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Abstract—Parkinson’s Disease (PD) is a multi-system neurodegenerative disease where approximately 90% of 
cases are idiopathic. The remaining 10% of the cases can be traced to a genetic origin and research has largely 
focused on these associated genes to gain a better understanding of the molecular and cellular pathogenesis for 
PD. The gene encoding vacuolar protein sorting protein 35 (VPS35) has been definitively linked to late onset famil
ial PD following the identification of a point mutation (D620N) as the causal agent in a Swiss family. Since its dis
covery, numerous studies have been undertaken to characterize the role of VPS35 in cellular processes and 
efforts have been directed toward understanding the perturbations caused by the D620N mutation. In this review, 
we examine what is currently known about VPS35, which has pleiotropic effects, as well as proposed mechanisms 
of pathogenesis by the D620N mutation. A brief survey of other VPS35 polymorphisms is also provided. Lastly, 
model systems that are being utilized for these investigations and possible directions for future research are dis
cussed. © 2019 The Author(s). Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/). 
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INTRODUCTION 

Parkinson’s disease (PD) is a complex neurological 
disorder involving both motor and non-motor symptoms. 
Affecting 1% of the population over 60, it is the second 
most common neurodegenerative disorder (Lau and 
Breteler, 2006; Williams-Gray et al., 2013). The preva
lence of the disease rises with age. According to a 
meta-analysis report by Pringsheim, Jette, Frolkis, & 
Steeves, 2014, the prevalence is 41 per 100,000 between 
ages 40 and 49, rising up to 428 between ages 60 and 69 
and 1087 between 70 and 79. Another report states that 
there is a greater incidence in men compared to women, 
at a ratio of approximately 1.5:1 (Elbaz et al., 2002; Taylor 
et al., 2007; Wooten et al., 2004). The case burden in US 
alone is estimated to rise to more than one million by 2030 
(Marras et al., 2018). The deterioration in motor function 
occurs primarily due to a loss of dopamine signaling in 
the basal ganglia. This loss of dopamine is due to the pro
gressive loss of dopaminergic neurons in the substantia 
nigra. However, it is not only the basal ganglia that is 
affected in PD. Research suggests that PD involves mul

tiple areas of the brain and results from a complex inter
play between genetic and environmental factors. 
Clinically described motor symptoms include resting tre
mors, bradykinesia, rigidity of limbs and gait defects. 

Moreover, there are numerous non-motor symptoms such 
as cognitive defects and dementia, mood disorders, sleep 
disorders that add to the suffering of the patients 
(Pringsheim et al., 2014; Ascherio and Schwarzschild, 
2016; Tysnes and Storstein, 2017). According to the cen
ters for disease control and prevention (CDC), medical 
complications due to PD rank as the 14th leading cause 
of death in the United States (Beard et al., 2017). With 
no known cure for this disease, research has been 
focused on understanding the cellular and molecular pro
cesses that may be responsible for the neurodegenera
tion (Fig. 1). 

Hallmark histopathological features of PD are the loss 
of dopamine-producing neurons in the substantia nigra 
and the formation of large protein aggregates in 
surviving neurons termed Lewy bodies. Lewy bodies are 
composed primarily of a-synuclein protein in these 
neurons. The pathology of the a-synuclein aggregates 
shares many features with that of prion disease thereby 
spurring investigation into that hypothesis (Brundin and 
Melki, 2017; Surmeier et al., 2017). Mitochondrial dys
function is also a widely reported feature of PD 
(Goswami et al., 2017). Familial PD-linked mutations 
have been identified in a number of genes (SNCA, 
LRRK2, VPS35, CHCHD2, GBA, Parkin, PINK1, DJ-1, 
ATP13A2, FBXO7 and PLA2G6) that have been shown 
to participate in mitochondrial function and biogenesis 
which further underscores the association with mitochon

drial defects as a potential driver of the disease 
(Helley et al., 2017). Protein homeostasis, particularly 
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synucleinopathy, and mitochondrial health have therefore 
become major areas of focus for research into character
izing PD pathogenesis and developing therapeutics 
(Table 1). 

