’ model and there are

likely to be a number of models between which the criteria will not discriminate. We

suggest that in the disclosure risk assessment context, it is sensible to produce risk
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estimates for each of a number of such ‘reasonable models’ and to use the differences

between the estimates as a diagnostic to check the sensitivity of the measures to the

specification of the model.

6 COMPLEX SAMPLING SCHEMES

Social surveys almost always employ complex sampling schemes, especially stratifica-

tion and multi-stage sampling, and use survey weights. In this section we consider how

the methods developed in Sections 2-5 require adapting in such circumstances.

The same broad rationale and interpretations provided in Section 2 for the risk mea-

sures τ1 and τ2 still apply under complex sampling. For example, τ2 may still be inter-

preted as the expected number of correct matches for sample uniques, if the intruder is

equally likely to match a sampled individual in cell k to any one of the Fk population

individuals. The assumptions in Section 3 that Fk ∼ P (λk) and that the λk obey the

log-linear model in (4) are also unaffected by the complex sampling. What may be

affected are the risk expressions r1k = exp[−(1 − πk)λk] and r2k = {1 − exp[−(1 −
πk)λk]}/[(1−πk)λk]. These expressions still hold if P (fk = 1 | Fk) = Fkπk(1−πk)

Fk−1,

as for example when the conditional distribution of fk given Fk is Bin(Fk, πk). We shall

argue in this section that, in fact, P (fk = 1 | Fk) ≈ Fkπk(1−πk)
Fk−1 will tend in general

to be a good approximation in practice in social surveys, subject if necessary to some

judicious choice of key variables. Moreover, we shall present empirical evidence in Sec-

tion 7 that, the extent to which this approximation holds in practice in social surveys

is sufficient to avoid complex sampling inducing serious bias into estimates of the risk

measures τ1 and τ2. To assess the approximation P (fk = 1 | Fk) ≈ Fkπk(1 − πk)
Fk−1

further, we note that it holds if each of two conditions hold:
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C1: the inclusion probabilities of individuals within cell k are all approximately equal

to πk;

C2: individuals within cell k are selected approximately independently.

Consider C1 first. In social surveys, the greatest variations in individual inclusion prob-

abilities tend to arise from differences between major strata, especially geographical

strata. It is common to include such major stratification variables as key variables since

they will typically be very visible, e.g. state of residence. In this case, there will be

no between-stratum component to the variation in inclusion probabilities within cells,

providing support for C1. Even if there are design variables, which are not natural

key variables, but do lead to major variations in inclusion probabilities, they could be

included as key variables to ensure that C1 provides a good approximation.

The main practical threat to condition C2 in social surveys comes from multi-stage

sampling and the possibility that the sampling of individuals within cells is clustered.

For example, in the extreme case when a cell falls within a single cluster (and no

subsampling is employed), either the cluster is sampled so that fk = Fk or the cluster

is not sampled so that fk = 0. It follows that, in this case, P (Fk = 1 | fk = 1) = 1 and

E(1/Fk | fk = 1) = 1 so that the earlier expressions for r1k and r2k would be misleading.

In practical applications, this extreme possibility seems very unlikely. The number of

sample individuals in a primary sampling unit in social surveys is usually limited in

order to avoid loss of precision, and the cross-classification of key variables, such as

sex, age group, ethnicity, religion, place of residence or occupation, will typically cut

across the primary sampling units and divide them by many more cells than the sample

sizes within the primary sampling units. We do not suggest that there will never be

individuals from the same cell within a common cluster, e.g. few key variables in

practice would split twin children of the same sex living in the same family, but we

shall suggest from our empirical work that the degree of clustering in cells tends not to

19



lead to a degree of over-dispersion of the Binomial distribution which would seriously

bias the risk estimates.

Cluster sampling might also lead to correlation between values of fk in different cells and

thus to departures from the “working assumption” that the (Fk, fk) are independent.

This will not, however, lead to bias in the estimation of τ1 or τ2 since these are linear

in k. Thus, if r̂1k and r̂2k unbiasedly estimate P (Fk = 1 | fk = 1) and E(1/Fk | fk = 1)

respectively, then
∑

SU r̂1k and
∑

SU r̂2k will unbiasedly estimate τ1 and τ2 respectively,

irrespective of any correlation between the fk.

