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This paper is dedicated to the memory of 
our friend and colleague Ailsa Sparkes

Using a data set corresponding to an integrated luminosity of 3 fb−1, collected by the LHCb experiment 
in pp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the B0

s → J/ψη decay 
mode, τeff, is measured to be

τeff = 1.479 ± 0.034 (stat) ± 0.011 (syst) ps.

Assuming CP conservation, τeff corresponds to the lifetime of the light B0
s mass eigenstate. This is the 

first measurement of the effective lifetime in this decay mode.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Studies of B0
s –B

0
s mixing provide important tests of the Stan-

dard Model (SM) of particle physics. In the SM, mixing occurs 
via box diagrams. Extensions to the SM may introduce additional 
CP-violating phases that alter the value of the B0

s –B0
s mixing weak 

phase, φs , from that of the SM [1]. The B0
s system exhibits a size-

able difference in the decay widths �L and �H, where L and H
refer to the light and heavy B0

s mass eigenstates, respectively. The 
effective lifetime, τeff , of a B0

s meson decay mode is measured by 
approximating the decay time distribution, determined in the B0

s
rest system, by a single exponential function. For final states that 
can be accessed by both B0

s and B0
s mesons the effective lifetime 

depends on their CP components and is also sensitive to φs [2,3].
In this analysis τeff is determined for the CP-even B0

s → J/ψη
decay mode. As φs is measured to be small [4,5] the mass eigen-
states are also CP eigenstates to better than per mille level and 
τeff measured in B0

s → J/ψη decays is equal, to good approxi-
mation, to the lifetime of the light B0

s mass eigenstate, τL ∝ �−1
L . 

In the SM τL is predicted to be 1.43 ± 0.03 ps [6]. Measurements 
of τL have previously been reported by LHCb in the B0

s → D+
s D−

s
and B0

s → K +K − decay modes [7,8]. The latter is dominated by 
penguin diagrams, which could arise within and beyond the SM 
and gives rise to direct CP violation. This then leads to a differ-
ent τeff, when compared to measurements in the B0

s → D+
s D−

s
and B0

s → J/ψη decays which are mediated by tree diagrams. Im-
proved precision on the effective lifetimes τL and τH will enable 
more stringent tests of the consistency between direct measure-
ments of the decay width difference ��s = �L − �H measured in 
B0

s → J/ψφ decays and those inferred using effective lifetimes.
The measurement of the effective B0

s → J/ψη lifetime pre-
sented in this Letter uses 3 fb−1 of data collected in pp collisions 

at centre-of-mass energies of 7 TeV and 8 TeV during 2011 and 
2012 using the LHCb detector. The J/ψ meson is reconstructed via 
the dimuon decay mode and the η meson via the diphoton decay 
mode. The presence of only two charged particles in the final state 
minimizes systematic uncertainties related to the tracking system.

2. Detector and simulation

The LHCb detector [9,10] is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed for the 
study of particles containing b or c quarks. The detector includes 
a high-precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area 
silicon-strip detector (TT) located upstream of a dipole magnet 
with a bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift tubes placed downstream of the 
magnet. The tracking system provides a measurement of momen-
tum, p, of charged particles with a relative uncertainty that varies 
from 0.5% at low momentum to 1.0% at 200 GeV/c. Large samples 
of J/ψ → μ+μ− and B+ → J/ψ K + decays, collected concurrently 
with the data set used here, were used to calibrate the momen-
tum scale of the spectrometer to a precision of 0.03% [11]. The 
minimum distance of a track to a primary vertex (PV), the impact 
parameter (IP), is measured with a resolution of (15 + 29/pT) μm, 
where pT is the component of the momentum transverse to the 
beam, in GeV/c.

Different types of charged hadrons are distinguished using in-
formation from two ring-imaging Cherenkov detectors. Photons, 
electrons and hadrons are identified by a calorimeter system con-
sisting of scintillating-pad and preshower detectors, an electro-
magnetic calorimeter and a hadronic calorimeter. The calorimeter 
response is calibrated using samples of π0 → γ γ decays. For this 
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analysis a further calibration was made using the decay η → γ γ , 
which results in a precision of 0.07% on the neutral energy scale. 
Muons are identified by a system composed of alternating layers 
of iron and multiwire proportional chambers.

