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Abstract 

Background: Selenium (Se) exerts its biological activity largely via selenoproteins, which are 

key enzymes for maintaining the cellular redox homeostasis. However, besides these 

beneficial effects there is also evidence that an oversupply of Se might increase the risk 

towards developing metabolic disorders. To address this in more detail, we directly compared 

effects of feeding distinct Se compounds and concentrations on hepatic metabolism and 

expression profiles of mice. 

Methods: Male C57BL6/J mice received either a selenium-deficient diet or diets enriched 

with adequate or high doses of selenite, selenate or selenomethionine for 20 weeks. 

Subsequently, metabolic parameters, enzymatic activities and expression levels of hepatic 

selenoproteins, Nrf2 targets, and additional redox-sensitive proteins were analyzed. 

Furthermore, 2D-DIGE-based proteomic profiling revealed Se compound-specific 

differentially expressed proteins. 

Results: Whereas heterogeneous effects between high concentrations of the Se compounds 

were observed with regard to body weight and metabolic activities, selenoproteins were only 

marginally increased by high Se concentrations in comparison to the respective adequate 

feeding. In particular the high-SeMet group showed a unique response compromising higher 

hepatic Se levels in comparison to all other groups. Accordingly, hepatic glutathione (GSH) 

levels, glutathione S-transferase (GST) activity, and GSTpi1 expression were comparably 

high in the high-SeMet and Se-deficient group, indicating that compound-specific effects of 

high doses appear to be independent of selenoproteins. 

Conclusions: Not only the nature, but also the concentration of Se compounds differentially 

affect biological processes. 

General significance: Thus, it is important to consider Se compound-specific effects when 

supplementing with selenium. 

 

Keywords: Selenium, liver, redox status, energy metabolism  
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Abbreviations: 

AKT, protein kinase B; ARE, anti-oxidant response elements; CCB, colloidal Coomassie 

Blue; DIGE, difference gel electrophoresis; ERK, extracellular regulated kinase; Fasn, fatty 

acid synthase; Gck, glucokinase; Gpx/GPx, glutathione peroxidase; GS, glutathione 

synthetase; G6pc, glucose-6-phosphatase; GSH, glutathione; GST, glutathione S-transferase; 

Hprt, hypoxanthine guanine ribosyl transferase; Keap1, Kelch-like ECH-associated protein 

1; NQO1, NAPH dehydrogenase 1; Nrf2, NF-E2-related factor 2; Pdha, hepatic pyruvate 

dehydrogenase; PTEN, phosphate and tensin homolog; PTP, protein tyrosine phosphatase; 

RPL13a, ribosomal protein L13a; Se, selenium; SeMet, selenomethionine; SOD, superoxide 

dismutase; TG, triglyceride; Txnrd/TrxR, thioredoxin reductase  
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1 Introduction 

During the last two decades the essential trace element selenium (Se) has gained considerable 

attention as a potential cancer preventive agent [1] leading to a marketing boom of Se 

supplements [2]. Se is an integral part of selenoproteins, which contain the redox-active 

amino acid selenocysteine (SeCys) in their catalytically active center [3,4]. The best 

characterized selenoproteins like glutathione peroxidases (GPx) and thioredoxin reductases 

(TrxR) play key roles in detoxifying hydrogen peroxide, lipid peroxides and in the reduction 

of cellular disulfides generated by interactions of free radicals and other oxygen-derived 

species as part of the normal cellular metabolism. Further selenoproteins are involved in the 

modulation of the immune response, inflammatory processes as well as chemoprevention [5]. 

Insufficient Se intake results in a rapid and selective downregulation of several selenoproteins 

like the ubiquitously expressed GPx1, which impairs the anti-oxidant capacity of a cell. In 

contrast, high Se concentrations might directly affect the cellular redox balance by inducing 

the formation of thiol-reactive selenocompounds and by generating oxygen-free radicals [6]. 

This pro-oxidant effect is supposed to differ depending on the used selenocompound; e.g. 

selenite, selenocystine, methyseleninic acid, and methylselenocysteine are known to modulate 

the cellular redox state and are therefore termed “redox active selenocompounds” [7]. Thus, 

the correlation of the cellular redox status with the Se supply follows a U-shape curve. Based 

on this strong relationship, it has been shown that the Se status also directly modulates the 

expression of non-selenoproteins via e.g. redox-sensitive transcription factors like the NF-E2-

related factor 2 (Nrf2) [8]. Under physiological conditions, the redox-sensitive Kelch-like 

ECH-associated protein 1 (Keap1) restrains Nrf2 in the cytosol, whereas oxidative stress 

disrupts the Keap1/Nrf2 complex leading to the nuclear translocation of Nrf2. This results in 

the activation of genes carrying anti-oxidant response elements (ARE) within their promoters 

like glutathione S-transferases (GST) and enzymes of the glutathione (GSH) biosynthesis 

pathway [9].  

Furthermore, the modification of redox-sensitive phosphatases is supposed to be the cause of 

insulin-mimetic and anti-diabetic properties of supranutritional Se concentrations [10–12], but 

also insulin-antagonistic and even pro-diabetic effects of an over-supply of Se compounds 

have been observed and discussed [13–15]. Upon binding to its receptor, insulin initiates a 

signaling cascade, which is accompanied by a burst of hydrogen peroxide (H2O2) that acts as 

a second messenger by modifying redox-sensitive cysteine residues [10,16]. It has been 

demonstrated that the activity of the protein tyrosine phosphatase 1B (PTP1B), which is a 

negative regulator of the insulin signaling pathway, could be modulated via Se availability in 
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a redox-dependent manner [17]. Phosphorylation of protein kinase B (AKT) links the insulin 

signaling cascade to the energy metabolism. Supra-nutritional intake of Se led to an increased 

AKT phosphorylation in visceral adipose tissues of pigs [18] and to a delayed insulin-induced 

phosphorylation of AKT and forkhead box protein 1a/3 (FoxO1a/3) in myocytes [19]. Mice 

overexpressing GPx1 develop insulin resistance, hyperlipidemia and obesity [20], whereas 

mice with decreased GPx1 activity and consequently increased cellular levels of reactive 

oxygen species (ROS) are more sensitive to insulin [21]. In this context it is discussed that 

enhanced levels of anti-oxidant enzymes may lead to an “over-scavenging” of H2O2, which is 

involved in and necessary for redox signaling pathways including the insulin signaling 

cascade [22] thereby resulting in the deregulation of glycolysis, gluconeogenesis and 

lipogenesis. Regarding the insulin-mimetic, anti-diabetic or even pro-diabetic effects of Se 

supply a recently published Cochrane review discussed the inconsistency of results obtained 

from different trials [23]. A possible explanation for such discrepant data could be the use of 

different Se compounds.  

The current idea is that selenomethionine (SeMet), the major form of Se in foods, is more 

faster  absorbed in the small intestine when compared to inorganic forms, such as selenate and 

selenite [24–26]. Furthermore, SeMet does not only provide Se for selenoprotein synthesis, 

but can also be non-specifically incorporated into proteins instead of methionine [27]. This 

allows Se to be stored in the organism and to be released by normal protein turn-over [28], but 

can also give rise to toxic effects once functional methionine is substituted in enzymes. The 

inorganic Se compound selenate shares a sodium-dependent transport system with sulfates, 

whereas selenite is mainly absorbed by passive diffusion [29,30].  