We next turn to estimation. The λk can be estimated consistently under complex

sampling using pseudo maximum likelihood estimation (Rao and Thomas, 2003), where

the estimating equation in (5) is modified by replacing fk by F̂k, obtained by summing

the survey weights across sample individuals in cell k, and by removing πk. The

resulting estimates λ̂k are plugged into the expressions for r1k and r2k. The value of

πk in these expressions is replaced by the estimate π̂k = fk/F̂k. Note that the risk

measures only depend upon πk for sample unique cells and π̂k in this case is simply

the reciprocal of the weight for the sample unique case, and this will simply be the

inclusion probability of that case if inverse inclusion probability weighting is employed.

If the only variation in inclusion probabilities is between major strata, the λk could be

consistently estimated alternatively by simply ensuring that the strata are represented

by a key variable and that the main effects of this key variable are included in the

model, with πk in (5) replaced by π̂k.

We finally turn to the use of the minimum error test criteria for the choice of the

model. We propose to use the same expression for B̂ as in (11) with πk replaced by π̂k,

with µ̂k = π̂kλ̂k and with λ̂k estimated as above. The motivation for this expression

follows as in Section 4.2. The leading term, λ̂k exp(−λ̂k) in B̂ only acts to weight

the remaining factor in parentheses which is designed to approximate zero for the
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preferred model, and thus the impact of complex sampling on this leading term should

be of low relative importance for model choice. The term fk − µ̂k may alternatively

be expressed as π̂k(F̂k − λ̂k), i.e. a multiple of the term featuring in the pseudo score

equation and a similar argument to that in Section 4.2 suggests that this term should

be of lesser importance than the final term: (fk − µ̂k)
2 − fk. This latter term is the

one which seems of most concern in the case of complex sampling. It is based on the

Poisson assumption that fk unbiasedly estimates its own variance. For general complex

designs this may not be the case, but under conditions C1 and C2 above we may expect

it to hold approximately. The concern is that multistage sampling might lead to slight

overdispersion of fk, with a tendency for fk to underestimate its own variance, possibly

making B̂ too large when in fact the model is appropriate. This might lead us to select

a more complex model than is appropriate. We find no evidence of such a tendency,

however, in the application in Section 7.

7 APPLICATION TO CENSUS SAMPLES

We now apply the proposed methods to samples drawn from the 2001 UK population

census. Treating one region of N=944,793 individuals as the population, we compute

the true aggregated risk measures and compare them to the estimated risk measures

for both simple random samples and complex samples from this population and thus

examine the performance of the model choice criteria.

We consider two keys defined by six traceable and visible key variables. The first

key is defined by (number of categories in parentheses): area (2), sex (2), age (101),

marital status (6), ethnicity (17) and economic activity (10), giving K=412,080 cells.

The second has 73,440 cells and is defined as the first key except that age is grouped
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into 18 bands. Our choice of key variables follows considerations at ONS and in Dale

and Elliot (2001). To fit the log-linear models, we used iterative proportional fitting

(IPF) (Bishop et al., 1975) which is simple to program and directly generates the

fitted values µ̂k for the risk estimates. Log-linear model fitting procedures in standard

statistical software will often not cope with the large numbers of variables and cells

in our setting. Therefore we have written a special application in SAS to implement

IPF. We experienced no problems of convergence despite the presence of many cells

with fk = 0. Our estimation method dealt ‘automatically’ with zero marginal counts

corresponding to a given model, because of, for example, impossible combinations of

key variable values (structural zeros). When there is a zero on a margin that is used

to fit the model, no parameter is estimated and the fitted internal cell values are also

zero.

Table 1 presents true and estimated values of τ1 and and τ2 for three simple random

samples with 0.5%, 1% and 2% sampling fractions and for three log-linear models: the

independence model, the all 2-way interactions model and the all 3-way interactions

model. We see a consistent pattern of estimates decreasing with increasing model

complexity, with the independence model always leading to overestimation and the all

3-way interactions model always leading to underestimation. The all 2-way interac-

tions model performs better, mostly generating underestimates but twice generating

overestimates. The errors of estimation of τ̂1 and τ̂2 always share the same sign and

suggest that a fitting criterion which ‘works’ for one measure should also work for the

other measure. The five test statistics also tend to have the same signs. The serious

overestimation (and underfitting) of the independence model is consistently predicted

by the large positive values of all five test statistics. The signs of the five test statistics

are also always the same for the all 2-way interactions model and all consistently pre-

dict whether τ̂1 and τ̂2 will overestimate or underestimate τ1 and τ2 respectively. The
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underestimation (and overfitting) of the all 3-way interactions model is consistently pre-

dicted by the negative signs of the test statistics κ̂/
√

νκ, B̂2/
√

ν and B̂2/
√

νR. There

are inconsistencies, however, in the behaviour of B̂1/
√

ν and B̂1/
√

νR, especially for

the smaller sample sizes, and this suggests that these tests should be used primarily to

detect underfitting.