The online event selection is performed by a trigger [12], 
which consists of a hardware stage, based on information from 
the calorimeter and muon systems, followed by a software stage, 
where a full event reconstruction is made. Candidate events are 
required to pass the hardware trigger, which selects muon and 
dimuon candidates with high pT based upon muon system in-
formation. The subsequent software trigger is composed of two 
stages. The first performs a partial event reconstruction and 
requires events to have two well-identified oppositely charged 
muons with an invariant mass larger than 2.7 GeV/c2. The sec-
ond stage performs a full event reconstruction. Events are retained 
for further processing if they contain a displaced J/ψ → μ+μ−
candidate. The decay vertex is required to be well separated from 
each reconstructed PV of the proton–proton interaction by requir-
ing the distance between the PV and the J/ψ decay vertex divided 
by its uncertainty to be greater than three. This introduces a non-
uniform efficiency for b-hadron candidates that have a decay time 
less than 0.1 ps.

Simulated pp collisions are generated using Pythia [13] with a 
specific LHCb configuration [14]. Decays of hadronic particles are 
described by EvtGen [15], in which final-state radiation is gener-
ated using Photos [16]. The interaction of the generated particles 
with the detector, and its response, are implemented using the
Geant4 toolkit [17] as described in Ref. [18].

3. Selection

A two-step procedure, is used to optimize the selection of 
B0

s → J/ψη decay candidates. These studies use simulated data 
samples together with the high mass sideband of the data (5650 <
m( J/ψη) < 5850 MeV/c2), which is not used in the subsequent 
determination of τeff. In a first step, loose selection criteria are 
applied that reduce background significantly whilst retaining high 
signal efficiency. Subsequently, a multivariate selection (MVA) is 
used to reduce further the combinatorial background. This is op-
timized using pseudoexperiments to obtain the best precision on 
the measured B0

s lifetime.
The selection starts from a pair of oppositely charged particles, 

identified as muons, that form a common decay vertex. Combina-
torial background is suppressed by requiring that χ2

IP of the muon 
candidates1 to all reconstructed PVs to be larger than four. To 
ensure a high reconstruction efficiency the muon candidates are 
required to have a pseudorapidity between 2.0 and 4.5. The in-
variant mass of the dimuon candidate must be within 50 MeV/c2

of the known J/ψ mass [19]. In addition, the trigger requirement 
that the J/ψ decay length divided by its uncertainty is greater 
than three is reapplied.

Photons are selected from neutral clusters reconstructed in the 
electromagnetic calorimeter [10] that have a transverse energy in 
excess of 300 MeV and a confidence level to be a photon, Pγ , 
greater than 0.009. The latter requirement has an efficiency of 
98% for the simulated signal sample whilst removing 23% of the 
background in the high mass sideband. To suppress combinato-
rial background, if either of the photons when combined with any 
other photon candidate in the event has an invariant mass within 
25 MeV/c2 of the known π0 meson mass [19] the candidate is re-
jected.

1 The quantity χ2
IP is defined as the difference between the χ2 of the PV recon-

structed with and without the considered particle.

Candidate η → γ γ decays are selected from diphoton combi-
nations with an invariant mass within 70 MeV/c2 of the known 
η mass [19] and with a transverse momentum larger than 
2 GeV/c. The decay angle between the photon momentum in the 
η rest frame and the direction of Lorentz boost from the laboratory 
frame to the η rest frame, θ∗

η , is required to satisfy 
∣
∣cos θ∗

η

∣
∣ < 0.8.

The J/ψ and η candidates are combined to form candidate B0
(s)

mesons. The average number of PVs in each event is 1.8 (2.0) for 
the 2011 (2012) dataset. When multiple PVs are reconstructed, 
the one with the minimum χ2

IP to the B0
(s) candidate is chosen. 

A kinematic fit is performed to improve the invariant mass reso-
lution [20]. In this fit the momentum vector of the B0

(s) candidate 
is constrained to point to the PV and the intermediate resonance 
masses are constrained to their known values. The reduced χ2 of 
this fit, χ2/ndf, is required to be less than five. The measured B0

(s)
decay time must be larger than 0.3 ps and less than 10 ps. If more 
than one PV is reconstructed in an event the properties of the 
unassociated vertices are studied. Any candidate for which there 
is a second PV with χ2

IP < 50 is rejected. This requirement has an 
efficiency of 98% that is almost flat as a function of the decay time 
and reduces background due to incorrect association of the B0

(s)
candidate to a PV. Finally, as in Ref. [21], the position of the PV 
along the beam-line is required to be within 10 cm of the nomi-
nal interaction point, where the standard deviation of this variable 
is approximately 5 cm. This criterion leads to a 10% reduction in 
signal yield but defines a fiducial region where the reconstruction 
efficiency is uniform.