Fig. 1. Cellular processes affected by VPS35 mutation. 

IDENTIFIED VPS35 MUTATIONS 

The VPS35 gene was identified by two independent 
studies in 2011 as linked to familial PD (Vilariñ o-Güell 
et al., 2011; Zimprich et al., 2011). These studies were 
conducted using exome sequencing technology on DNA 
obtained from families that exhibited evidence of heredi
tary PD. Subsequent studies have largely concluded that 
the D620N mutation is relatively rare, with a calculated 
prevalence of about 0.115%, from 15 reported case stud
ies involving 21,824 PD patients worldwide (Ando et al., 
2012; Guella et al., 2012; Guo et al., 2012; Kumar 
et al., 2012; Lesage et al., 2012; Sharma et al., 2012; 
Sheerin et al., 2012; Zhang et al., 2012; Chen et al., 
2013; Sudhaman et al., 2013; Deng et al., 2013, 2012; 
Blanckenberg et al., 2014; Gagliardi et al., 2014; 
Koschmidder et al., 2014; Shannon et al., 2014; 
Gustavsson et al., 2015; Gambardella et al., 2016). Other 
polymorphisms in the VPS35 gene that were identified 
include L774M, P316S, R524W, I241M, M57I, G51S, 
R32S, I560T, H599R, M607V. However, all of these 
sequence variations, with the exception of D620N, have 
yet to be definitively linked to PD. 

In 2005, a study identified VPS35 levels to be reduced 
in affected brain regions in Alzheimer’s disease (Small 
et al., 2005). In addition, another study reported increased 
Amyloid b depositions in mice heterozygous for VPS35 
knockout (Vps35+/m) (Wen et al., 2011). Similarly, other 
work has linked abnormal microglial activity and abnormal 

hippocampal development, as observed in Alzheimer’s 
Disease, to VPS35 depletion, but no polymorphisms in 
the VPS35 gene have been associated (Wang et al., 
2012; Appel et al., 2018). 

VPS35 AS PART OF THE RETROMER COMPLEX 
AND RELATED FUNCTIONS 

VPS35 was originally identified in yeast as a member of 
the retromer complex. This complex is involved in the 
intracellular trafficking of proteins (Seaman et al., 1998). 
Its role in endosome to Golgi retrograde transport has 
been very well characterized (Seaman, 2012; Follett 
et al., 2014a; Trousdale and Kim, 2015). Retromer dys
function has been implicated in Alzheimer’s disease, 
Parkinson’s disease and several other neurodegenerative 
diseases, along with various developmental processes, 
including wing and eye development in Drosophila, and 
bone development (Belenkaya et al., 2008; Zhang et al., 
2011; Chan et al., 2016). In this context, the interaction 
of the retromer complex and the wnt signaling pathway 
has been extensively studied (Belenkaya et al., 2008; 
Zhang et al., 2011, 2018; Small and Petsko, 2015; 
Wang and Bellen, 2015; Chan et al., 2016). Structurally, 
VPS35 forms a trimer with VPS26 and VPS29, to form 
the cargo recognition complex (CRC). The CRC then 
associates with a dimer of sorting nexins, belonging to 
the SNX-BAR family of proteins. This association is fur
ther facilitated by RAB7. Together, the retromer complex 
plays important roles in vesicular sorting (Bonifacino and 
Hurley, 2008; Seaman et al., 2009; McGough and 
Cullen, 2011; Seaman, 2012; Lucas et al., 2016; Kovtun 
et al., 2018). Deficiency of either VPS35 or VPS29 leads 
to the degradation of the other two CRC components 
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(Fuse et al., 2015). Transmembrane receptors such as 
the cation-independent mannose 6 phosphate receptor 
(CIMPR) and the membrane iron transporter DMT1 are 
well-characterized targets of retromer-mediated sorting 
(Arighi et al., 2004; Tabuchi et al., 2010; Lucas et al., 
2016). In addition, there have been several studies on 
the role of the retromer in recycling of beta-2 adrenergic 
receptors (b2AR) in dendritic cells and trafficking of G 
protein-coupled receptors (Bunnett and Cottrell, 2010; 
Feinstein et al., 2011; Choy et al., 2014; Bowman et al., 
2016; McGarvey et al., 2016; Pavlos and Friedman, 
2017; Bahouth and Nooh, 2017; Sposini et al., 2017). 
The retromer is known to carry cargo from endosomes 
to the trans-Golgi network (TGN), performing retrograde 
transport, as well as carrying cargo from endosomes to 
the plasma membrane, allowing recycling of membrane 
bound receptors (Trousdale and Kim, 2015). Moreover, 
included in the list of retromer cargo, are degradative 
enzymes such as Cathepsin D, which are important for 
lysosomal function and could potentially influence autop
hagic flux. Furthermore, amyloid precursor protein 
(APP) and a-synuclein (SNCA) are also reported to be 
sorted by the retromer complex (Miura et al., 2014; Li 
et al., 2016; Gallon and Cullen, 2015; Aufschnaiter 
et al., 2017; Follett et al., 2017, 2014a; Reitz, 2018). 
These findings have sparked considerable interest in the 
contributions of the retromer to human diseases. 