Although the test statistics have similar signs, their magnitudes vary. The two test

statistics, using a variance estimator based upon the Poisson assumption, seem most

sensitive (i.e. have the largest values) to underfitting, but least sensitive to overfitting.

In contrast, the test statistics based upon the variance estimator νR (or the Cameron-

Trivedi test) are more sensitive to overfitting and less sensitive to underfitting.

Table 2 presents some values of the underlying statistics B̂1 and B̂2 for the large key.

For the all 2-way interactions model, there is some similarity between these values and

those of the estimation errors τ̂1− τ1 and τ̂2− τ2, respectively, as might be expected as

the former are intended to estimate the expectation of the latter. For example, for the

1% sample and the large key, we have B̂1 = -59.3, τ̂1− τ1 = -54.1 and B̂2=-72.9, τ̂2− τ2

= -75.8. Nevertheless, the statistics B̂1 and B̂2 were derived using approximations

around the true model and when the assumed model provides a poor fit, as for the

independence and all 3-way interactions models, we observe that B̂1 and B̂2 bear little

relation to the estimation errors. Moreover, there will be no reliable interpretation of

the values of B̂1 or B̂2 when they are of a similar magnitude to their standard errors,

the case that will be of most interest in our approach to model selection. Henceforth,

we shall therefore only consider the values of the test statistics associated with B̂1 and

B̂2, not the unstandardized values. Table 2 also includes breakdowns of the B̂1 and

B̂2 statistics according to the B̂ = B̂a + B̂b decomposition in Section 4.4. As discussed

there, we observe that the second component B̂b dominates for the independence and

all 2-way interactions models, i.e. except for the case of serious overfitting. Thus, as
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discussed in Section 4.4., the tests based on B̂ are similar to tests of overdispersion

when the model underfits.

We now undertake a forward model search, as discussed in Section 5, for the data

defined by the large key and the 1% sample (n=9,448). Table 1 suggests that the inde-

pendence model underfits and the all 2-way interactions model overfits. We therefore

start from the independence model and consider adding 2-way interaction terms until

we find a model for which there is no evidence of lack of fit. Table 3 presents results

of the best fitted models obtained for each round of a forward search, starting with

the independence model, labelled as Model I. Note that the 1-way (main effects) terms

become obsolete when adding in 2-way interaction terms that contain them. The first

four rounds are clear-cut in the sense that, at each round, there is a clear choice of

the set of 2-way interactions which best reduces all of the test criteria. The set of

interaction terms between age and economic activity, denoted {a*ec}, is included in

round 1 (leading to the model denoted 1). Three further rounds leads to the addition

of the sets {a*et},{a*m} and {s*ec} to give Model 4. This model provides a good fit

in the sense that the values of all the test statistics based upon B̂1 or B̂2 are less than

2 (although the Cameron-Trivedi test still suggests some underfitting). It is less clear

how to proceed beyond Model 4. A simple approach in practice might be a forward

search using only one criterion (we suggest B̂2/
√

ν in Section 8) stopping at the round

prior to which the criterion becomes negative for every added term. Here, we adopt a

more informal approach, selecting more than one model at a round if they are nearly

indistinguishable with respect to the multiple criteria and permitting very slight neg-

ative values of one or two criteria. Thus, at round 5, we select two models, 5a and 5b,

which each provide improvements over model 4 but neither appears to be uniformly

better than the other in terms of all the criteria. We fail to find any terms to add to

Model 5a without one of the criteria becoming strongly negative and thus treat Model
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5a as one candidate ‘terminal’ model. There are, however, three models, 6b, 6c, and

6d, which may be obtained from Model 5b and which appear reasonable. Model 6b

is again a candidate terminal model since we cannot add any terms without one of

the criteria becoming strongly negative. Finally we obtain an additional two candi-

date terminal models, 7c and 7d from Models 6c and 6d. We thus have four potential

‘terminal’ models, 5a, 6b, 7c and 7d. In fact each of these models gives very similar

estimates τ̂1 and τ̂2 of around 148 and 336 respectively, implying a robustness of the

search procedure to the choice of criterion. Moreover, similar estimates are obtained

from models 4, 5b, 6c and 6d, implying a robustness to the precise form of the stopping

rule.