The second step of the selection process is based on a neural 
network [22], which is trained using the simulated signal sam-
ple and the high-mass sideband of the data for background. Seven 
variables that show good agreement between data and simulation 
and that do not significantly bias the B0

(s) decay time distribution 
are used to train the neural net: the χ2/ndf of the kinematic fit; 
the pT of the B0

(s) and η mesons; the minimum pT of the two pho-

tons; 
∣
∣cos θ∗

η

∣
∣; the minimum Pγ of the two photons and the total 

hit multiplicity in the TT sub-detector.
The requirement on the MVA output was chosen to minimize 

the statistical uncertainty on the fitted τeff using a sample of 100 
pseudoexperiments. The chosen value removes 94% of background 
candidates whilst retaining 69% of the signal candidates. After ap-
plying these requirements 2% of events contain multiple candidates 
from which only one, chosen at random, is kept.

4. Fit model

The effective lifetime is determined by performing a two-
dimensional maximum likelihood fit to the unbinned distributions 
of the B0

(s) candidate invariant mass and decay time

t = m · l

p
,

where l is the candidate decay length, p the candidate momentum 
and m the reconstructed invariant mass of the candidate. The fit 
is performed for candidates with 5050 < m( J/ψη) < 5650 MeV/c2

and 0.3 < t < 10 ps. The fit model has four components: the B0
s →

J/ψη signal, background from the B0 → J/ψη decay, background 
from partially reconstructed B0

s → J/ψηX decays, and combinato-
rial background.

In the fit, the decay-time distribution of each component is con-
volved with a Gaussian resolution function whose width is fixed to 
the standard deviation of the decay-time resolution in simulated 
data. A decay-time acceptance function accounts for the depen-
dence of the signal efficiency on several effects. The procedure 
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Table 1
Acceptance parameters due to the selection requirements 
(Asel). The correlation coefficients are ρc0c1 = 0.51, ρc0c2 = 0.62
and ρc1c2 = 0.95.

Parameter Value

c0 (6.5 ± 0.4) × 10−3 ps−1

c1 (6.6 ± 0.3) ps−1

c2 1.50 ± 0.04

Table 2
Values of the β and γ factor fitting the quadratic form. The first uncertainty is 
statistical and the second from the propagation of the uncertainty on the efficiency 
versus the distance of closest approach obtained with the B+ → J/ψ K + calibration 
sample. The correlation coefficient between β and γ is 0.8.

Sample β [%] γ [%]

2011 data 0.39 ± 0.06−0.01
+0.07 0.115 ± 0.021−0.004

+0.001

2012 0.93 ± 0.080+0.001
−0.01 0.051 ± 0.023−0.006

+0.006

used to model the decay-time acceptance is described in detail in 
Ref. [21]. The overall acceptance, Atot, is factorised into the product 
of the selection (Asel), trigger (Atrig) and vertex (Aβ ) acceptance 
functions, determined as described below. The effect of the selec-
tion requirements, dominated by the cut on the displacement of 
the muons from the PV, is studied using simulation and parame-
terised with the form

Asel = 1 − c0t

1 + (c1t)−c2
,

where t is the decay time, and c0, c1 and c2 are parameters de-
termined from the simulation and summarized in Table 1. In the 
second level of the software trigger a cut is applied on the de-
cay length significance of the J/ψ candidate, which biases the 
decay time distribution. The trigger efficiency, Atrig, is measured 
separately for the 2011 and 2012 datasets using events that are 
selected by a dedicated prescaled trigger in which this require-
ment is removed. It increases approximately linearly from 98% at 
t = 0.3 ps to 100% 4 ps. The resulting acceptance shape is param-
eterised in bins of decay time with linear interpolation between 
the bins. Finally, the reconstruction efficiency of the vertex de-
tector decreases as the distance of closest approach of the decay 
products to the pp beam-line increases. This effect is studied us-
ing B+ → J/ψ K + decays where the kaon is reconstructed without 
using vertex detector information [21] and parameterised with the 
form

Aβ = 1 − βt − γ t2,

where the parameters β and γ are determined separately for the 
2011 and 2012 data. The obtained values are summarized in Ta-
ble 2.

Fig. 1 shows the overall acceptance curves obtained for the 
2011 and 2012 datasets. The shape of Atot is mainly determined by 
Asel, whose uncertainty is dominated by the size of the simulation 
sample. The overall acceptance correction is relatively small. Fitting 
the simulated data with and without the correction τeff changes by 
13 fs.