Table 1. Advantages and disadvantages of different model systems 

Model System  Advantages	 Disadvantages 

Cell Culture 	 Ease of genetic manipulation via shRNA and siRNA, as well 
as lipofectamine and lentivirus. 
Homogeneous populations of cells can be obtained. 
Very close to human molecular physiology, especially when 
using human cell lines. 
Ideal for culturing in laboratory conditions. 

Does not fully recapitulate the heterogeneous cell types
 
and extracellular environment found in whole tissue
 
samples.
 
Immortalized cell lines are not like normal, healthy brain
 
cells. Some exhibit chromosomal aberrations.
 

Rodent 	 Similar to human physiological conditions, in terms of 
in vivo experiments. 
Availability of isogenic animals, including Vps35 
hemizygous deletion and conditional KO animals, as well as 
D620N mutant animals 

Relatively difficult to perform genetic manipulations.
 
Relatively long life cycles.
 

Fly 	 Relatively short life cycles. 
Libraries of flies with a wide range of polymorphisms 
available. 
Ease of genetic manipulations via RNAi, shRNA and 
siRNA. 
Well-characterized nervous system. 

Fly neurons display some divergent characteristics
  
compared to their human counterparts.
  
Invertebrate model system. Significant evolutionary
  
distance with humans.
  
Short life spans make it difficult to study
  
neurodegeneration that occurs due to long, progressive
  
processes.
  

Worm 	 Fully mapped cell lineage and nervous system. 
Well-characterized metabolism and genetics, and a wide 
variety of transgenic nematodes available. 
Very easy to manipulate genetically by feeding bacteria 
expressing RNAi, and by EMS mutagenesis. 

Invertebrate model system. Major evolutionary distance
  
with humans.
  
Neurons are physiologically and electrochemically
  
distinct from mammalian neurons with respect to a
  
number of parameters.
  
Short life spans might not recapitulate human
  
neurodegenerative disease conditions.
  

Yeast 	 Extremely short life span and extremely easy to grow and 
maintain in the laboratory. 
Very well-characterized metabolism and genetics. 
Ease of genetic manipulations and proteomic assays, 
including protein–protein and DNA–protein interaction 
assays. 
Single-celled eukaryote that shares many fundamental 
cellular processes with humans. 

Not a neuronal model system.
 
Intracellular and extracellular environment very different
  
from that of a mammalian cell.
  
Paracrine signaling very different from mammalian cells.
  
Large evolutionary divergence from humans.
  