Under conditions of an increased availability of inorganic selenocompounds an enhanced Se 

excretion in form of methylated selenocompounds or selenosugars occurs, while SeMet is 

slowly metabolized and rather accumulates in the body. Furthermore, selenite is supposed to 

have direct effects on the cellular redox status, which in contrast has not been attributed to 

SeMet.  

Based on this information the present study aimed to directly compare the effects of long-term 

feeding with different Se compounds and doses on metabolic health of mice. Therefore, 

parameters of the insulin-regulated energy metabolism were analyzed and correlated to the 

hepatic selenoprotein expression and the anti-oxidant capacity of the liver. In addition, hepatic 

Nrf2 target gene expression was analyzed in response to different Se compounds and 

concentrations. New Se-sensitive proteins are identified using a proteome approach followed 

by mass spectrometry. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

6 
 

2 Material and Methods 

2.1 Animals and diets 

Four-week old healthy male C57BL/6J mice (Harlan Laboratories, Netherlands) kept under 

conventional conditions (room temperature 22±1°C, humidity 50±10 %) with free access to 

their respective diets and autoclaved tap water were used. The experiments were approved by 

the ethical committee of the Martin Luther University Halle-Wittenberg (42502-2-

1187MLU). Mice were randomly assigned to seven experimental groups of 8 individuals/ 

group. The groups were fed with diets supplemented either with adequate (ad; 150 µg Se/kg 

diet) or supra-nutritive (high, hi; 750 µg Se/kg diet) Se concentrations in form of selenite, 

selenate and SeMet, respectively, whereas the control group received a Se-deficient diet (-Se). 

The diets were based on torula yeast and Se-deficient wheat and with the exception of the Se 

contents composed according to the National Research Council (NRC) recommendations for 

rodents (Table S1). Se content of the diets was confirmed by ICP-MS (-Se < 20; ad-selenite 

165±1.9; hi-selenite 768±3.1; ad-selenate 157±1.9; hi-selenate 762±2.3; ad-SeMet 161±2.7; 

hi-SeMet 765±3.4 µg Se/kg diet). After the 20 weeks feeding period and 4 hours of feeding 

deprivation, mice were decapitated under CO2 anesthesia. Blood was collected in heparinized 

tubes and centrifuged (15 min, 4°C, 2.000 x g). Plasma was stored at -80°C until further 

analysis. Liver tissue samples were excised, snap frozen in liquid nitrogen, and stored at -

80°C until further use.  

2.2 Determination of plasma glucose and insulin concentrations 

Glucose concentrations were measured in plasma samples collected from tail veins using a 

glucometer according to the manufacturer´s instructions. Plasma insulin levels were assayed 

using a mouse insulin ELISA kit (Mercodia, Uppsala, Sweden). The HOMA-IR was 

calculated using glucose and insulin concentrations obtained after 4 hours of food withdrawal 

using the following formula: plasma glucose [mg/dl] x fasting insulin [ng/ml]/405 [31]. 

2.3 Determination of triglyceride concentrations in plasma 

The total triglyceride (TG) content of plasma samples was determined using a commercially 

available kit (Fluitest TG, Analyticon Diagnostics, Lichtenfels, Germany) according to the 

manufacturer’s instructions. 

2.4 Se analysis in liver tissues using inductively coupled plasma mass spectrometry (ICP-

MS) 

The digestion of the samples for ICP-MS studies was performed on an Advanced Microwave 

Digestion System (ETHOS 1, Milestone, Italy) using an HPR-1000/10S high pressure 
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segmented rotor. Determination of the Se content in liver tissues of mice was performed by 

ICP-MS using the Thermo Scientific iCAP Qc ICP-MS (Thermo Scientific, Bremen, 

Germany) with the operational software Qtegra. For 
80

Se determination the instrument was 

adjusted for optimum performance in gas H2/He mixture in Collision Cell Technology (CCT) 

mode using the supplied auto-tune protocols (Thermo Scientific, Bremen, Germany) [32]. 

2.5 Real-time RT-PCR 

RNA was isolated using the acid guanidinium thiocyanate-phenol-chloroform extraction 

method [33] and then subjected to PCR analysis as recently described [34]. Briefly, 1 µg 

RNA was reverse transcribed into cDNA using the RevertAid First Strand cDNA Synthesis Kit 

and Oligo dT primers (Thermo Scientific) according to the manufacturer´s protocol. Real-

time PCR was performed using SYBR Green I as fluorescent reporter. Target-specific primers 

(Table S2) were designed using the program Primer3 [35] and validated on agarose gels. 

Amplification data were analyzed with the Rotor-Gene 6000
TM

 series software (Qiagen, 

Hilden, Germany) using the method according to Pfaffl [36]. Amplifications of Ribosomal 

Protein L13a (Rpl13a) and hypoxanthine guanine ribosyl transferase (Hprt) were used for 

normalization. The data are represented as relative mRNA expression levels as x-fold of the 

Se-deficient group.  

2.6 Preparation of tissue homogenates 

For analysis of hepatic GPx, TR, NADPH quinone dehydrogenase 1 (NQO1), and GST 

activity liver tissue lysates were prepared in Tris buffer (100 mM Tris, 300 mM KCl, 0.1 % 

Triton X-100, pH 7.6; Calbiochem® protease inhibitor cocktail II (Merck Millipore, 

Darmstadt Germany)) using a tissue lyser (Qiagen). Lysates for the determination of hepatic 

superoxide dismutase (SOD) activity were prepared in 0.05 M potassium phosphate buffer 

containing protease inhibitor (ROCHE, Basel Switzerland). For Western blot analyses tissue 

lysates were prepared in RIPA buffer (50 mM Tris, 150 mM NaCl2, 0.5 % DOC, 1 % NP-40, 

0.1 % SDS) containing protease and phosphatase inhibitors (HALT
TM

, Thermo Scientific). All 

lysates were centrifuged for 30 min at 14.000 x g and 4°C. Supernatants were stored at -80 °C 

until further analyses.  

2.7 Western blot analysis 

Western blot analysis was performed as recently described [37]. For immune detection the 

primary (monoclonal or polyclonal) antibodies, purchased form Cell Signaling Technology 

(Danvers, MA, USA), were anti-phospho-AKT
Ser473

, anti-phospho-AKT
Thr308

, anti-AKT 

(#9916); anti-phospho-ERK1/2 (#4370), anti-phospho-PTEN
Ser380/Thr382/383 

(#9549),  anti-
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GAPDH (#2118). The secondary HRP-coupled anti-rabbit immunoglobulins (#7074) were 

purchased from Cell Signaling Technology. 