The model search is represented graphically in Figure 2. The points (τ̂2, B̂2/
√

ν) in the

scatterplot correspond to all the models in Table 3 as well as all the models which were

considered in the forward search but not selected. The points are scattered around a

line with a positive slope which, as desired, is around zero when τ̂2 is equal to the true

value of τ2, although the search jumps across the true value τ̂2 = τ2 when the term

{a*m} is included (the change from Model 2 to 3). The plot tends to display some

curvature (convexity) implying that the interval of values of τ2 for well-fitting models

is shorter above its true value than below, i.e. underfitting is easier to detect than

overfitting.

We next examine the record-level risk measure r̂2k for the different models. Figure 3

presents a scatterplot of 1/Fk against r̂2k for 2,304 sample uniques under Model 5a in

Table 3 of the 1% Census sample with the large key. Table 4 provides a corresponding

cross-classification of these values within bands. We observe a strong positive rela-

tionship with a Spearman rank correlation of 0.80, i.e. the model is effective in using

the key variable information to predict 1/Fk. Nevertheless, it is good news from the
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point of view of disclosure protection that the prediction is far from perfect with, for

example, many population unique cells not being picked up by high r̂2k values. The

values of 1/Fk range above and below the diagonal line in Figure 3, as anticipated if

r̂2k is to be interpreted as an expected value of 1/Fk . There is no strong evidence of

the r̂2k being smoothed to have smaller dispersion than the 1/Fk with similar marginal

distributions observed in Table 4.

Table 1 enabled comparison of two different keys. To extend this comparison to an

even more demanding key, we now add a 9 category religion variable to the large key

to produce K=3,798,720 cells. Taking a 1% sample, we now find that over 70% of the

non-zero cells are sample unique. The number of population uniques in the sample

has risen to τ1=311 (compared to τ1=159 without religion), representing over 3% of

the 9448 sample cases. Results are presented in Table 5. As for the two keys in Table

1 with a 1% sample, the all 2-way interactions model (II) provides a reasonable fit

although, as before, there is some evidence of overfitting. Forward selection from the

independence model (I) works well, as in Table 3. The minimum error test criteria

suggest the addition of five 2-way interaction terms and the resulting estimates of τ1

and τ2 are close to their true values.

We next consider the impact of complex sampling by adopting a sampling and weighting

system, typical of household survey designs implemented at government statistical

agencies. From the same population, we drew a stratified sample using two strata

defined by the area key variable. Sampling fractions were 1:65 in the first area and 1:125

in the second area. In each stratum a systematic sample of households was selected

after sorting by finer geographical detail and all persons in the sampled households

were included, so the sample of individuals is clustered by household. Differential

non-response was generated at the household level based on household size: 20% non-
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response for small households, 10% for intermediate size households and 5% for large

households. The resulting number of responding individuals represented 1% of the

population, enabling comparisons with the 1% sample in Table 3. We constructed

sample weights based on generalized regression estimators for 96 weighting classes

defined by area, sex and 24 age groups. The weights were calculated to ensure that

all individuals in a household receive the same weight and also that the sum of the

individual weights in the sample in each weighting class equals the known population

total.

The large key with six key variables was used again. The values of the true risk

measures are τ1 = 136 and τ2 = 331.8, not very different from the values τ1 = 159

and τ2 = 355.9 for the 1% simple random sample. The estimates obtained using the

methods described in Section 6 are given in Table 6. The results are broadly similar

to those found for the simple random sample in Table 3. A good fit is obtained in

Model 4 by the inclusion of four 2-way interactions as well as the main effects. This

is similar to Model 4 in Table 3, with three of the 2-way interactions the same. The

estimates τ̂1 = 132 and τ̂2 = 334.1 are even closer to the true values than for the simple

random sample. Four other well-fitting models, 5a-5d, are also included in Table 6

and indicate as earlier that the risk estimates are fairly stable across these models.