PROPOSED MECHANISMS OF VPS35 IN
 
NEURONAL DYSFUNCTION
 

The importance of the roles played by the retromer 
complex in signal transduction and receptor trafficking 
points to the dysfunction of the retromer as the major 
potential mechanism of neuronal degeneration caused 
by the VPS35 D620N mutation (Follett et al., 2017, 
2014a; Small and Petsko, 2015; Wang and Bellen, 
2015; Reitz, 2018). Knockdown of VPS35 leads to the 
degradation of VPS29 and vice-versa (Fuse et al., 
2015). Therefore, given that any free VPS35, existing out
side the retromer complex, is rapidly degraded, the role of 
VPS35 D620N in PD is likely to involve altered retromer 
function. Trafficking defects of AMPA receptors was 
reported in a VPS35 heterozygote mouse model as well 
as cultured mouse hippocampal and cortical neurons 
treated with VPS35 shRNA (Munsie et al., 2015; Tian 
et al., 2015). Additionally, dopamine receptor D1 
(DRD1) is also reported to be recycled with the involve
ment of VPS35 (Wang et al., 2016a). 

Studies have reported reduced a-synuclein 
degradation in VPS35-deficient cells (Braschi et al., 
2010; Miura et al., 2014; Sugiura et al., 2014; Tang 
et al., 2015a,b). Formation of toxic a-synuclein aggre
gates and fibril formation are hallmarks of PD (Patel and 
Witt, 2018). A study conducted by Menš ı́ková et al. 
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(2018) identified a VPS35 mutation and a FBXO7 muta

tion in a patient that displayed profuse Lewy body pathol
ogy in various brain regions, including the substantia nigra 
and other midbrain regions (Menš ı́ková et al., 2018). This 
accumulation has classically been attributed to abnormal 
sorting of degradative enzymes that are normally targeted 
to the lysosome. However, this accumulation could also 
be partially explained by autophagy defects, similar to 
what has been reported in HeLa cells expressing the 
VPS35 D620N mutation (Mcgough et al., 2014; 
Zavodszky et al., 2014). The mechanism proposed in this 
study, for the autophagy disruption, was impaired WASH 
(Wiskott–Aldrich syndrome protein and SCAR homolog) 
complex association. Given that autophagy is a major 
process responsible for removing proteins, macro

molecules and organelles (Gatica et al., 2018), this is 
another potential mechanism for the neurodegeneration 
caused by VPS35 (Barth et al., 2010; Lynch-Day et al., 
2012; Tofaris, 2012). 

Furthermore, defects in mitochondrial fusion and 
function have also been reported in some studies (Tang 
et al., 2015a,b; Wang et al., 2016b). Mitochondrial dys
function has been shown to affect neuronal function 
severely and is believed to be a driving force of neurode
generation (Hauser and Hastings, 2013; Mullin and 
Schapira, 2013; Subramaniam and Chesselet, 2013; 
Haelterman et al., 2014; Winklhofer, 2014). Also, it is 
noteworthy that autophagy is the only means by which 
damaged mitochondria are turned over (Ashrafi and 
Schwarz, 2013). Therefore, disruption in autophagy due 
to VPS35 D620N mutation may also result in, if not exac
erbate, any mitochondrial dysfunction that may be direc
ted by the VPS35 D620N mutation. 

CURRENT MODEL ORGANISMS AND SYSTEMS 
FOR STUDYING VPS35 

Cell Culture 

A variety of tissue culture model systems are available for 
studying the structure and function of VPS35, and the 
pathogenic effects of its mutations. SH-SY5Y 
neuroblastoma cells can easily be induced to adopt a 
dopaminergic state by treatment with retinoic acid 
(Korecka et al., 2013; Krishna et al., 2014; Shipley 
et al., 2016). This system was used by Tang et al. 
(2015a,b) to demonstrate mitochondrial impairment due 
to VPS35 deficiency as well as due to the D620N muta

tion (Tang et al., 2015a,b). This system was also used 
to characterize the role of VPS35 in lysosomal clearance 
of AIMP2, which is a substrate of the PD associated gene, 
Parkin (Yun et al., 2017). Microglial BV2 cells have been 
used to understand the role of VPS35 in Alzheimer’s Dis
ease, and microglial physiology (Lucin et al., 2013; Yin 
et al., 2016). In addition, HEK 293T cells also present a 
popular choice for understanding cellular pathways 
affected by VPS35 and retromer function due to their high 
plasmid transfection efficiency (Yang et al., 2008; Follett 
et al., 2014b; Williams et al., 2018). McGough et al. 
(2014) used HeLa and RPE-1 cell lines to establish the 
interaction of VPS35 and FAM21 of the WASH complex 
(Mcgough et al., 2014). Cell lines can readily be trans