2.8 Determination of enzyme activities 

Total GPx activity was measured in plasma and liver samples according to the method of 

Lawrence and Burk [38], which was modified for 96-well microtiter plates as recently 

described using H2O2 as substrate [39]. TrxR catalyze the formation of 5´-thionitrobenzene 

(TNB) by using the substrate 5,5´-dithiobis-(2-nitrobenzoic acid) (DTNB). The consumption 

of NADPH was spectrophotometrically determined at 412 nm for 2 min at 25°C as previously 

described [40]. Total SOD activity was determined according to the method of Marklund and 

Marklund [41]. For determination of MnSOD activity, 1 mM KCN was added to the assay 

buffer, which selectively inhibits the Cu/ZnSOD. NQO1 activity was determined as 

previously described [8]. GST activity was spectrophotometrically measured using the 

substrate 1-chloro-2,4-dinitrobenzene (CDNB) in the presence of reduced glutathione 

according to the protocol of Habig and co-authors [42]. The native activity of PTP was 

determined by analyzing paranitrophenyl phosphate hydrolysis, which could be monitored at 

410 nm [43].  

2.9 GSH assay 

Total GSH (reduced and oxidized) concentrations were determined in plasma and liver 

homogenates according to a standard procedure coupled to GSH reductase and DTNB [44]. 

The concentrations were calculated using a GSSG standard curve ranging from 1 to 10 nM 

GSH equivalent/ml. 

2.10 Specific labeling of reduced cysteine residues 

Labeling of reduced cysteine residues was performed using the thiol reactive S-300 

fluorescence Dye (NH DyeAgnostics, Halle, Germany) according to the manufacturer´s 

protocol with the exception that the reducing step with TCEP prior to the labeling procedure 

was omitted in order to label only reduced cysteine residues. Lysates of liver tissues were 

prepared under nitrogen overlay in 7 M urea, 2 M thiourea, 4 % CHAPS, 30 mM Tris (pH 

7.5) using a grinding kit (Readyprep mini grinders, Bio-Rad Laboratories GmbH, Munich, 

Germany). 5 µg of total protein were labeled with S-300 at 37°C for 1 hour. The reaction was 

stopped by adding one volume of the labeling buffer containing 2 % DTT. After one-

dimensional SDS PAGE separation, gels were scanned using a FUJI FLA-500 scanner 

(FujiFilm GmbH, Düsseldorf, Germany) and total fluorescence per lane was quantified and 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

9 
 

normalized to post fluorescence scanning performed on colloidal Coomassie Blue staining 

(CCB, Applichem, Darmstadt, Germany) [45]. 

2.11 Proteome analysis by difference gel electrophoresis (DIGE) and mass spectrometry 

Four biological liver samples from each group were 3-times washed in cold PBS, 

subsequently grinded (Readyprep mini grinders, Bio-Rad Laboratories GmbH, Munich, 

Germany) and solved in DIGE lysis buffer (30 mM Tris, 7 M urea (Applichem, Darmstadt, 

Germany), 2 M thiourea (Sigma, Deisenhofen, Germany), 4 % (w/v) CHAPS (Applichem), 

pH 8.5). After sonification and centrifugation (13.000 x g, 90 min, 15°C) supernatants were 

collected and stored at -80°C before protein concentrations were determined as previously 

described [46]. DIGE analysis was performed using the minimal labeling approach according 

to the manufacturer´s instructions (NH DyeAGNOSTICS) with the exception that 25 µg of 

protein were labeled with 100 pmol G-dye. Isoelectric focusing using Immobiline DryStrips 

pH 3-10 NL (18 cm, GE Healthcare) and second dimension SDS separation were done as 

previously described [47]. After separation the gels were subsequently washed in distilled 

water, fixed with 10 % acetic acid (Carl Roth GmbH and Co. KG, Karlsruhe, Germany) and 

40 % EtOH (Sigma-Aldrich Chemie GmbH, Munich, Germany) followed by a wash in 

distilled water. Gels were scanned as previously described [48] and gel image analysis was 

carried out with the Delta2D software package (Decodon GmbH, Greifswald, Germany) 

according to the manufacturer’s guidelines. Protein spots were considered as differentially 

expressed if a 1.5-fold altered expression level was observed. In addition, the spots of interest 

were statistically analyzed with the Student’s t test and only those selected for mass 

spectrometric identification with a p value < 0.05. For mass spectrometric (MS) analysis a 

preparative gel was loaded with an amount of 500 µg protein and spots of interest were 

subsequently picked, in gel digested (DigestPro, Intavis, Cologne, Germany) and further 

analyzed by MS using the matrix-assisted laser-desorption/ionization time-of-flight (MALDI-

TOF) mass spectrometer (ultrafleXtreme
TM

, Bruker Daltonics Inc., Bremen, Germany) [49]. 

The PMF dataset analysis was performed using the MASCOT software package (Matrix 

Science, Dauhaim, USA). In addition the functional classification of the target structures was 

based on literature backsearches thereby relying on Pubmed entries. 

2.12 Statistical analysis 

Mean values were calculated from results of 8 animals/group or 4 animals/group in the case of 

the proteome analyses and given as means ± their standard error of mean (S.E.M.). SPSS 20 

software was used to analyze significant differences within the groups, therefore one-way 
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ANOVA was implemented after asserting the normality of distribution (Shapiro-Wilk test) 

and the homogeneity of variance (Levene test). If variances were homogeneous the least 

significant (LSD) test was used, otherwise the Games-Howell test was employed. Differences 

between the groups were considered to be significantly different at p < 0.05.  

 

3 Results 

3.1 A high SeMet intake resulted in lower body weight gain without affecting feed intake  

Prior to the experiment the mean body weights of all mice were comparable between the 

seven groups. After 20 weeks of intervention mean body weights of the groups treated with 

hi-selenite (p = 0.037) or hi-selenate (p = 0.017) were significantly higher when compared to 

the Se-deficient group, while the mean body weight of the hi-SeMet group was lower 

compared to both the hi-selenate (p = 0.024) and hi-selenite (p = 0.052) groups. The low body 

weight of the Se-deficient group was accompanied by a lower total food intake when 

compared to Se-supplemented groups (Table 1). Total food intake within the Se-

supplemented mice did not differ, but the feed conversion ratio (FCR; mg body weight gain/g 

food intake) was significantly higher in the groups with hi-selenite (p = 0.036) and hi-selenate 

(p = 0.042) supplementation when compared to the hi-SeMet group and did not differ 

between the other groups (Table 1).  

3.2 Selenium status after feeding different Se compounds and concentrations 

After 20 weeks of intervention hepatic Se concentrations were significantly higher in all Se 

supplemented groups when compared to the Se-deficient group (p < 0.001). Highest Se levels 

were observed in mice treated with hi-SeMet when compared to the other Se-supplemented 

groups (p < 0.01). Additionally there was a trend for increased hepatic Se concentrations in 

the groups fed with diets containing hi-selenite (p = 0.071) and hi-selenate (p = 0.052) when 

compared to the corresponding adequately fed groups (Figure 1). Plasmatic GPx activity 

dramatically decreased in the Se-deficient group (p<0.001), whereas hi-SeMet 

supplementation resulted in the highest plasma GPx activities (Figure 1). The mRNA 

expression of Gpx1, the most abundant selenoprotein in the liver, was dramatically reduced 

under Se deficiency (p < 0.001), while Se supplementation increased its mRNA levels. Also 

Txnrd1 transcription levels were decreased under Se deficiency, while no changes in the 

expression pattern of both genes were found within the Se-supplemented groups (Table S3). 