The observed robustness of the results to the complex design seems likely to arise here

from the impact of household clustering being mitigated by the fact that the age and

sex key variables cut across clusters and by the inclusion of the stratifying variable as

a key variable. We also carried out a similar experiment based on the same design

without the clustering. This was to assess whether cluster sampling tended to inflate

B̂ resulting in a different choice of model. We obtained no evidence of this effect.
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8 APPLICATION TO SOCIAL SURVEY DATA

We now describe an application to a social survey with a sample size of n = 127, 200

individuals drawn with equal probability sampling from the adult population of the

UK. Although the true values of τ1and τ2 are no longer available for validation, we

can still compare the behaviour of the alternative criteria and the stability of risk

estimates. The microdata first underwent disclosure control based on initial recoding

or suppression of key variables. The visible and traceable key variables that were used

for the evaluations were: area (20), sex (2), age in years (top-coded at 90) (91), marital

status (5), ethnicity (13) and economic activity (10) resulting in a key of K = 2, 336, 000

cells. There were 13,954 sample uniques. Some results are presented in Table 7. There

is clear underfitting of the independence model and clear overfitting of the all 3-way

interactions model. The all 2-way interactions model, however, appears to provide a

reasonable fit. It is interesting that this model ‘fits’ despite the sample size being much

larger than in the census samples. The all 2-way interactions model cannot be exactly

true. Experience with the increasing power of conventional goodness-of-fit tests with

sample size might lead us to expect that this model would be rejected for a sample as

large as this. This is not what we see. Table 1 provides further evidence that increasing

the sample size does not necessarily result in the selection of a more complex model.

We see no tendency in this table for the test statistics for the all 2-way interactions

model to deviate more significantly from zero the larger the sample size. Such evidence

lends further support for the practical feasibility of using our criteria across a range of

survey settings.

Returning to Table 7, since the values of some of the test statistics for the all 2-way

interactions model approach 2, we consider adding in 3-way interactions. Among the

twenty possible combinations of 3 from 6 key variables, we present results for the
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eight models (1a-1h) which reduced the values of all the minimum error test criteria

(without making any negative). Selecting the two of these models (1c and 1d) with the

smallest values of B̂2/
√

ν we also present results for nine further models which lead to

a reduction of all the minimum error test criteria by adding in 3-way interaction terms.

We observe that the value of the Cameron-Trivedi test now differs clearly from the

minimum error tests. We have found such discrepancies with other survey examples,

both in positive and negative directions. Table 3 provides examples of relatively minor

discrepancies in the opposite direction for Models 4 and 5a for the census data, where

the Cameron-Trivedi test indicates significant underfitting, unlike the other test crite-

ria. Exploration of these discrepancies indicates a number of sources, mainly related

to the fact that the Cameron-Trivedi statistic is not designed with a focus on sample

uniques. In particular, cells with higher expected frequencies µ̂k may make a more im-

portant contribution to the Cameron-Trivedi statistic than the minimum error criteria,

because the contributions of these cells are downweighted less severely by 1/µ̂k than by

exp(−µ̂k ). Moreover, we have found a number of survey examples where the B̂b term

no longer dominated B̂ = B̂a + B̂b (see Section 4.4.). Our broad conclusion is that it

is inappropriate to use the Cameron-Trivedi statistic as a general diagnostic criterion

for the risk measures considered here, since it is not designed for this purpose.

The values of τ̂1 and τ̂2 are spread across the intervals (157.6, 266.9) and (681.5, 845.3)

respectively for the well-fitting models in Table 7, exhibiting rather greater variation

than in Table 3. We observe that the impact of adding in extra terms is either to

reduce the risk measures (e.g. adding terms to Model II) or to have little effect (e.g.

adding terms to Model 1d). The values 264.9 and 844.5 of τ̂1and τ̂2 for the all 2-way

interactions model act as reasonable upper bounds. A clear lower bound is less easy

to obtain and this appears to reflect the greater difficulty in detecting overfitting than

underfitting. Fortunately, for risk assessment purposes, an upper bound is usually
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considered to be of greater importance. The variation of values of τ̂1 and τ̂2 provides

some guidance to the sensitivity of the risk estimate provided by this upper bound.

9 DISCUSSION

We have examined the use of Poisson log-linear models to estimate disclosure risk mea-

sures for microdata, with applications to census and survey samples. As in Skinner and

Holmes (1998) and Elamir and Skinner (2006), we have found that an all 2-way interac-

tions model often leads to reasonable estimates. We have sought to improve on the use

of this model as a default, by developing diagnostic criteria for model choice, suitable

for risk assessment with the kinds of large and sparse contingency tables spanned by

key variables that are typical in practical applications in official statistics. We have

shown that our criteria do help to select models that show appreciable improvements

in risk estimation relative to the all 2-way interactions model, especially by enabling

us to detect overestimation arising from underfitting models. Since our criteria are

more effective at detecting underfitting than overfitting, we have proposed a forward

selection approach to model selection. There will invariably be several models which

are effectively indistinguishable in terms of our criteria. We have found empirically

that the risk estimates tend to be rather stable across the simplest models which show

no evidence of underfitting. We have found that there may be additional more complex

models, obtained by adding terms to the simplest models without leading to significant

overfitting (or underfitting), and they may display somewhat more variable risk esti-

mates, but these estimates always tend to be lower than those for the simpler models.

