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Contributions of VPS35 Mutations to Parkinson’s Disease
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Abstract—Parkinson’s Disease (PD) is a multi-system neurodegenerative disease where approximately 90% of
cases are idiopathic. The remaining 10% of the cases can be traced to a genetic origin and research has largely
focused on these associated genes to gain a better understanding of the molecular and cellular pathogenesis for
PD. The gene encoding vacuolar protein sorting protein 35 (VPS35) has been definitively linked to late onset famil-
ial PD following the identification of a point mutation (D620N) as the causal agent in a Swiss family. Since its dis-
covery, numerous studies have been undertaken to characterize the role of VPS35 in cellular processes and
efforts have been directed toward understanding the perturbations caused by the D620N mutation. In this review,
we examine what is currently known about VPS35, which has pleiotropic effects, as well as proposed mechanisms
of pathogenesis by the D620N mutation. A brief survey of other VPS35 polymorphisms is also provided. Lastly,
model systems that are being utilized for these investigations and possible directions for future research are dis-
cussed. © 2019 The Author(s). Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Parkinson’s disease (PD) is a complex neurological
disorder involving both motor and non-motor symptoms.
Affecting 1% of the population over 60, it is the second
most common neurodegenerative disorder (Lau and
Breteler, 2006; Wiliams-Gray et al., 2013). The preva-
lence of the disease rises with age. According to a
meta-analysis report by Pringsheim, Jette, Frolkis, &
Steeves, 2014, the prevalence is 41 per 100,000 between
ages 40 and 49, rising up to 428 between ages 60 and 69
and 1087 between 70 and 79. Another report states that
there is a greater incidence in men compared to women,
at a ratio of approximately 1.5:1 (Elbaz et al., 2002; Taylor
et al., 2007; Wooten et al., 2004). The case burden in US
alone is estimated to rise to more than one million by 2030
(Marras et al., 2018). The deterioration in motor function
occurs primarily due to a loss of dopamine signaling in
the basal ganglia. This loss of dopamine is due to the pro-
gressive loss of dopaminergic neurons in the substantia
nigra. However, it is not only the basal ganglia that is
affected in PD. Research suggests that PD involves mul-
tiple areas of the brain and results from a complex inter-
play between genetic and environmental factors.
Clinically described motor symptoms include resting tre-
mors, bradykinesia, rigidity of limbs and gait defects.
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Moreover, there are numerous non-motor symptoms such
as cognitive defects and dementia, mood disorders, sleep
disorders that add to the suffering of the patients
(Pringsheim et al., 2014; Ascherio and Schwarzschild,
2016; Tysnes and Storstein, 2017). According to the cen-
ters for disease control and prevention (CDC), medical
complications due to PD rank as the 14th leading cause
of death in the United States (Beard et al., 2017). With
no known cure for this disease, research has been
focused on understanding the cellular and molecular pro-
cesses that may be responsible for the neurodegenera-
tion (Fig. 1).

Hallmark histopathological features of PD are the loss
of dopamine-producing neurons in the substantia nigra
and the formation of large protein aggregates in
surviving neurons termed Lewy bodies. Lewy bodies are
composed primarily of a-synuclein protein in these
neurons. The pathology of the a-synuclein aggregates
shares many features with that of prion disease thereby
spurring investigation into that hypothesis (Brundin and
Melki, 2017; Surmeier et al., 2017). Mitochondrial dys-
function is also a widely reported feature of PD
(Goswami et al., 2017). Familial PD-linked mutations
have been identified in a number of genes (SNCA,
LRRK2, VPS35, CHCHD2, GBA, Parkin, PINK1, DJ-1,
ATP13A2, FBXO7 and PLA2G6) that have been shown
to participate in mitochondrial function and biogenesis
which further underscores the association with mitochon-
drial defects as a potential driver of the disease
(Helley et al., 2017). Protein homeostasis, particularly
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Fig. 1. Cellular processes affected by VPS35 mutation.

synucleinopathy, and mitochondrial health have therefore
become major areas of focus for research into character-
izing PD pathogenesis and developing therapeutics
(Table 1).