The mRNA expression pattern of Gpx1 and Txnrd1 was confirmed at their activity levels 
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(Figure 1). Both hepatic GPx and TrxR activities dramatically decreased in the Se-deficient 

group (p < 0.001). Within the supplemented groups, small differences between hi-selenate 

and hi-SeMet supplementation and the respective adequately fed groups were observed.  

3.3 Up-regulation of anti-oxidant Nrf2 target genes during Se-deficiency 

Since previous studies have shown that both low and high Se intake can enhance the activity 

of the redox-sensitive transcription factor Nrf2 [50], the activity of NQO1, one of the best 

characterized Nrf2 target genes, was analyzed. NQO1 activity was increased in the Se-

deficient group (p < 0.001) in comparison to the other feeding groups, while no changes were 

detected between the Se-supplemented groups (Figure 2). Next to NQO1 also anti-oxidant 

enzymes are regulated via Nrf2, including MnSOD and several GSTs. While the MnSOD 

activity (Figure 2) showed the same pattern as the NQO1 activity, total GST activity was 

differently modulated. Total GST activity was also highest in the Se-deficient group in 

comparison to the other groups, but the hi-SeMet group showed an intermediate response 

being significantly higher as all other supplemented groups (p < 0.001, Figure 2). In order to 

determine the GST isoform responsible for this effect, mRNA expression levels of several 

isoforms were analyzed (Table S3). The most obvious candidates were GSTa4, GSTm1 and 

GSTpi1, also known to be regulated via Nrf2. GSTa4 and GSTm1 expression was down-

regulated in all supplemented groups. However, in the hi-SeMet group only GSTpi1 

expression did not significantly differ from the –Se group (Figure 2) as shown for total GST 

activity. The mRNA expression pattern of GSTm1 and GSTpi1 was confirmed at the protein 

level (Table 2).  

3.4 Impact of distinct Se compounds and Se concentrations on hepatic proteomic profiles  

To gain further insights in the hepatic effects of feeding different Se compounds and 

concentrations, DIGE-based proteomic analyses were performed as an untargeted approach 

(Figure 3). The consensus map across all seven experimental groups (4 mice/group, n = 28) 

was comprised of 821 distinct spots. Based on the average spot intensity within a given group 

the respective profiles were analyzed. Spots of interest were defined as regulated when the 

ratio with the Se-deficient group exceeded the factor 1.5, and when the corresponding t-test 

was defined as p < 0.05 (Table 2). In total 54 differentially expressed protein spots could be 

identified, which were subjected to MALDI-TOF-MS resulting in the identification of 28 

protein species. Four protein spots contained two or more protein identities and were therefore 

excluded from further analysis. The identified proteins were grouped according to their 

cellular function(s) (Table 2). Two of the proteins identified are related to inflammation or 
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immune modulatory processes. Nine of the proteins are involved in cell cycle, cell 

development and tumor metabolism. Six of the proteins are related to the intermediary 

metabolism and metabolic processes and three of the proteins exhibit other biological 

functions. These include tropomyosin beta chain, which is part of the cytoskeleton, brefeldin 

A-inhibited guanine nucleotide exchange protein 2, which promotes guanine-nucleotide 

exchange and is involved in protein transport processes and limbin, which modulates the 

hedgehog signaling pathway. Fourteen of the proteins were up-regulated (Table 2, indicated 

in red) and seven down-regulated (Table 2, indicated in green) in response to 

supplementation with one or several Se compounds when compared to the Se-deficient group. 

Out of the seven down-regulated proteins, GSTm1 and GSTpi1 were both represented in two 

independent protein spots (Figure 3) suggesting not only a differential expression, but also 

post-translational modification(s) (PTMs). The other consistently down-regulated proteins 

(ferritin light chain 1 (FTL1), limbin and L-aspartate dehydrogenase) might reflect the Nrf2 

response as known for FTL1 [51]. Interestingly, two proteins, brefeldin A-inhibited guanine 

nucleotide exchange protein 2 and carbamoyl-phosphate synthase, were down-regulated in the 

hi-selenite and hi-selenate groups, but up-regulated in the hi-SeMet group only. The 

underlying mechanism of this regulation pattern might be comparable to that controlling the 

GSTpi1 expression. Furthermore, three proteins (tropomyosin beta chain, membrane-

associated progesterone receptor component 1, and NACHT, LRR and PYD domains-

containing protein 6) showed an inverse expression pattern being up-regulated only in the hi-

selenite group and down-regulated upon SeMet feeding. However, it is noteworthy that 

twelve proteins were consistently up-regulated in most of the feeding groups in comparison to 

Se deficiency (Figure 3). 

3.5 GSH levels and mRNA expression of key enzymes involved in GSH homeostasis 

To test whether Nrf2 activation during Se deficiency also affected glutathione (GSH) 

homeostasis, plasma and hepatic levels of GSH were determined in all experimental groups. 

All Se-supplemented groups exhibited markedly lower plasma GSH concentrations in 

comparison to the Se-deficient group (Figure 4). In liver tissues an inverse pattern was 

detected with the lowest GSH levels in the Se-deficient group, whereas all Se-supplemented 

groups, except for the hi-SeMet group, showed increased GSH levels. GSH levels in the hi-

SeMet group were comparable to the Se-deficient group (Figure 4). In order to study the 

molecular mechanisms underlying these effects, the mRNA expression levels of enzymes 

involved in GSH biosynthesis, reduction of GSSG, and GSH export were analyzed by RT-

PCR (Table 3). These include the -glutamylcysteine ligase (GCL), composed of a catalytic 
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(GCLc) and a modifier (GCLm) subunit, the GSH synthetase (GS) catalyzing the second step 

of GSH biosynthesis, the glutathione reductase (GR), and Mrp4, the main exporter of hepatic 

GSH into the plasma. With the exception of GS all enzymes are regulated by Nrf2. As 

expected GCLc, GR, and Mrp4 mRNA expression was elevated under Se-deficiency in 

comparison to Se-supplemented groups, while no differences were detected amongst Se-

supplemented groups. The strongest up-regulation in the –Se group with a 5-fold change was 

observed for Mrp4 (Figure 4). The transcription of GCLm and GS was not or only marginally 

altered across the experimental groups. Thus, low GSH levels in plasma appear to be 

mediated by the reduced release of hepatic GSH due to the strong reduction in Mrp4 

expression. 

3.6 Modulation of the oxidation status of proteins by Se supplementation 

To determine whether differences in hepatic GSH levels had an impact on the overall 

oxidative state of the hepatic proteome, protein lysates from each experimental group were 

individually labeled with a fluorescent dye specifically targeting free (reduced) thiol residues 

prior to their subsequent separation on a one-dimensional (1-DE) gel. As shown in Figure 5, 

the overall oxidative state of liver proteins was specifically altered in the hi-selenite and hi-

SeMet groups. The hi-selenite group showed a decreased fluorescence labeling efficiency 

when compared to the Se-deficient group suggesting that these proteins were more oxidized. 