Thus the risk estimates for the simplest well-fitting models tend to provide a good

upper bound and a conservative approach to risk assessment.
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We considered four different criteria, depending on the choice of risk measure (B̂1 vs.

B̂2) and the choice of variance estimator (ν vs. νR). We found that models which ‘work’

for one risk measure (τ1 or τ2) tend to work also for the other risk measure. However,

our results suggest a slight preference for B̂2 compared to B̂1 since the former did not

generate misleading results for the all 3-way interactions model in Table 1. There may

also be a slight preference for ν rather than νR if a forward selection approach is to be

used since it appears to lead to a test statistic B̂2/
√

ν with more power for rejecting

underfitting models.

We have suggested that differences between risk estimates for alternative well-fitting

models may be used to represent uncertainty in a form of sensitivity analysis. Further

research would be needed to assess the impact of sampling error in the parameter esti-

mates and the construction of confidence intervals, although we suspect such sampling

error effects are somewhat less important than the impact of model choice. One critical

assumption in this paper is that there are no discrepancies in the values of the key vari-

ables between the microdata and the intruder’s other data source; we plan to extend

our approach to handle such discrepancies. Another assumption is that the population

frequencies are generated by a Poisson model. Our model assessment criteria aimed

at balancing underfitting and overfitting have, in fact, allowed for possible under- or

over-dispersion in this Poisson model and our numerical work using census samples has

validated the performance of our procedures (based upon the Poisson assumption) in

a set-up making no use of the Poisson model. We have therefore identified no need to

consider more complex assumptions in this part of the model. We do consider that it

may be useful to investigate ways of achieving more simplicity, in particular since our

approach can generate significant computational demands when there are many cells.

In particular, it would be useful to research ways of splitting the risk assessment by

subpopulations (defined by key variables) in order to simplify computation.
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Figure 1: Quadratic approximations of h(λ) functions for π = 0.05. Solid lower line

is h1(λ). Solid upper line is h2(λ). Dotted lines are approximations from equation (8).
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Figure 2: Scatterplot of B̂2√
v

against τ̂2 for all models considered in forward search,

summarised in Table 2.

Figure 3: Scatterplot (on logarithmic scales) of 1/Fk against r̂2k for 2,304 sample

uniques for model 5a in Table 2 with 1% census sample and large key.
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Table 1: Aggregated Risk Measures and Test Statistics for Samples Drawn from the
2001 UK Census.

n Model τ1 τ2 τ̂1 τ̂2 Test Statistics

κ̂/
√

νκ B̂1/
√

ν B̂1/
√

νR B̂2/
√

ν B̂2/
√

νR

Small Key K = 73440

4724 I 23 68.2 54.2 126.9 8.6 12.5 3.3 30.4 7.2

II 16.0 52.2 -3.6 -0.5 -6.4 -0.8 -2.9

III 0.0 7.1 -26.4 0.0 2.2 -1.0 -13.1

9448 I 39 127.1 99.3 230.2 8.6 32.1 4.2 60.6 6.8

II 37.8 117.9 -3.9 -1.3 -9.0 -1.6 -4.2

III 0.5 24.7 -28.8 -0.2 -2.8 -2.3 -14.3

18896 I 75 215.3 174.3 355.7 9.6 70.7 6.1 125.5 9.1

II 85.5 222.0 2.0 0.7 0.5 0.7 0.6

III 11.0 82.1 -28.6 -1.2 -7.4 -4.1 -20.8

Large Key K = 412080

4724 I 80 183.9 197.4 385.1 10.6 16.8 4.8 53.1 7.4

II 35.9 112.3 -8.0 -0.5 -1.6 -1.0 -1.4

III 0.0 11.0 -40.7 0.0 1.1 -1.3 -19.3

9448 I 159 355.9 386.6 701.2 14.4 48.5 8.0 114.2 8.8

II 104.9 280.1 -10.3 -1.6 -11.1 -2.7 -4.9

III 1.1 42.2 -45.1 -0.3 -3.0 -3.1 -22.1

18896 I 263 628.9 672.0 1170.5 16.8 105.2 10.3 226.1 10.4

II 252.0 591.3 -5.7 -1.1 -1.5 -1.5 -1.8

III 11.3 150.2 -51.9 -1.3 -8.5 -7.0 -37.0

Model I = independence model, Model II = all 2-way interactions model, Model III = all 3-way
interactions model.
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Table 2: Aggregated Risks Measures and Components of Model Choice Criteria for
Samples Drawn from the 2001 UK Census with a Large Key.