IDENTIFIED VPS35 MUTATIONS

The VPS35 gene was identified by two independent
studies in 2011 as linked to familial PD (Vilarino-Guell
et al., 2011; Zimprich et al., 2011). These studies were
conducted using exome sequencing technology on DNA
obtained from families that exhibited evidence of heredi-
tary PD. Subsequent studies have largely concluded that
the D620N mutation is relatively rare, with a calculated
prevalence of about 0.115%, from 15 reported case stud-
ies involving 21,824 PD patients worldwide (Ando et al.,
2012; Guella et al.,, 2012; Guo et al., 2012; Kumar
et al.,, 2012; Lesage et al., 2012; Sharma et al., 2012;
Sheerin et al., 2012; Zhang et al., 2012; Chen et al.,
2013; Sudhaman et al., 2013; Deng et al., 2013, 2012;
Blanckenberg et al.,, 2014; Gagliardi et al., 2014;
Koschmidder et al., 2014; Shannon et al., 2014;
Gustavsson et al., 2015; Gambardella et al., 2016). Other
polymorphisms in the VPS35 gene that were identified
include L774M, P316S, R524W, 1241M, M571, G51S,
R32S, 1560T, H599R, M607V. However, all of these
sequence variations, with the exception of D620N, have
yet to be definitively linked to PD.

In 2005, a study identified VPS35 levels to be reduced
in affected brain regions in Alzheimer’'s disease (Small
et al., 2005). In addition, another study reported increased
Amyloid B depositions in mice heterozygous for VPS35
knockout (Vps35*/™M) (Wen et al., 2011). Similarly, other
work has linked abnormal microglial activity and abnormal

hippocampal development, as observed in Alzheimer’s
Disease, to VPS35 depletion, but no polymorphisms in
the VPS35 gene have been associated (Wang et al.,
2012; Appel et al., 2018).

VPS35 AS PART OF THE RETROMER COMPLEX
AND RELATED FUNCTIONS

VPS35 was originally identified in yeast as a member of
the retromer complex. This complex is involved in the
intracellular trafficking of proteins (Seaman et al., 1998).
Its role in endosome to Golgi retrograde transport has
been very well characterized (Seaman, 2012; Follett
et al., 2014a; Trousdale and Kim, 2015). Retromer dys-
function has been implicated in Alzheimer's disease,
Parkinson’s disease and several other neurodegenerative
diseases, along with various developmental processes,
including wing and eye development in Drosophila, and
bone development (Belenkaya et al., 2008; Zhang et al.,
2011; Chan et al., 2016). In this context, the interaction
of the retromer complex and the wnt signaling pathway
has been extensively studied (Belenkaya et al., 2008;
Zhang et al, 2011, 2018; Small and Petsko, 2015;
Wang and Bellen, 2015; Chan et al., 2016). Structurally,
VPS35 forms a trimer with VPS26 and VPS29, to form
the cargo recognition complex (CRC). The CRC then
associates with a dimer of sorting nexins, belonging to
the SNX-BAR family of proteins. This association is fur-
ther facilitated by RAB7. Together, the retromer complex
plays important roles in vesicular sorting (Bonifacino and
Hurley, 2008; Seaman et al., 2009; McGough and
Cullen, 2011; Seaman, 2012; Lucas et al., 2016; Kovtun
et al., 2018). Deficiency of either VPS35 or VPS29 leads
to the degradation of the other two CRC components
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Table 1. Advantages and disadvantages of different model systems

Model System

Advantages

Disadvantages

Cell Culture

Rodent

Fly

Worm

Yeast

Ease of genetic manipulation via shRNA and siRNA, as well
as lipofectamine and lentivirus.