The invariant mass distribution for the B0
s → J/ψη signal is 

parameterised by a Student’s t-distribution. The Bukin [23] and 
JohnsonSU [24] functions are considered for systematic variations. 
In the fit to the data, the shape parameters of this distribution are 
fixed to the simulation values. The decay time distribution for this 
component is modelled with an exponential function convolved 
with the detector resolution and multiplied by the detector accep-
tance, as discussed above.

Fig. 1. Total acceptance function, Atot for 2011 data (black dashed line) and 2012 
data (solid red).

The second component in the fit accounts for the B0 →
J/ψη decay. As the invariant mass resolution is approximately 
48 MeV/c2 this overlaps with the B0

s signal mode. Its mass dis-
tribution is modelled, analogously to the B0

s component, with a 
Student’s t-distribution, with resolution parameters fixed to values 
determined in the simulation. The mass difference between the 
B0

s and B0 mesons, and the B0 lifetime, are fixed to their known 
central values: m(B0

s ) − m(B0) = 87.29 ± 0.26 MeV/c2 [25] and 
τ (B0) = 1.519 ± 0.005 ps [19] and the uncertainty propagated to 
the systematic error. Similarly, the relative yield of the B0 and B0

s
components, fr , is fixed to (7.3 ±0.8)% calculated from the average 
of the branching fractions measurements made by the Belle [26,
27] and LHCb collaborations [28], and the measured fragmentation 
fractions [29–31].

Combinatorial background is modelled by a first order Cheby-
shev polynomial in mass and the sum of two exponentials in decay 
time. In the fit to the data the lifetime of the shorter lived com-
ponent is fixed to the value found in the fit to the sideband. As a 
systematic variation of the mass model, an exponential function is 
considered.

Background from partially reconstructed decays of b hadrons 
is studied using a simulated bb sample. Using this sample an 
additional background component, due to partially reconstructed 
B0

s → J/ψηX decays, is identified. Background from this source 
lies at invariant masses below 5100 MeV/c2 and has a lifetime of 
1.33 ± 0.10 ps. This component is modelled by a Novosibirsk func-
tion [32] in mass and an exponential in time. All parameters for 
this component apart from the yield are fixed to the simulation 
values in the fit to the data.

The fit has eight free parameters: the yield of the B0
s → J/ψη

component (N B0
s ), the combinatorial background yield (Ncomb), the 

partially reconstructed background yield (Npartial), the B0
s mass, 

the lifetime of the signal component (τeff), the coefficient of the 
combinatorial background component in mass (acomb), the longer 
lived background lifetime (τcomb) and the fraction of the short-
lived background ( fcomb). Independent fits are performed for the 
2011 and 2012 data and a weighted average of the two lifetime 
values is made. The correctness of the fit procedure is validated us-
ing the full simulation and pseudoexperiments. No significant bias 
is found and the uncertainties estimated by the fit are found to be 
accurate.

5. Results

Fig. 2 shows the fit projections in mass and decay time for the 
2011 and 2012 data. The corresponding fit results are summarized 
in Table 3. The fitted signal yields of the two years scale accord-
ing to the known integrated luminosity and b-hadron production 
cross-section. There is some tension in the relative yield of the par-
tially reconstructed background between the two years. However, 
this parameter is almost uncorrelated with τeff and this tension 
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Fig. 2. Mass and decay time distributions for the 2011 dataset (top row) and 2012 dataset (bottom row). The fit model described in the text is superimposed (red line). The 
partially reconstructed component is shown in solid yellow (dark grey), the combinatorial background in solid green (light grey) and the B0 component as open blue. The 
pull, i.e. the difference between the observed and fitted value divided by the uncertainty, is shown below each of the plots. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
Table 3
Parameters of the fit to B0

(s) → J/ψη candidates for the 2011 and 2012 datasets. 
Uncertainties are statistical only.