n Model τ1 τ2 τ̂1 τ̂2 Components of Test Criteria

B̂1 B̂1a B̂1b B̂2 B̂2a B̂2b

4724 I 80 183.9 197.4 385.1 1178.9 -11.8 1190.7 2555.4 11.2 2544.2

II 35.9 112.3 -16.8 4.2 -21.0 -23.7 1.7 -25.4

III 0.0 11.0 0.1 -0.6 0.7 -6.1 -3.0 -3.1

9448 I 159 355.9 386.6 701.2 3400.8 -12.1 3412.8 5463.2 25.2 5437.9

II 104.9 280.1 -59.3 6.6 -65.9 -72.9 2.4 -75.2

III 1.1 42.2 -2.1 -1.6 -0.6 -24.1 -5.9 -18.3

18896 I 263 628.9 672.0 1170.5 7269.9 -32.1 7302.0 10618.0 55.7 10562.0

II 252.0 591.3 -43.6 3.9 -47.5 -43.0 2.5 -45.5

III 11.3 150.2 -17.0 -5.1 -11.9 -84.7 -9.3 -75.4
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Table 3: Models Selected by a Forward Search for 1% Census Sample with Large Key
and Simple Random Sampling Design.

Model τ̂1 τ̂2 Test Statistics

κ̂/
√

νκ B̂1/
√

ν B̂1/
√

νR B̂2/
√

ν B̂2/
√

νR

I 386.6 701.2 14.4 48.5 8.0 114.2 8.8

II 104.9 280.1 -10.3 -1.6 -11.1 -2.7 -4.9

1: I + {a*ec} 243.4 494.3 6.5 54.8 3.3 59.2 3.5

2: 1 + {a*et} 180.1 411.6 13.3 3.1 1.4 9.8 4.5

3: 2 + {a*m} 152.3 343.3 5.2 0.9 0.6 1.7 1.1

4: 3 + {s*ec} 149.2 337.5 2.7 0.3 0.2 0.9 0.6

5a: 4 +{ar*a} 148.5 337.1 2.3 0.0 0.0 0.8 0.6

5b: 4 +{s*m} 147.7 335.3 2.2 0.0 0.0 0.7 0.4

6b: 5b + {ar*a} 147.0 335.0 1.8 -0.2 -0.2 0.6 0.4

6c: 5b + {ar*m} 148.9 337.1 2.1 0.0 0.0 0.7 0.5

6d: 5b + {m*ec} 146.3 331.4 1.1 -0.2 -0.2 0.0 0.0

7c: 6c + {m*ec} 147.5 333.2 1.0 -0.3 -0.3 0.1 0.0

7d: 6d + {ar*a} 145.6 331.0 0.7 -0.4 -0.4 0.0 0.0

Area-ar, Sex-s, Age-a, Marital Status-m, Ethnicity-et, and Economic Activity-ec; true values are
τ1 = 159, τ2 = 355.9

Table 4: Cross-classification of 1/Fk against r̂2k for Sample Uniques within Bands for
Model 5a of 1% Census Sample with Large Key.

1/Fk r̂2k

0 - 0.1 0.1 - 0.5 0.5 - 1 Total

0 - 0.1 1391 150 11 1552

0.1 - 0.5 162 253 76 491

0.5 - 1 26 91 144 261

Total 1579 494 231 2304
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Table 5: Models Selected by a Forward Search for 1% Census Sample with Very Large
Key (K=3,708,720)

Model τ̂1 τ̂2 Test Statistics

κ̂/
√

νκ B̂1/
√

ν B̂1/
√

νR B̂2/
√

ν B̂2/
√

νR

I 962.7 1386.3 6.3 108.1 5.5 129.6 8.4

II 251.8 560.9 -0.4 -0.9 -1.0 -2.3 -3.2

1: I + {a*ec}{ar*a} 716.0 1094.0 4.1 58.5 4.7 40.6 5.9

2: 1 + {s*a}{ar*ec} 715.2 1092.7 4.0 58.3 4.6 39.0 5.5

3: 2 + {et*r}{a*m} 419.0 777.3 3.6 16.7 3.2 30.2 3.3

4: 3 + {a*et}{s*ec} 356.3 687.4 1.4 1.1 0.9 1.6 1.4

5: 4 + {m*r}{ec*r} 320.9 662.4 1.0 0.5 0.5 0.4 0.4

Area-ar, Sex-s, Age-a, Marital Status-m, Ethnicity-et, Economic Activity-ec, Religion -r; true
values are τ1 = 311, τ2 = 663.1

Table 6: Models Selected by a Forward Search for 1% Census Sample with Large Key
and Complex Survey Design.