fected or virally transduced with an siRNA, shRNA or 
overexpression vectors to modulate the expression of 
VPS35 and other genes of interest (Nayerossadat et al., 
2012). Korolchuk et al. (2007) knocked down VPS35 in 
Drosophila S2 cells using an RNAi approach, in order to 
identify novel proteins important for endocytosis, where 
candidate proteins were selected based on binding pre
dictions to either a adaptin or clathrin heavy chain, or on 
having a predicted membrane bending domain (such as 
the BAR domain). These candidate proteins were then 
knocked down to screen for subsequent endocytosis 
defects. VPS35 was among the short list of proteins that 
were identified as exhibiting a significant reduction in 
endocytosis, where the effect due to VPS35 was the most 
severe (Korolchuk et al., 2007). 

In addition to immortalized cell lines, primary neuronal 
and glial cultures have also been used to investigate 
VPS35 functions and mutations (Wen et al., 2011; Tsika 
et al., 2014; Tang et al., 2015a,b; Williams et al., 2018). 
Tang et al. (2015a,b) isolated and cultured dopaminergic 
neurons from brains of mice expressing microRNA direc
ted against VPS35 (Tang et al., 2015a,b). These cells 
were found to have a reduced expression of MFN-2 or 
Mitofusin, and exhibited mitochondrial fragmentation, as 
well as impaired mitochondrial function. Similar results 
were obtained using SH-SY5Y and NLT neuroblastoma 
cultures (Tang et al., 2015a,b). In the study conducted 
by Tsika et al. (2014), rat primary cortical cultures were 
used to show that overexpression of human VPS35 
resulted in neuronal cell death and higher sensitivity to 
cellular stress factors associated with PD (Tsika et al., 
2014). Wen et al. (2011) demonstrated using mouse hip
pocampal slice cultures that VPS35 haploinsufficiency 
exacerbates long-term potentiation impairment already 
present in mice expressing Swedish mutant form of the 
amyloid precursor protein (Wen et al., 2011). Williams 
et al. (2018) discovered a novel link between the PD 
gene, Parkin, and VPS35, wherein Parkin mediates ubiq
uitination of VPS35, which does not affect VPS35 turn
over, but may have a role to play in the retromer

mediated endosomal sorting (Williams et al., 2018). Using 
primary cortical neurons, they identified ATG9A, a 
WASH-dependent retromer cargo, to be missorted upon 
silencing of the Parkin gene. Using cell lines and primary 
cultures can therefore be very powerful tools for decipher
ing molecular mechanisms under precisely controlled 
conditions. 

Mice 

Homozygous knockout of VPS35 is embryonically lethal 
in mice. To overcome this challenge several mice 
models have been developed, including a hemizygous 
deletion mutant (Wen et al., 2011). This mutant was used 
to demonstrate that VPS35 interacts with the protease 
BACE-1, predominantly responsible for Amyloid beta pro
duction, and that VPS35 reduction increases BACE-1 
activity in the mouse hippocampus. In addition, A 
VPS35 D620N knock-in strain of mice has been devel
oped recently by Cataldi et al. (2018), in collaboration with 
Jackson Laboratories, to further characterize dopamine 
release and monoamine transporters in a VPS35 D620N 
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mutant background (Cataldi et al., 2018). These mice 
were generated by Cre-recombinase-mediated recombi