In contrast, the samples from the hi-SeMet group demonstrated a more intense staining 

pattern indicating more free (reduced) thiols when compared to the Se-deficient (p = 0.048), 

hi-selenite (p = 0.001) and hi-selenate (p = 0.037) groups.  

3.7 Effects of Se supplementation on the expression and activation of enzymes related to 

energy metabolism 

Due to the effect of high-SeMet feeding on weight gain (Table 1) metabolic parameters after 

feeding different Se compounds and concentrations were characterized. Therefore, 

triglycerides (TG), fasting glucose, and fasting insulin levels were determined in plasma and 

the HOMA-IR score was calculated (Table 4). Plasma TG levels were significantly increased 

under supplementation with either selenite or selenate when compared to the Se-deficient 

group. Lowest TG concentrations were observed in mice of the hi-SeMet group in comparison 

to hi-selenite (p < 0.001), hi-selenate (p < 0.001) and ad-SeMet (p = 0.018). All Se-

supplemented groups had higher glucose levels when compared to the Se-deficient group 

without differences within the supplemented groups. There was a trend for increased insulin 

levels in the hi-selenate group when compared to ad-selenate (p = 0.069) and hi-SeMet (p = 
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0.059) and even a significant effect in comparison to the hi-selenite group (p = 0.033). The 

resulting HOMA-IR score was also increased in the hi-selenate group when compared to the 

ad-selenate (p = 0.069), hi-selenite (p = 0.021) and hi-SeMet (p = 0.032) groups. In order to 

gain further insights into the molecular mechanisms leading to the observed metabolic 

changes, the transcriptional profiles of selected genes involved in glucose metabolism and 

fatty acid synthesis were determined in liver tissues (Table 4). To understand the increase in 

plasma glucose levels the mRNA expression of two glycolytic enzymes glucokinase (Gck) 

and pyruvate dehydrogenase (Pdha1), and of the gluconeogenic enzyme glucose-6-

phosphatase (G6pc) was analyzed. Pdha1 was slightly decreased in the hi-SeMet group and 

unaffected in all other groups. In contrast, Gck was increased across all Se-supplemented 

groups when compared to the Se-deficient group, but stayed unaffected in the hi-SeMet 

group. Thus, up-regulation of Gck might explain the increased plasma glucose levels in most 

of the supplemented groups, but does not provide an explanation for higher glucose levels in 

the hi-SeMet group. In addition, transcript levels of G6pc were down-regulated in the hi-

SeMet group indicating that gluconeogenesis was also not enhanced under these conditions. 

The triglyceride levels in plasma were up-regulated upon Se supplementation, but down-

regulated in the hi-SeMet group. A similar expression pattern was observed for the fatty acid 

synthase (Fasn) and also mRNA levels of acetyl-CoA carboxylase (Acaca) tended to be 

affected into the same direction (Table 4). The correlation analysis of hepatic Fasn transcript 

levels and plasma TG levels defined a Pearson coefficient of 0.512 (p < 0.001). 

Phosphorylation of AKT at serine 473 and threonine 308 residues plays a key role in 

mediating insulin signaling thereby linking the insulin signaling cascade to the energy 

metabolism. In liver tissues, the threonine phosphorylation of AKT remained unchanged in 

response to Se supplementation, whereas an increased phosphorylation of AKT
Ser473

 was 

found in the hi-selenate (p = 0.009) and ad-SeMet groups. In the hi-SeMet group, AKT
Ser473

 

phosphorylation levels were comparable to that of the Se-deficient group. However, the 

phosphorylation pattern of PTEN and ERK1/2 remained unchanged (Figure 6). Since PTP1B 

is involved in AKT signaling and has been reported to be regulated by Se [43], the PTP 

activity was determined in hepatic tissues of mice in response to Se supplementation (Figure 

6). There were no obvious differences in PTP activity between all feeding groups, only the 

PTP activity of the hi-selenate group was reduced in comparison to the ad-selenate (p = 

0.038) and hi-SeMet (p = 0.042) groups.  
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4 Discussion  

The current study aimed to directly compare effects of long-term feeding with three different 

Se compounds supplied at different concentrations. Previous feeding studies mostly either 

focused on one Se compound or only considered one concentration. As expected, the adequate 

concentration of all three Se compounds was sufficient to maximize hepatic selenoprotein 

expression as indicated by GPx and TrxR activities (Figure 1) with very marginal additional 

effects of the respective supplemented diets. While hepatic Se levels were already saturated 

upon feeding adequate amounts of the inorganic Se compounds selenite and selenate, a SeMet 

supplementation further increased the hepatic Se content. SeMet differs from the other two Se 

compounds in that it can directly substitute for Met and thus can be non-specifically 

incorporated into proteins. It is discussed that SeMet acts as an unregulated Se storage, but 

SeMet might also have direct catalytic properties e.g. by removal of peroxides and protein 

oxidation products [52,53]. Although these potential features have not yet been shown in vivo, 

they might explain why the hi-SeMet group had less oxidized proteins (Figure 5) and most 

often exerts distinct effects than the other supplemented groups. 

Next to selenoproteins Nrf2 targets are regulated in response to the Se status [54,55]. Already 

in 1978 an enhanced GST activity during Se deficiency providing a “selenium-independent 

GPx activity” was described [56] suggesting that this up-regulation of mainly anti-oxidant 

Nrf2 target genes is an approach to compensate for the loss of the selenium-dependent GPxs 

and TRs. A similar compensation was also observed in our study, since there was no 

difference in the amount of oxidized proteins between mice with adequate or deficient Se 

diets, independent of the Se compound (Figure 5). In contrast to all Nrf2 target genes 

analyzed with equally low expression levels in all supplemented groups, GSTpi1 showed 

another expression pattern. In line with total GST activity, GSTpi1 was also up-regulated in 

the hi-SeMet group reaching comparable levels as the –Se group (Figure 2). Based on the 

higher Se content in the hi-SeMet group this effect appears to be independent from 

selenoproteins, but rather mediated by SeMet itself. Using rat hepatoma cells, a previous 

study has shown an increased GST activity in the presence of high concentrations of Se 

compounds like selenocysteine Se-conjugates, which was specifically mediated by the 

isoforms GSTa2 and GSTpi1 [57]. The authors suggested that the β-lyase-mediated 

generation of selenols is essential for GST induction. SeMet can also be a source for 

selenocysteine and selenols after being metabolized via the trans-sulfuration pathway. 

Interestingly, the proteome analysis identified additional proteins with a comparable 

expression pattern as GSTpi1, namely limbin, ARFGEF2, and CPS1. Further experiments are 
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needed to clarify whether these proteins are regulated via the same mechanism in response to 

hi-SeMet feeding. An additional characteristic feature of the hi-SeMet group was the low 

hepatic GSH content, which was also low in the –Se group, but up-regulated in all other 

supplemented groups (Figure 4). A putative accumulation of hepatic GSH levels due to the 

strong down-regulation of the GSH exporter Mrp4 should affect all supplemented groups to a 

similar extend. Thus, reduced GSH levels in both the hi-SeMet and –Se groups might be 

caused by a higher GSH consumption via GSTs. To clarify this point, more specific analysis 

including also the GSH/GSSG ratio need to be performed in the future. 