Homogeneous populations of cells can be obtained.

Very close to human molecular physiology, especially when
using human cell lines.

Ideal for culturing in laboratory conditions.

Similar to human physiological conditions, in terms of

in vivo experiments.

Availability of isogenic animals, including Vps35
hemizygous deletion and conditional KO animals, as well as
D620N mutant animals

Relatively short life cycles.

Libraries of flies with a wide range of polymorphisms
available.

Ease of genetic manipulations via RNAi, shRNA and
siRNA.

Well-characterized nervous system.

Fully mapped cell lineage and nervous system.
Well-characterized metabolism and genetics, and a wide
variety of transgenic nematodes available.

Very easy to manipulate genetically by feeding bacteria
expressing RNAI, and by EMS mutagenesis.

Extremely short life span and extremely easy to grow and
maintain in the laboratory.

Very well-characterized metabolism and genetics.

Ease of genetic manipulations and proteomic assays,
including protein—protein and DNA—protein interaction

Does not fully recapitulate the heterogeneous cell types
and extracellular environment found in whole tissue
samples.

Immortalized cell lines are not like normal, healthy brain
cells. Some exhibit chromosomal aberrations.

Relatively difficult to perform genetic manipulations.
Relatively long life cycles.

Fly neurons display some divergent characteristics
compared to their human counterparts.

Invertebrate model system. Significant evolutionary
distance with humans.

Short life spans make it difficult to study
neurodegeneration that occurs due to long, progressive
processes.

Invertebrate model system. Major evolutionary distance
with humans.

Neurons are physiologically and electrochemically
distinct from mammalian neurons with respect to a
number of parameters.

Short life spans might not recapitulate human
neurodegenerative disease conditions.

Not a neuronal model system.

Intracellular and extracellular environment very different
from that of a mammalian cell.

Paracrine signaling very different from mammalian cells.
Large evolutionary divergence from humans.

assays.

Single-celled eukaryote that shares many fundamental

cellular processes with humans.

(Fuse et al., 2015). Transmembrane receptors such as
the cation-independent mannose 6 phosphate receptor
(CIMPR) and the membrane iron transporter DMT1 are
well-characterized targets of retromer-mediated sorting
(Arighi et al., 2004; Tabuchi et al., 2010; Lucas et al.,
2016). In addition, there have been several studies on
the role of the retromer in recycling of beta-2 adrenergic
receptors (B2AR) in dendritic cells and trafficking of G
protein-coupled receptors (Bunnett and Cottrell, 2010;
Feinstein et al., 2011; Choy et al., 2014; Bowman et al.,
2016; McGarvey et al.,, 2016; Pavlos and Friedman,
2017; Bahouth and Nooh, 2017; Sposini et al., 2017).
The retromer is known to carry cargo from endosomes
to the trans-Golgi network (TGN), performing retrograde
transport, as well as carrying cargo from endosomes to
the plasma membrane, allowing recycling of membrane
bound receptors (Trousdale and Kim, 2015). Moreover,
included in the list of retromer cargo, are degradative
enzymes such as Cathepsin D, which are important for
lysosomal function and could potentially influence autop-
hagic flux. Furthermore, amyloid precursor protein
(APP) and a-synuclein (SNCA) are also reported to be
sorted by the retromer complex (Miura et al., 2014; Li
et al., 2016; Gallon and Cullen, 2015; Aufschnaiter
et al., 2017; Follett et al., 2017, 2014a; Reitz, 2018).
These findings have sparked considerable interest in the
contributions of the retromer to human diseases.