Model τ̂1 τ̂2 Test Statistics

κ̂/
√

νκ B̂1/
√

ν B̂1/
√

νR B̂2/
√

ν B̂2/
√

νR

I 378.5 701.8 14.0 8.2 50.7 8.5 114.5

II 103.5 283.5 -2.0 -1.5 -1.0 -3.6 -2.2

1: I + {a*m} 297.8 590.4 14.7 6.3 20.6 9.0 38.1

2: 1 + {a*et} 231.3 514.0 19.1 5.2 13.4 8.3 21.1

3: 2 + {a*ec} 153.8 357.0 7.1 2.5 3.8 3.1 4.6

4: 3 + {et*ec} 132.0 334.1 6.4 0.2 0.2 0.8 0.8

5a: 4 +{ar*a} 132.8 335.8 5.6 0.2 0.1 0.7 0.7

5b: 4 +{s*m} 129.0 331.3 6.0 0.0 0.0 0.8 0.7

5c: 4 +{ar*ec} 131.3 333.6 6.1 -0.1 -0.1 0.5 0.5

5d: 4 +{m*ec} 128.3 327.4 5.6 -0.1 -0.1 0.3 0.4

Area-ar, Sex-s, Age-a, Marital Status-m, Ethnicity-et, and Economic Activity-ec; true values are
τ1 = 136, τ2 = 331.8
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Table 7: Models Selected by a Forward Search for a Social Survey.

Model τ̂1 τ̂2 Test Statistics

κ̂/
√

νκ B̂1/
√

ν B̂1/
√

νR B̂2/
√

ν B̂2/
√

νR

I 879.5 2301.6 15.51 561.4 9.77 1206.7 9.19

II 264.9 844.5 0.68 1.80 0.99 1.93 1.41

III 10.5 211.4 -82.74 -0.48 -9.12 -3.54 -43.15

1a: II+{ar*s*et} 263.5 840.9 -0.02 0.96 0.66 1.59 1.23

1b: II+{ar*s*ec} 263.4 843.0 0.51 1.35 0.98 1.83 1.35

1c: II+{ar*a*m} 232.1 787.6 -3.01 1.61 0.88 0.94 0.70

1d: II+{ar*a*ec} 217.9 748.3 -3.65 1.46 0.76 0.36 0.30

1e: II+{ar*et*ec} 191.2 739.2 -0.94 0.98 0.69 1.27 0.99

1f: II+{s*m*et} 266.9 845.3 0.58 1.73 0.95 1.83 1.35

1g: II+{a*m*et} 188.5 727.8 -0.96 1.50 0.88 1.24 0.90

1h: II+{m*et*ec} 244.3 813.0 0.16 1.59 0.89 1.35 1.03

2c1: 1c+{ar*s*et} 230.5 784.1 -5.38 0.53 0.43 0.49 0.41

2c2: 1c+{ar*s*ec} 231.2 786.4 -3.22 1.52 0.83 0.84 0.63

2c3: 1c+{ar*et*ec} 157.6 681.5 -6.99 0.32 0.28 0.04 0.03

2c4: 1c+{s*a*m} 232.5 785.0 -3.54 1.61 0.88 0.88 0.65

2c5: 1c+{s*a*et} 226.7 772.7 -4.41 1.39 0.81 0.78 0.59

2c6: 1c+{s*m*et} 234.2 788.7 -3.21 1.55 0.85 0.90 0.67

2d1: 1d+{ar*s*et} 216.0 745.2 -6.77 0.91 0.56 0.16 0.13

2d2: 1d+{ar*s*ec} 217.8 747.8 -3.76 1.45 0.76 0.28 0.23

2d3: 1d+{s*m*ec} 216.6 743.8 -3.86 1.43 0.75 0.32 0.26

Area-ar, Sex-s, Age-a, Marital Status-m, Ethnicity-et, and Economic Activity-ec
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