In contrast to the hi-SeMet group, the most specific characteristic of the hi-selenite group was 

the increase in oxidized proteins only identified in this group. At the same time Nrf2 

expression was not induced in this group indicating that the more oxidized conditions are not 

compensated by Nrf2. Thus, the hi-selenite induced redox shift might affect different 

pathways than the one induced by Se deficiency. Three proteins were only up-regulated in the 

hi-selenite group, namely TPM2, PGRMC1, and NLRP6. Interestingly, NLRP6 is part of the 

intestinal inflammasome, which is essential for mediating interactions between the host and 

the intestinal microbiota. Inflammasome deficient mice have a higher risk to develop hepatic 

steatosis and non-alcoholic liver disease (NAFLD) [58], a condition associated with higher 

levels of oxidative stress. The second protein related to inflammatory processes was 

fibrinogen gamma chain (FGG) (Table 2), which also showed the highest fold-change in the 

hi-selenite group. FGG is up-regulated in hepatoma cells with nutrient overload as an in vitro 

model for NAFLD [59]. In a DSS-induced murine colitis model, high selenite feeding during 

acute colitis worsens the course of the disease, while this effect was not detected in the 

presence of high concentrations of SeMet [60]. These results indicate that high doses of 

selenite specifically modulate the inflammatory response, but underlying mechanisms need to 

be further studied. 

In addition to redox-modulated effects, the impact of different Se compounds on the energy 

metabolism was analyzed within this study. At the end of the experiment lower body weights 

were observed under Se-deficient conditions in comparison to Se supplementation. This 

observation is in accordance with previous studies performed in rats and chicken [61,62] and 

can be largely explained by a lower total feed intake in the -Se group. The hi-SeMet group 

also had an impaired weight gain, which could not be explained by a reduced total feed intake 

(Table 1). As previously described, blood glucose as well as plasma TG levels were lower in 

the -Se group [61]. However, the plasma TG content was also reduced in the high-SeMet 

group and thus could provide an explanation for the lower weight gain of this group. Thus, 
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SeMet supplementation mimics symptoms also observed under methionine restriction [63–

66], such as reduced growth, but enhanced feed intake and reduced hepatic GSH levels. 

Therefore, it cannot yet be excluded that the effects observed in this study might at least 

partially result from an interference of SeMet with the methionine metabolism. 

Plasma insulin levels were only enhanced in the hi-selenate group. Previously, selenate has 

been reported to exhibit insulin-mimetic properties [62,67,68]. The liver is the key organ for 

controlling the insulin-mediated metabolism. In the current study an enhanced 

phosphorylation of AKT
Ser473

 was found in the hi-selenate group, which appears to be the 

consequence of increased plasma insulin levels, even though the phosphorylation pattern of 

other insulin-related kinases like ERK1/2 remained unaffected. In addition, the PTP activity 

was decreased in the hi-selenate group in comparison to ad-selenate feeding, which has been 

previously shown using leptin receptor deficient db/db mouse, which spontaneously develop 

obesity and type 2 diabetes [12]. It has been postulated that selenite, the cellular metabolite of 

selenate, and not selenate itself modifies and thereby inactivates PTPs directly [67]. However, 

in the current study feeding selenite neither had an effect on PTP activity nor on AKT 

phosphorylation. In contrast to Mueller and co-authors [12] also no decreased PTP activity 

was detected in the Se-deficient group. Next to the hi-selenate group the ad-SeMet group 

showed comparable effects with more AKT
Ser473

 phosphorylation and equally low PTP 

activity, but under this condition insulin levels were unmodified. Still, the comparable effects 

of feeding hi-selenate and ad-SeMet might indicate that Se-Met is a more potent modulator of 

the metabolic state than selenate. PTPs, in particular PTP1B, counteract the insulin-regulated 

metabolism by blocking the insulin-stimulated tyrosine phosphorylation of the insulin 

receptor [69]. PTP1B is known to be a redox-sensitive protein [70] although we did not find a 

correlation between a high redox status and low PTP activity. In the hi-selenate and ad-SeMet 

group with the lowest PTP activity no changes in oxidized proteins were detected.  

The specific phosphorylation of AKT
Ser473

 mediated by mTOR2 increased glycolysis and 

lipogenesis in mice [71]. In our study higher plasma TG levels were detected under hi-

selenate supplementation (hi pAKT status) when compared to levels detected in response to 

hi-SeMet supplementation (lower pAKT status). This was further accompanied by an 

increased mRNA expression of FAS in the hi-selenate group and decreased levels in the hi-

SeMet group. In addition, the mRNA expression of the glycolytic enzymes glucokinase (GK) 

and pyruvate dehydrogenase (PDH) significantly differed between these two experimental 

groups indicating a lower glycolysis rate in the hi-SeMet group in comparison to hi-selenate. 

Moreover, the proteomic profiling of liver tissue specimens led to the identification of several 
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proteins, which are involved in the intermediary metabolism. One of those was the putative 

glycerol kinase 5 (GK5), which is involved in the biosynthesis of TG by synthesizing 

glycerol-3-phosphate from glycerol and ATP. GK5 was up-regulated in the hi-selenite and in 

both selenate groups when compared to the Se-deficient group.  

 

5 Concluding remarks 

The present study provides evidence that the effects of high concentrations of different Se 

compounds markedly differ from each other, which might be due to the fact that higher 

concentrations are not predominantly needed for selenoprotein synthesis. Only high levels of 

SeMet further increase the hepatic Se status indicating that this Se compound or its 

metabolites might have effects independent of selenoproteins, which might be mediated by 

the unspecific incorporation into proteins instead of methionine. In addition, Se oversupply 

affected the expression and activity of enzymes involved in the regulation of the energy 

metabolism, but the underlying mechanisms of the different Se compounds have to be 

clarified in the future. Thus, it is important to consider compound-specific effects when 

supplementing with selenium. Based on this study selenite and selenate might have 

advantages over supplementing with SeMet. 
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Figure legends 

 

Figure 1. Hepatic Se status following long-term supplementation with different Se 

compounds and Se concentrations. 

(A) Se concentrations were measured by ICP-MS, (B) plasma GPx, (C) total hepatic GPx and 

(D) total hepatic TrxR activities were spectrophotometrically determined as described in the 

method section. Values are given as means ± S.E.M (n = 8). Significant differences were 

calculated by one-way ANOVA. * p < 0.05 vs. –Se. ad, adequate (150 µg Se/kg diet); hi, high 

(750 µg Se/kg diet). DM, dry matter. 

 

Figure 2. Enzyme activities and mRNA expression of Nrf2 target genes following long-

term supplementation with different Se compounds and Se concentrations. 

(A) NQO1, (B) MnSOD and (C) total GST activity; (D) GSTa4, (E) GSTm1 and (F) GSTpi1 

mRNA expression in liver tissues of mice fed with different Se compounds and Se 

concentrations for 20 weeks. Enzyme activities were spectrophotometrically determined as 

described in the methods section. mRNA levels were analyzed by qPCR, normalized to the 

reference genes Rpl13a and Hprt and depicted in relation to the Se-deficient group (-Se). 