PROPOSED MECHANISMS OF VPS35 IN
NEURONAL DYSFUNCTION

The importance of the roles played by the retromer
complex in signal transduction and receptor trafficking
points to the dysfunction of the retromer as the major
potential mechanism of neuronal degeneration caused
by the VPS35 D620N mutation (Follett et al., 2017,
2014a; Small and Petsko, 2015; Wang and Bellen,
2015; Reitz, 2018). Knockdown of VPS35 leads to the
degradation of VPS29 and vice-versa (Fuse et al.,
2015). Therefore, given that any free VPS35, existing out-
side the retromer complex, is rapidly degraded, the role of
VPS35 D620N in PD is likely to involve altered retromer
function. Trafficking defects of AMPA receptors was
reported in a VPS35 heterozygote mouse model as well
as cultured mouse hippocampal and cortical neurons
treated with VPS35 shRNA (Munsie et al., 2015; Tian
et al., 2015). Additionally, dopamine receptor D1
(DRD1) is also reported to be recycled with the involve-
ment of VPS35 (Wang et al., 2016a).

Studies have reported reduced a-synuclein
degradation in VPS35-deficient cells (Braschi et al.,
2010; Miura et al., 2014; Sugiura et al., 2014; Tang
et al.,, 2015a,b). Formation of toxic a-synuclein aggre-
gates and fibril formation are hallmarks of PD (Patel and
Witt, 2018). A study conducted by Mensikova et al.
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(2018) identified a VPS35 mutation and a FBXO7 muta-
tion in a patient that displayed profuse Lewy body pathol-
ogy in various brain regions, including the substantia nigra
and other midbrain regions (MensSikova et al., 2018). This
accumulation has classically been attributed to abnormal
sorting of degradative enzymes that are normally targeted
to the lysosome. However, this accumulation could also
be partially explained by autophagy defects, similar to
what has been reported in HelLa cells expressing the
VPS35 D620N mutation (Mcgough et al., 2014;
Zavodszky et al., 2014). The mechanism proposed in this
study, for the autophagy disruption, was impaired WASH
(Wiskott—Aldrich syndrome protein and SCAR homolog)
complex association. Given that autophagy is a major
process responsible for removing proteins, macro-
molecules and organelles (Gatica et al., 2018), this is
another potential mechanism for the neurodegeneration
caused by VPS35 (Barth et al., 2010; Lynch-Day et al.,
2012; Tofaris, 2012).

Furthermore, defects in mitochondrial fusion and
function have also been reported in some studies (Tang
et al., 2015a,b; Wang et al., 2016b). Mitochondrial dys-
function has been shown to affect neuronal function
severely and is believed to be a driving force of neurode-
generation (Hauser and Hastings, 2013; Mullin and
Schapira, 2013; Subramaniam and Chesselet, 2013;
Haelterman et al., 2014; Winklhofer, 2014). Also, it is
noteworthy that autophagy is the only means by which
damaged mitochondria are turned over (Ashrafi and
Schwarz, 2013). Therefore, disruption in autophagy due
to VPS35 D620N mutation may also result in, if not exac-
erbate, any mitochondrial dysfunction that may be direc-
ted by the VPS35 D620N mutation.

CURRENT MODEL ORGANISMS AND SYSTEMS
FOR STUDYING VPS35

Cell Culture

A variety of tissue culture model systems are available for
studying the structure and function of VPS35, and the
pathogenic effects of its mutations. SH-SY5Y
neuroblastoma cells can easily be induced to adopt a
dopaminergic state by treatment with retinoic acid
(Korecka et al.,, 2013; Krishna et al., 2014; Shipley
et al., 2016). This system was used by Tang et al.
(2015a,b) to demonstrate mitochondrial impairment due
to VPS35 deficiency as well as due to the D620N muta-
tion (Tang et al., 2015a,b). This system was also used
to characterize the role of VPS35 in lysosomal clearance
of AIMP2, which is a substrate of the PD associated gene,
Parkin (Yun et al., 2017). Microglial BV2 cells have been
used to understand the role of VPS35 in Alzheimer’s Dis-
ease, and microglial physiology (Lucin et al., 2013; Yin
et al., 2016). In addition, HEK 293T cells also present a
popular choice for understanding cellular pathways
affected by VPS35 and retromer function due to their high
plasmid transfection efficiency (Yang et al., 2008; Follett
et al., 2014b; Williams et al., 2018). McGough et al.
(2014) used HelLa and RPE-1 cell lines to establish the
interaction of VPS35 and FAM21 of the WASH complex
(Mcgough et al., 2014). Cell lines can readily be trans-