Fit parameter Fitted value

2011 2012

N B0
s 960 ±42 2061 ±60

mB0
s

[MeV/c2] 5365.6 ±1.8 5369.6 ±1.3

τeff [ps] 1.485 ±0.060 1.476 ±0.041

Ncomb 1898 ±64 3643 ±89

Npartial 81 ±26 345 ±39

acomb −0.37±0.05 −0.31±0.03

fcomb 0.52±0.03 0.49±0.02

τcomb [ps] 0.97±0.06 0.82±0.04

has no impact on the result. The average of the fitted values of τeff
is

τeff = 1.479 ± 0.034 ps,

where the uncertainty is statistical.
The main source of systematic uncertainty is due to the mod-

elling of the decay time acceptance function (Section 4). Varying 
the parameters of the acceptance function within their correlated 
uncertainties, a variation of the fitted lifetime of 10 fs is found, 
which is assigned as a systematic uncertainty. Uncertainties on 
Asel due to the parameterisation of this effect are evaluated to 
be negligible by replacing the functional form with a histogram. 
The statistical and systematic uncertainties on Aβ are evaluated 
by repeating the fit and varying the parameterisation within its 
uncertainties. The statistical uncertainty on Atrig is propagated by 
generating an ensemble of histograms with each bin varied within 
its statistical uncertainty. Systematic uncertainties on Atrig are es-
timated to be small by varying the binning of the histogram and 

considering an alternative analytic form. In simulation studies the 
efficiency of the MVA is found to be independent of the decay 
time within uncertainties. Conservatively, allowing for a linear de-
pendence, an uncertainty of 1.7 fs is assigned.

The influence of the decay time resolution is estimated by in-
creasing its value from 51 to 70 fs. This variation covers the vari-
ation of the resolution with decay time and any possible discrep-
ancy in the resolution between data and simulation. The change 
in τeff from this variation is negligible. The impact of the uncer-
tainties in fr , the B0

s –B0 mass splitting, and the B0 lifetime are 
evaluated by repeating the fit procedure varying these parameters 
within their quoted uncertainties.

Further uncertainties arise from the modelling of the time dis-
tributions of the background components. In the default fit the 
lifetime of the short-lived component is fixed to the value found 
in a fit to the mass sideband. Removing this constraint changes the 
result by 4 fs, which is assigned as a systematic uncertainty. The 
uncertainty due to the fixed lifetime of the partially reconstructed 
component is found to be negligible.

Uncertainties arising from the modelling of the signal and back-
ground mass distributions are evaluated using the discrete pro-
filing method described in Ref. [33] and found to be negligible. 
Further small uncertainties arise due to the limited knowledge of 
the length scale of the detector along the beam axis (z-scale), the 
charged particle momentum scale and the neutral particle energy 
scale.

The stability of the result has been tested against a number 
of possible variations, such as the fitted invariant mass range, the 
requirement on the IP of the muons, the MVA requirement and 
analysing the sample according to the number of reconstructed 
PVs. No significant change in the final result is found and hence 
no further systematic uncertainty is assigned.

All the uncertainties are summarized in Table 4. Adding them in 
quadrature leads to a total systematic uncertainty of 11.1 fs which 
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Table 4
Systematic uncertainties on the lifetime measurement. Uncertainties 
less than 0.1 fs are indicated by a dash.

Source Uncertainty [fs]

Asel 10.0
Aβ (stat) 2.0
Aβ (syst) 0.1
Atrig (stat) 0.6
Atrig (syst) 0.6
MVA 1.7
Time resolution –
fr 1.2
B0

s –B0 mass difference –
B0 lifetime 0.2
Releasing τback 4.0
Varying τpartial –
Mass model –
Momentum scale –
z-scale 0.3

Total 11.1

Fig. 3. Summary of measurements of τL . The yellow band corresponds to the 2015 
HFAG central value and uncertainty. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

is dominated by the size of the simulation sample used to deter-
mine the acceptance and to validate the analysis procedure.

6. Summary

Using data collected by LHCb, the effective lifetime in the B0
s →

J/ψη decay mode is measured to be

τeff = 1.479 ± 0.034 (stat) ± 0.011 (syst) ps.

In the limit of CP conservation, τeff is equal to the lifetime of the 
light B0

s mass eigenstate τL . The present measurement is consis-
tent with, and has similar precision to, the effective lifetime de-
termined using the B0

s → D+
s D−

s decay mode [7], τeff(D+
s D−

s ) =
1.379 ± 0.026 (stat) ± 0.017 (syst) ps and also with the value 
measured in the B0

s → K +K − mode [8], τeff(K +K −) = 1.407 ±
0.016 (stat) ± 0.007 (syst) ps, where penguin diagrams are ex-
pected to be more important. Averaging the tree level measure-
ments gives τeff = 1.42 ± 0.02 ps in good agreement with the 
expectations of the Standard Model [6], τL = 1.43 ± 0.03 ps and 
the value quoted by HFAG [34] from measurements made in the 
B0

s → J/ψφ mode, τL = 1.420 ± 0.006 ps. The values from these 
different measurements are compared in Fig. 3.
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