nation of the VPS35 exon 15, on chromosome 8. Subse
quent assessment revealed no detectable movement 
disorder in these transgenic mice compared with non
transgenic controls. However, the dopamine turnover 
was reported to be increased. Dopamine transporter 
levels were reported to have been reduced while vesicular 
monoamine transporter levels were increased (Cataldi 
et al., 2018). Mir and colleagues (2018) used these same 
mice to study the interaction between LRRK2 and VPS35 
(Mir et al., 2018). Using this model, they were able to 
demonstrate that the VPS35 D620N mutation increases 
LRRK2-catalyzed phosphorylation of three different RAB 
proteins, RAB 8a, 10 and 12. They concluded that the 
VPS35 D620N mutation causes a gain of function with 
respect to the kinase activity of LRRK2 and is an 
upstream regulator (Mir et al., 2018). A similar mouse 
model, generated using a CRISPR/Cas-9-mediated 
knock-in strategy, was used previously by Ishizu et al. 
(2016) to characterize reduced dopamine release in the 
striatum of heterozygous mice with one gene copy of 
VPS35 D620N knocked in (VPS35D620N KI), while the 
other copy had one base pair deleted in exon 15, creating 
a premature stop codon, referred to as VPS35Del1 (Ishizu 
et al., 2016). These VPS35D620NKI/VPS35Del1 heterozy

gous mice also displayed premature death and significant 
neurodegeneration throughout life, indicating that this 
model could be of considerable value for Parkinson’s Dis
ease research. 

Rat 

A transgenic rat model generated via lentivirus-mediated 
gene transfer has been described and utilized by Tsika 
et al. (2014). These rats overexpressed one of two human 
VPS35 constructs, one of wild-type and the other contain
ing the D620N mutation. However, the researchers con
cluded that the human D620N construct did not alter 
vesicular sorting of retromer cargo proteins in primary cor
tical neurons from these animals. They went on to confirm 
this finding in yeast and human (patient donated) fibrob
lasts. Contrary to this finding, the human VPS35 D620N 
overexpression was found to induce neurodegeneration 
in the substantia nigra of these rats suggesting that, in this 
model, VPS35 D620N might be primarily causing neu
ronal loss without altering retromer function (Tsika et al., 
2014). 

Drosophila melanogaster. MacLeod et al. (2013) used 
an overexpression vector to demonstrate that overex
pression of wild-type VPS35 reduced the defects caused 
by LRRK2 G2019S mutation, and those caused by 
RAB7L1 knockdown. This was shown in LRRK2 mutant 
flies and primary rat neuronal cultures (MacLeod et al., 
2013). Similarly, a VPS35 overexpressing strain of flies 
was used by Linhart et al. in 2014, to demonstrate the res
cue of LRRK mutation derived eye defects, by eye speci
fic VPS35 overexpression in Drosophila (Linhart et al., 
2014). In another study, flies with the Drosophila VPS35 
(dVps35) knocked out, were shown to be embryonically 
lethal (Inoshita et al., 2017). This lethality could not be 

rescued by knock-in of human VPS35 wild-type or human 
VPS35 D620N. However, it was rescued by knock-in of 
dVps35 WT and by knocking in dVps35 D647N (the Dro
sophila analog of the D620N mutation in humans). Using 
transgenic flies expressing wild-type dVps35 or dVps35 
D647N, in all three possible dVps35 heterozygote and 
homozygote backgrounds (+/+, +/-, -/-), they were 
then able to demonstrate that Drosophila LRRK (dLRRK) 
and dVps35 affect synaptic architecture and endocytosis 
via the same pathways (Inoshita et al., 2017). 