fected or virally transduced with an siRNA, shRNA or
overexpression vectors to modulate the expression of
VPS35 and other genes of interest (Nayerossadat et al.,
2012). Korolchuk et al. (2007) knocked down VPS35 in
Drosophila S2 cells using an RNAi approach, in order to
identify novel proteins important for endocytosis, where
candidate proteins were selected based on binding pre-
dictions to either o adaptin or clathrin heavy chain, or on
having a predicted membrane bending domain (such as
the BAR domain). These candidate proteins were then
knocked down to screen for subsequent endocytosis
defects. VPS35 was among the short list of proteins that
were identified as exhibiting a significant reduction in
endocytosis, where the effect due to VPS35 was the most
severe (Korolchuk et al., 2007).

In addition to immortalized cell lines, primary neuronal
and glial cultures have also been used to investigate
VPS35 functions and mutations (Wen et al., 2011; Tsika
et al., 2014; Tang et al., 2015a,b; Williams et al., 2018).
Tang et al. (2015a,b) isolated and cultured dopaminergic
neurons from brains of mice expressing microRNA direc-
ted against VPS35 (Tang et al., 2015a,b). These cells
were found to have a reduced expression of MFN-2 or
Mitofusin, and exhibited mitochondrial fragmentation, as
well as impaired mitochondrial function. Similar results
were obtained using SH-SY5Y and NLT neuroblastoma
cultures (Tang et al., 2015a,b). In the study conducted
by Tsika et al. (2014), rat primary cortical cultures were
used to show that overexpression of human VPS35
resulted in neuronal cell death and higher sensitivity to
cellular stress factors associated with PD (Tsika et al.,
2014). Wen et al. (2011) demonstrated using mouse hip-
pocampal slice cultures that VPS35 haploinsufficiency
exacerbates long-term potentiation impairment already
present in mice expressing Swedish mutant form of the
amyloid precursor protein (Wen et al., 2011). Williams
et al. (2018) discovered a novel link between the PD
gene, Parkin, and VPS35, wherein Parkin mediates ubig-
uitination of VPS35, which does not affect VPS35 turn-
over, but may have a role to play in the retromer-
mediated endosomal sorting (Williams et al., 2018). Using
primary cortical neurons, they identified ATG9A, a
WASH-dependent retromer cargo, to be missorted upon
silencing of the Parkin gene. Using cell lines and primary
cultures can therefore be very powerful tools for decipher-
ing molecular mechanisms under precisely controlled
conditions.