Values are given as means ± S.E.M. (n = 8). Significant differences were calculated by one-

way ANOVA. * p < 0.05 vs. –Se.ad, adequate (150 µg Se/kg diet); hi, high (750 µg Se/kg 

diet).  

 

Figure 3. Proteomic profiling of hepatic tissue samples 

(A) Representative spot pattern of a hepatic proteome (hi-selenate) following separation by 

2D-DIGE. Differentially expressed proteins which were identified by MALDI-TOF-MS as 

described in the material section are marked with numbers (1-24, see also Table 2). (B) 

Heatmap and cluster analysis regarding the expression profiles of the identified proteins. (C) 

Representative inserts showing the mapping of GST spots.  

Figure 4. GSH levels in plasma and liver tissues and hepatic Mrp4 mRNA expression. 

GSH levels in (A) plasma and (B) liver tissue lysates of mice were spectrophotometrically 

determined as described in the method section. In (C) mRNA expression levels of hepatic 

Mrp4 were determined by qPCR as described in the method section. Changes are depicted in 

relation to Se-deficient mice (-Se). Values are given as means ± S.E.M. (n = 8). Significant 

differences were calculated by one-way ANOVA. * p < 0.05 vs. –Se. ad, adequate (150 µg 

Se/kg diet); hi, high (750 µg Se/kg diet).  
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Figure 5. Oxidative status of hepatic proteomes 

(A) The level of reduced hepatic proteins was analyzed by trapping the free thiols with a 

specific thiol-reactive dye (S-300 dye) prior to separation by SDS-PAGE (n = 3). The overall 

fluorescence signal of each lane (A, upper panel) was normalized to the respective post-

stained Coomassie intensity signal (A, lower panel). (B) Quantification of the protein redox 

state in relation to the –Se group. Data are given as means ± S.E.M. (n = 3). Significant 

differences were calculated by one-way ANOVA. * p < 0.05 vs. –Se. ad, adequate (150 µg 

Se/kg diet); hi, high (750 µg Se/kg diet). 

Figure 6. Phosphorylation pattern and activity of key enzymes involved in the insulin-

regulated energy metabolism. 

(A) Representative phosphorylation status of protein kinases in liver tissues following the 20 

week feeding period were determined by Western blot analysis as described in the method 

section. (B) Quantification of the AKT
Ser473

 phosphorylation status across the various 

experimental groups in relation to the –Se group. (C) Total PTP activity was determined 

under non-reducing conditions as described in the method section. Data are given as means ± 

S.E.M. Significant differences were calculated by one-way ANOVA. * p < 0.05 vs. –Se. ad, 

adequate (150 µg Se/kg diet); hi, high (750 µg Se/kg diet); ns, not significant. 
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    selenite selenate SeMet 

 -Se ad hi ad hi ad hi 

body weight (g)                       

   initial 16.6 ± 0.27 17.1 ± 0.30 16.4 ± 0.26 16.7 ± 0.41 17.0 ± 0.16 16.9 ± 0.41 16.5 ± 0.37 

   final 33.7 ± 1.57 36.4 ± 2.07 38.0 ± 1.05* 36.1 ± 1.21 38.7 ± 1.57*a 37.2 ± 1.15 34.0 ± 1.14b 

total weight gain  17.1 ± 1.47 19.2 ± 1.91 21.6 ± 1.10*a 19.4 ± 1.11 21.7 ± 1.53*a 20.4 ± 1.26 17.5 ± 1.26b 

total feed intake (g) 433 ± 14.2 473 ± 12.2* 481 ± 4.66* 476 ± 10.4* 480 ± 11.0* 485 ± 4.83* 487 ± 13.9* 

total FCR (mg bw/g feed) 39.5 ± 3.25 40.4 ± 3.59 44.8 ± 2.16b 40.6 ± 1.89 45.3 ± 3.29b 42.0 ± 2.74 35.9 ± 2.47a 

 

Table 1. Body weights (bw), feed intake, and feed conversion ratio (FCR) of mice fed with 

different Se compounds and Se concentrations. 

Values are given as means ± S.E.M (n=8). Different small letters within a line indicate 

significant differences within the Se supplemented groups, levels marked with * indicate 

significant differences compared to the –Se group (p<0.05; one-way ANOVA). ad, adequate 

(150 µg Se/kg diet); hi, high (750 µg Se/kg diet) 
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Spot No. Protein name Acc No 
Score 
(MS) 

Sequence 
coverage 

[%] 

No of 
matched 
peptides 

Mass pI 
selenite selenate SeMet 

ad hi ad hi ad hi 

  Proteins involved in maintaining the redox homeostasis             

1 Glutathione S-transferase Mu 1 (GSTm1) P10649 241 71 29 26.06 7.71 0.54 0.39 0.47 0.40 0.46 0.36 
2 Glutathione S-transferase Mu 1 (GSTm1) P10649 189 61 26 26.06 7.71 0.59 0.47 0.51 0.48 0.59 0.61 
3 Glutathione S-transferase P1 (GSTpi1) P19157 113 55 12 23.76 7.68 0.61 0.40 0.58 0.40 0.71 0.80 
4 Glutathione S-transferase P1 (GSTpi1) P19157 109 42 16 23.76 7.68 0.65 0.41 0.54 0.47 0.71 1.04 

  Proteins related to inflammatory or immunomodulatory processes             

5 
NACHT, LRR and PYD domains-containing 
protein 6 (NLRP6) 

Q91WS2 58 16 11 98.76 8.75 1.83 3.25* 1.20 1.15 0.91 0.67 

6 Fibrinogen gamma chain (FGG) Q8VCM7 86 37 13 50.04 5.54 1.12 2.23* 0.77 1.21 0.66 1.45* 

  Proteins related to cell cycle, cell development or tumor metabolism             

7 HIV Tat-specific factor 1 homolog (HTATSF1) Q8BGC0 58 21 12 86.64 4.27 1.23 0.88 1.43 2.50 0.85 1.21 

8 
Protein NDRG2 (N-myc downstream regulated 
gene 2) 

Q9QYG0 87 42 11 41.10 5.23 0.88 2.11* 0.84 2.17* 0.79 1.58* 

9 40S ribosomal protein SA (RPSA) P14206 88 35 9 32.93 4.80 1.13 2.26* 1.46 1.89 1.10 1.44 
10 Protein FAM3C (Interleukin-like EMT inducer) Q91VU0 56 27 7 25.02 8.52 1.48 3.36* 2.44 3.36 1.64 1.47 
11 Omega-amidase NIT2 Q9JHW2 62 33 9 30.83 6.44 1.07 2.91 1.66 5.77* 0.78 0.95 