Yeast and Caenorhabditis elegans 

In 2006, Prasad and Clark identified the retromer as an 
important component in Wnt signaling-mediated 
neuronal polarity in Caenorhabditis elegans. In a  
mutagenesis screen, they identified a vps-35 deletion 
mutant that resulted in reversed polarity of the 
mechanosensory neurons ALM and PLM. This defect 
was rescued by overexpressing vps-35 specifically in 
Wnt-expressing muscle and epidermal cells, but not in 
the neurons themselves (Prasad and Clark, 2006). This 
presents an important mechanistic role of VPS35, 
because the role of Wnt signaling in PD has been 
described in literature (Berwick and Harvey, 2012; 
Salaš ová et al., 2017). Dhungel et al. (2015) discovered 
that in VPS35-deficient yeast cells, EIF4G1 upregulation 
was highly toxic, but the two mutations by themselves 
were not lethal (Dhungel et al., 2015). EIF4G1 is a trans
lation initiation factor scaffold protein, responsible for the 
translation initiation complex formation (Villa et al., 
2013). While they could not establish a direct interaction 
between the two proteins, a few common pathways were 
identified leading to the hypothesis that they were func
tionally related. The authors also noted that in a VPS35 
null background, overexpression of EIF4G1 resulted in 
fewer but larger synaptic boutons. This group then inves
tigated proteotoxic stress in yeast cells and activation of 
the unfolded protein response (UPR). It was seen that 
there was increased proteotoxic stress and UPR activa
tion in VPS35 deletion mutants, only upon overexpressing 
EIF4G1. This led to the conclusion that the EIF4G1 
upregulation combined with retromer dysfunction was 
causing toxic protein aggregation. In addition, this group 
demonstrated that Sortillin functions downstream of 
VPS35 or in parallel and is able to suppress the EIF4G1 
overexpression toxicity in VPS35 deletion mutants. 
Lastly, this group showed, using yeast, C. elegans and 
transgenic mice that VPS35 deletion increases alpha 
synuclein-driven toxicity. In transgenic mice, increased 
toxicity was also seen after overexpression of VPS35 
D620N and VPS35 P316S (Dhungel et al., 2015). There
fore, altered VPS35 function can facilitate protein aggre
gation, a hallmark of PD. Furthermore, Zhang et al. 
(2018) demonstrated using a vps35 deletion mutant strain 
of C. elegans that VPS35 is required for propagating the 
mitochondrial unfolded protein response (UPRmt) from 
cells undergoing mitochondrial stress to surrounding 
cells. Here, VPS35 and the retromer was proposed to 
be involved in the retrieval of a Wnt secretion factor, 
MIG-14, which in turn, played a role in secretion of the 
Wnt protein EGL-20. This led to the conclusion that 
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EGL-20 was acting as a ‘‘mitokine” signal that induced 
UPRmt in a cell-non-autonomous manner in the surround
ing cells and required functional retromer activity (Zhang 
et al., 2018). 

FUTURE RESEARCH DIRECTIONS 

With the advent of CRISPR/Cas-9-mediated genome 
editing technology, therapeutic applications targeting the 
VPS35 gene can now be conceived (Calatayud et al., 
2017). This could potentially be done in inducible pluripo
tent stem cells, obtained from a patient, genetically mod

ified and transplanted into the affected individual’s brain. 
This technique has recently been described and is await
ing U.S Food and Drug Administration approval (Loring, 
2018). A major obstacle in such an approach is the prion 
like properties of a-synuclein aggregates (Brundin and 
Melki, 2017). The pre-existing toxic a-synuclein aggre
gates in the patient’s existing brain environment may 
induce the formation of a-synuclein fibrils in the trans
planted cells, thus negating any genetic corrections made 
in the transplanted cells. Supporting this concern, previ
ous clinical trials involving the transplantation of embryon

ically derived grafts have shown synucleinopathy in the 
transplanted cells upon autopsy (Kordower et al., 2008; 
Li et al., 2008). 

In addition, further characterization of the VPS35 
D620N knock-in mice is now required to properly 
investigate the cellular pathways that are perturbed. 
This in vivo model system will allow for a more direct 
comparison of a mouse model system and human 
disease without the artifacts association with 
overexpression and/or random integration of a 
transgene using virus conventional transgenic mouse 
generation. The creation of a PD-relevant cell line 
containing the D620N mutation in the endogenous 
VPS35 gene would add validity to findings already 
reported using cells that have a VPS35 D620N 
construct stably overexpressed. Finally, characterization 
of the pathways perturbed by mutations in VPS35, is far 
from complete. A better understanding of the interplay 
of VPS35 and these pathways is required, so that 
therapeutic interventions can be crafted. 
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Zimprich A, Benet-Pagè s A, Struhal W, Graf E, Eck SH, Offman MN, 
Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle 
SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, 
Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler 
E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brü cke T, 
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