Mice

Homozygous knockout of VPS35 is embryonically lethal
in mice. To overcome this challenge several mice
models have been developed, including a hemizygous
deletion mutant (Wen et al., 2011). This mutant was used
to demonstrate that VPS35 interacts with the protease
BACE-1, predominantly responsible for Amyloid beta pro-
duction, and that VPS35 reduction increases BACE-1
activity in the mouse hippocampus. In addition, A
VPS35 D620N knock-in strain of mice has been devel-
oped recently by Cataldi et al. (2018), in collaboration with
Jackson Laboratories, to further characterize dopamine
release and monoamine transporters in a VPS35 D620N
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mutant background (Cataldi et al., 2018). These mice
were generated by Cre-recombinase-mediated recombi-
nation of the VPS35 exon 15, on chromosome 8. Subse-
quent assessment revealed no detectable movement
disorder in these transgenic mice compared with non-
transgenic controls. However, the dopamine turnover
was reported to be increased. Dopamine transporter
levels were reported to have been reduced while vesicular
monoamine transporter levels were increased (Cataldi
et al., 2018). Mir and colleagues (2018) used these same
mice to study the interaction between LRRK2 and VPS35
(Mir et al., 2018). Using this model, they were able to
demonstrate that the VPS35 D620N mutation increases
LRRK2-catalyzed phosphorylation of three different RAB
proteins, RAB 8a, 10 and 12. They concluded that the
VPS35 D620N mutation causes a gain of function with
respect to the kinase activity of LRRK2 and is an
upstream regulator (Mir et al., 2018). A similar mouse
model, generated using a CRISPR/Cas-9-mediated
knock-in strategy, was used previously by Ishizu et al.
(2016) to characterize reduced dopamine release in the
striatum of heterozygous mice with one gene copy of
VPS35 D620N knocked in (VPS35°620V KNy while the
other copy had one base pair deleted in exon 15, creating
a premature stop codon, referred to as VPS35°' (Ishizu
et al., 2016). These VPS35P620NKin/PS35D¢!T heterozy-
gous mice also displayed premature death and significant
neurodegeneration throughout life, indicating that this
model could be of considerable value for Parkinson’s Dis-
ease research.

Rat

A transgenic rat model generated via lentivirus-mediated
gene transfer has been described and utilized by Tsika
et al. (2014). These rats overexpressed one of two human
VPS35 constructs, one of wild-type and the other contain-
ing the D620N mutation. However, the researchers con-
cluded that the human D620N construct did not alter
vesicular sorting of retromer cargo proteins in primary cor-
tical neurons from these animals. They went on to confirm
this finding in yeast and human (patient donated) fibrob-
lasts. Contrary to this finding, the human VPS35 D620N
overexpression was found to induce neurodegeneration
in the substantia nigra of these rats suggesting that, in this
model, VPS35 D620N might be primarily causing neu-
ronal loss without altering retromer function (Tsika et al.,
2014).

Drosophila melanogaster. MacLeod et al. (2013) used
an overexpression vector to demonstrate that overex-
pression of wild-type VPS35 reduced the defects caused
by LRRK2 G2019S mutation, and those caused by
RAB7L1 knockdown. This was shown in LRRK2 mutant
flies and primary rat neuronal cultures (MaclLeod et al.,
2013). Similarly, a VPS35 overexpressing strain of flies
was used by Linhart et al. in 2014, to demonstrate the res-
cue of LRRK mutation derived eye defects, by eye speci-
fic VPS35 overexpression in Drosophila (Linhart et al.,
2014). In another study, flies with the Drosophila VPS35
(dVps35) knocked out, were shown to be embryonically
lethal (Inoshita et al., 2017). This lethality could not be

rescued by knock-in of human VPS35 wild-type or human
VPS35 D620N. However, it was rescued by knock-in of
dVps35 WT and by knocking in dVps35 D647N (the Dro-
sophila analog of the D620N mutation in humans). Using
transgenic flies expressing wild-type dVps35 or dVps35
D647N, in all three possible dVps35 heterozygote and
homozygote backgrounds (+/+, +/—, —/—), they were
then able to demonstrate that Drosophila LRRK (dLRRK)
and dVps35 affect synaptic architecture and endocytosis
via the same pathways (Inoshita et al., 2017).