12 
Alpha/beta hydrolase domain-containing 
protein 14b (ABHD14B) 

Q8VCR7 130 69 13 22.55 5.82 2.53 2.74 2.78 3.10 2.33 2.71 

13 Putative hydrolase RBBP9 O88851 79 56 10 21.06 5.64 0.97 1.50 1.17 1.24 2.42 1.46 

14 
Membrane-associated progesterone receptor 
component 1 (PGRMC1) 

O55022 87 31 9 21.79 4.57 0.98 1.46* 0.97 0.97 0.68 0.64 

15 
Structural maintenance of chromosomes 
protein 1A (SMC1A) 

Q9CU62 64 19 26 143.7 7.51 2.07 1.45 1.75 1.33 1.83 1.60 

  Proteins related to intermediary metabolism and metabolic processes             

16 Glycine N-methyltransferase (GNMT) Q9QXF8 58 39 11 33.11 7.10 1.43 2.83* 2.03 3.09* 1.91 1.19 

17 
Carbamoyl-phosphate synthase [ammonia], 
mitochondrial (CPS1) 

Q8C196 87 17 28 165.7 6.48 1.20 0.53* 0.73 0.60 0.92 1.49* 

18 
Electron transfer flavoprotein subunit alpha, 
mitochondrial (ETFA) 

Q99LC5 58 23 9 35.33 8.62 1.71 1.80 1.64 1.64 1.09 0.80* 

19 Putative L-aspartate dehydrogenase (ASPDH) Q9DCQ2 87 40 12 30.47 6.45 0.45 0.82 0.73 0.81 0.40 0.65 
20 Ferritin light chain 1 (FTL1) P29391 102 44 10 20.84 5.66 0.78 0.41 0.87 0.62 1.28 1.22 
21 Putative glycerol kinase 5 (GK5) Q8BX05 63 14 10 60.34 6.84 1.16 1.52 1.97 1.68 1.01 0.98 

  Proteins with other functions (cell adhesion, signal transduction, cytoskeleton)             

22 Tropomyosin beta chain (TPM2) P58774 96 34 15 32.93 4.66 1.11 2.11* 0.69 1.26 0.73 1.18 

23 
Brefeldin A-inhibited guanine nucleotide-
exchange protein 2 (ARFGEF2) 

A2A5R2 66 14 23 204.56 6.12 1.47 0.53* 1.20 0.86 1.07 2.09* 

24 Limbin (EVC2) Q8K1G2 70 14 18 138.2 5.87 0.73 0.38 0.40 0.45 0.64 1.12 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

35 
 

Table 2. Differentially expressed hepatic proteins in response to Se treatment 

Values are given as means (n=4) in relation to Se-deficient (-Se) mice. Red/green filled boxes indicate significant upregulated/downregulated hepatic 

proteins in relation to the –Se group. 

Levels marked with * indicate significant differences of hi Se intake to the ad Se intake within one indicated Se compound (p<0.05; one-way 

ANOVA). ad, adequate (150 µg Se/kg diet); hi, high (750 µg Se/kg diet). 
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Gene name    selenite selenate SeMet 

 -Se ad hi ad hi ad hi 

ƴ-glutamylcysteine 
ligase, modifier 

1.00 ± 0.07 0.86 ± 0.06 0.78 ± 0.05* 0.75 ± 0.09* 0.73 ± 0.05* 0.79 ± 0.02* 0.83 ± 0.05 

ƴ-glutamylcysteine 
ligase, catalytic 

1.00 ± 0.11 0.99 ± 0.11 0.91 ± 0.06 0.91 ± 0.08 0.94 ± 0.10 0.88 ± 0.11 0.79 ± 0.13 

Glutathione synthetase  1.00 ± 0.07 0.94 ± 0.07 0.91 ± 0.04 1.00 ± 0.07 0.92 ± 0.04 0.96 ± 0.06 1.08 ± 0.08 

Glutathione reductase 1.00 ± 0.08 0.97 ± 0.06 0.83 ± 0.08 0.83 ± 0.05 0.81 ± 0.06* 0.70 ± 0.05* 0.92 ± 0.04 

 

Table 3. Influence of different Se derivatives on the gene expression of enzymes involved 

in GSH biosynthesis 

Values are given as means ± S.E.M (n=8) in relation to Se-deficient (-Se) mice. Levels marked 

with * indicate significant differences compared to the –Se group (p<0.05; one-way ANOVA). 

ad, adequate (150 µg Se/kg diet); hi, high (750 µg Se/kg diet).  
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    selenite selenate SeMet 

 -Se ad hi ad hi ad hi 

Plasma triglycerides (mg/dl) 70.7 ± 2.41 93.5 ± 7.00* 91.2 ± 3.75*b 95.1 ± 6.98* 91.2 ± 8.20*b 80.3 ± 2.72b 60.9 ± 4.38a 

Plasma glucose (mmol/l) 8.68 ± 0.16 9.71 ± 0.53 10.0 ± 0.43* 10.4 ± 0.54* 10.2 ± 0.44* 10.2 ± 0.45* 9.49 ± 0.33 

Plasma insulin [µU/ml] 70.0 ± 5.79 64.0 ± 5.62 55.2 ± 2.70b 61.5 ± 5.18 96.2 ± 8.25a 73.3 ± 4.89 60.2 ± 4.44 

HOMA-IR 1.19 ± 0.09 1.20 ± 0.10 1.04 ± 0.10b 1.23 ± 0.14 1.70 ± 0.10a 1.45 ± 0.13 1.10 ± 0.14b 

                      

Glycolysis                       

glucokinase 1.00 ± 0.09 1.51 ± 0.15* 1.25 ± 0.11 1.20 ± 0.10 1.36 ± 0.08*a 1.24 ± 0.09 1.02 ± 0.14b 

pyruvate dehydrogenase 1.00 ± 0.04 0.98 ± 0.05 0.94 ± 0.04 0.96 ± 0.07 1.03 ± 0.04a 1.01 ± 0.05 0.87 ± 0.04b 

Gluconeogenesis                       

glucose 6P phosphatase 1.00 ± 0.07 0.97 ± 0.05b 0.86 ± 0.06b 0.91 ± 0.06 1.09 ± 0.06b 0.92 ± 0.06b 0.68 ± 0.07*a 

Fatty acid synthesis                       

acetyl-CoA carboxylase 1.00 ± 0.06 1.19 ± 0.10 1.18 ± 0.07 1.15 ± 0.03 1.27 ± 0.09*a 1.19 ± 0.06a 0.96 ± 0.06b 

fatty acid synthase 1.00 ± 0.14 1.33 ± 0.18 1.18 ± 0.13b 1.28 ± 0.13b 1.75 ± 0.27*a 1.31 ± 0.08 0.90 ± 0.12b 

 

 

Table 4. Influence of different Se compounds and Se concentrations on parameters of 

the hepatic energy metabolism and mRNA expression of metabolic proteins 

Values are given as means ± S.E.M (n=8) in relation to Se-deficient (-Se) mice. Different small 

letters within a line indicate significant differences within the Se supplemented groups, levels 

marked with * indicate significant differences compared to the –Se group (p<0.05; one-way 

ANOVA). ad, adequate (150 µg Se/kg diet); hi, high (750 µg Se/kg diet).  
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Highlights: 

 Side by side comparison of inorganic versus organic selenocompounds reveals that in 

particular an oversupply with selenomethionine, rather than the other selenocompouds 

affects distinct biological processes  

 Selenomethionine supplementation results in fundamental changes of the GSH 

metabolism and oxidation status of proteins 

 Treatment with different selenocompounds results in an altered protein expression 

pattern in liver as defined by 2D-DIGE.  