Yeast and Caenorhabditis elegans

In 2006, Prasad and Clark identified the retromer as an
important component in Wnt signaling-mediated
neuronal polarity in Caenorhabditis elegans. In a
mutagenesis screen, they identified a vps-35 deletion
mutant that resulted in reversed polarity of the
mechanosensory neurons ALM and PLM. This defect
was rescued by overexpressing vps-35 specifically in
Whnt-expressing muscle and epidermal cells, but not in
the neurons themselves (Prasad and Clark, 2006). This
presents an important mechanistic role of VPS35,
because the role of Wnt signaling in PD has been
described in literature (Berwick and Harvey, 2012;
Salasova et al., 2017). Dhungel et al. (2015) discovered
that in VPS35-deficient yeast cells, EIF4G1 upregulation
was highly toxic, but the two mutations by themselves
were not lethal (Dhungel et al., 2015). EIF4G1 is a trans-
lation initiation factor scaffold protein, responsible for the
translation initiation complex formation (Villa et al,
2013). While they could not establish a direct interaction
between the two proteins, a few common pathways were
identified leading to the hypothesis that they were func-
tionally related. The authors also noted that in a VPS35
null background, overexpression of EIF4G1 resulted in
fewer but larger synaptic boutons. This group then inves-
tigated proteotoxic stress in yeast cells and activation of
the unfolded protein response (UPR). It was seen that
there was increased proteotoxic stress and UPR activa-
tion in VPS35 deletion mutants, only upon overexpressing
EIF4G1. This led to the conclusion that the EIF4G1
upregulation combined with retromer dysfunction was
causing toxic protein aggregation. In addition, this group
demonstrated that Sortillin functions downstream of
VPS35 or in parallel and is able to suppress the EIF4G1
overexpression toxicity in VPS35 deletion mutants.
Lastly, this group showed, using yeast, C. elegans and
transgenic mice that VPS35 deletion increases alpha
synuclein-driven toxicity. In transgenic mice, increased
toxicity was also seen after overexpression of VPS35
D620N and VPS35 P316S (Dhungel et al., 2015). There-
fore, altered VPS35 function can facilitate protein aggre-
gation, a hallmark of PD. Furthermore, Zhang et al.
(2018) demonstrated using a vps35 deletion mutant strain
of C. elegans that VPS35 is required for propagating the
mitochondrial unfolded protein response (UPR™) from
cells undergoing mitochondrial stress to surrounding
cells. Here, VPS35 and the retromer was proposed to
be involved in the retrieval of a Wnt secretion factor,
MIG-14, which in turn, played a role in secretion of the
Wnt protein EGL-20. This led to the conclusion that
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EGL-20 was acting as a “mitokine” signal that induced
UPRmt in a cell-non-autonomous manner in the surround-
ing cells and required functional retromer activity (Zhang
et al., 2018).

FUTURE RESEARCH DIRECTIONS

With the advent of CRISPR/Cas-9-mediated genome
editing technology, therapeutic applications targeting the
VPS35 gene can now be conceived (Calatayud et al.,
2017). This could potentially be done in inducible pluripo-
tent stem cells, obtained from a patient, genetically mod-
ified and transplanted into the affected individual’s brain.
This technique has recently been described and is await-
ing U.S Food and Drug Administration approval (Loring,
2018). A major obstacle in such an approach is the prion
like properties of a-synuclein aggregates (Brundin and
Melki, 2017). The pre-existing toxic o-synuclein aggre-
gates in the patient’'s existing brain environment may
induce the formation of a-synuclein fibrils in the trans-
planted cells, thus negating any genetic corrections made
in the transplanted cells. Supporting this concern, previ-
ous clinical trials involving the transplantation of embryon-
ically derived grafts have shown synucleinopathy in the
transplanted cells upon autopsy (Kordower et al., 2008;
Li et al., 2008).

In addition, further characterization of the VPS35
D620N knock-in mice is now required to properly
investigate the cellular pathways that are perturbed.
This in vivo model system will allow for a more direct
comparison of a mouse model system and human
disease without the artifacts association with
overexpression and/or random integration of a
transgene using virus conventional transgenic mouse
generation. The creation of a PD-relevant cell line
containing the D620N mutation in the endogenous
VPS35 gene would add validity to findings already
reported using cells that have a VPS35 D620N
construct stably overexpressed. Finally, characterization
of the pathways perturbed by mutations in VPS35, is far
from complete. A better understanding of the interplay
of VPS35 and these pathways is required, so that
therapeutic interventions can be crafted.
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